Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-5rlvm Total loading time: 0.373 Render date: 2021-10-17T17:31:34.426Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

5 - Imaging of brain oxygenation

from Section 1 - Techniques

Published online by Cambridge University Press:  05 May 2013

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Xavier Golay
Affiliation:
National Hospital for Neurology and Neurosurgery, London
Gregory Zaharchuk
Affiliation:
Stanford University Medical Center
Get access

Summary

Introduction

Tissue oxygenation is a critical physiological parameter in most organ systems. In the brain, oxygenation status plays an important role in hypoxic and ischemic injuries, carotid artery disease, and tumor growth and response to therapy. Traditionally, positron emission tomography (PET) has been used to measure brain oxygen metabolism, but more recently the feasibility of measuring brain oxygenation with MRI has been explored [1–6]. This chapter discusses the theory and methodology of several approaches for measuring brain tissue oxygenation using MRI, including quantitative blood oxygenation level-dependent (qBOLD), quantitative susceptibility mapping (QSM), and T2 relaxation under spin tagging (TRUST). Additional detail, particularly more technical aspects, can be found in a recent review article [7]. Before delving into these methods, we will present a brief review of cerebral autoregulation as it affects oxygenation measurements.

Theory

Cerebrovascular autoregulation and oxygenation measurements

When an artery becomes narrowed or completely occluded, the mean arterial pressure (MAP) in the distal circulation may fall, depending on both the degree of stenosis and the adequacy of collateral sources of blood flow [8]. If collateral flow is inadequate, MAP will fall, leading to a reduction in cerebral perfusion pressure (CPP), which is defined as the difference between MAP and venous backpressure.

Type
Chapter
Information
Clinical Perfusion MRI
Techniques and Applications
, pp. 75 - 88
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Frykholm, P, Andersson, JL, Valtysson, J, et al. A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion-reperfusion primate model. Acta Neurol Scand 2000;102:18–26.CrossRefGoogle Scholar
Giffard, C, Young, AR, Kerrouche, N, Derlon, JM, Baron, JC.Outcome of acutely ischemic brain tissue in prolonged middle cerebral artery occlusion: a serial positron emission tomography investigation in the baboon. J Cereb Blood Flow Metab 2004;24:495–508.CrossRefGoogle ScholarPubMed
Powers, WJ, Grubb, RL, Darriet, D, Raichle, ME.Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 1985;5:600–8.CrossRefGoogle ScholarPubMed
Young, AR, Sette, G, Touzani, O, et al. Relationships between high oxygen extraction fraction in the acute stage and final infarction in reversible middle cerebral artery occlusion: an investigation in anesthetized baboons with positron emission tomography. J Cereb Blood Flow Metab 1996;16:1176–88.CrossRefGoogle ScholarPubMed
Lee, JM, Vo, KD, An, H, et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol 2003;53:227–32.CrossRefGoogle ScholarPubMed
Adeoye, O, Hornung, R, Khatri, P, Kleindorfer, D.Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke 2011;42:1952–5.CrossRefGoogle ScholarPubMed
Christen, T, Bolar, DS, Zaharchuk, G. Imaging brain oxygenation with MRI using blood oxygen approaches: methods, validation, and clinical applications. AJNR Am J Neuroradiol. 2012;in press.
Powers, WJ, Press, GA, Grubb, RL, Gado, M, Raichle, ME.The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med 1987;106:27–34.CrossRefGoogle ScholarPubMed
MacKenzie, ET, McGeorge, AP, Graham, DI, et al. Effects of increasing arterial pressure on cerebral blood flow in the baboon: influence of the sympathetic nervous system. Pflugers Arch 1979;378:189–95.CrossRefGoogle ScholarPubMed
Rapela, CE, Green, HD.Autoregulation of canine cerebral blood flow. Circ Res 1964;15 Suppl:205–12.Google ScholarPubMed
Powers, WJ.Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991;29:231–40.CrossRefGoogle ScholarPubMed
Baron, JC, Bousser, MG, Comar, D, Soussaline, F, Castaigne, P.Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol 1981;20:273–84.CrossRefGoogle ScholarPubMed
Dirnagl, U, Pulsinelli, W.Autoregulation of cerebral blood flow in experimental focal brain ischemia. J Cereb Blood Flow Metab 1990;10:327–36.CrossRefGoogle ScholarPubMed
Ogawa, S, Lee, TM, Nayak, AS, Glynn, P.Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14:68–78.CrossRefGoogle Scholar
Ogawa, S, Lee, TM, Barrere, B.The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 1993;29:205–10.CrossRefGoogle ScholarPubMed
Ogawa, S, Lee, TM, Kay, AR, Tank, DW.Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990;87:9868–72.CrossRefGoogle ScholarPubMed
Rosen, BR, Turner, R, Hunter, GJ, Fordham, JA.MR depicts perfusion of brain and heart. Diagn Imaging (San Franc). 1991;13:105–10.Google ScholarPubMed
Prielmeier, F, Nagatomo, Y, Frahm, J.Cerebral blood oxygenation in rat brain during hypoxic hypoxia. Quantitative MRI of effective transverse relaxation rates. Magn Reson Med 1994;31:678–81.CrossRefGoogle ScholarPubMed
Jezzard, P, Heineman, F, Taylor, J, et al. Comparison of EPI gradient-echo contrast changes in cat brain caused by respiratory challenges with direct simultaneous evaluation of cerebral oxygenation via a cranial window. NMR Biomed 1994;7:35–44.CrossRefGoogle Scholar
Hoppel, BE, Weisskoff, RM, Thulborn, KR, et al. Measurement of regional blood oxygenation and cerebral hemodynamics. Magn Reson Med 1993;30:715–23.CrossRefGoogle ScholarPubMed
Rostrup, E, Larsson, HB, Toft, PB, Garde, K, Henriksen, O.Signal changes in gradient echo images of human brain induced by hypo- and hyperoxia. NMR Biomed 1995;8:41–7.CrossRefGoogle ScholarPubMed
Kennan, RP, Scanley, BE, Gore, JC.Physiologic basis for BOLD MR signal changes due to hypoxia/hyperoxia: separation of blood volume and magnetic susceptibility effects. Magn Reson Med 1997;37:953–6.CrossRefGoogle ScholarPubMed
Lin, W, Paczynski, RP, Celik, A, et al. Experimental hypoxemic hypoxia: changes in R2* of brain parenchyma accurately reflect the combined effects of changes in arterial and cerebral venous oxygen saturation. Magn Reson Med 1998;39:474–81.CrossRefGoogle ScholarPubMed
Davis, TL, Kwong, KK, Weisskoff, RM, Rosen, BR.Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998;95:1834–9.CrossRefGoogle ScholarPubMed
Lin, W, Celik, A, Paczynski, RP, Hsu, CY, Powers, WJ.Quantitative magnetic resonance imaging in experimental hypercapnia: improvement in the relation between changes in brain R2 and the oxygen saturation of venous blood after correction for changes in cerebral blood volume. J Cereb Blood Flow Metab 1999;19:853–62.CrossRefGoogle ScholarPubMed
Lin, W, Paczynski, RP, Celik, A, Hsu, CY, Powers, WJ.Effects of acute normovolemic hemodilution on T2*-weighted images of rat brain. Magn Reson Med 1998;40:857–64.CrossRefGoogle ScholarPubMed
De Crespigny, AJ, Wendland, MF, Derugin, N, Kozniewska, E, Moseley, ME.Real-time observation of transient focal ischemia and hyperemia in cat brain. Magn Reson Med 1992;27:391–7.CrossRefGoogle ScholarPubMed
Ono, Y, Morikawa, S, Inubushi, T, Shimizu, H, Yoshimoto, T.T2*-weighted magnetic resonance imaging of cerebrovascular reactivity in rat reversible focal cerebral ischemia. Brain Res 1997;744:207–15.CrossRefGoogle ScholarPubMed
Foltz, WD, Merchant, N, Downar, E, Stainsby, JA, Wright, GA.Coronary venous oximetry using MRI. Magn Reson Med 1999;42:837–48.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Thulborn, KR, Waterton, JC, Matthews, PM, Radda, GK.Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 1982;714:265–70.CrossRefGoogle ScholarPubMed
Wright, GA, Hu, BS, Macovski, A. 1991 I.I. Rabi Award. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5T. J Magn Reson Imaging 1991;1:275–83.CrossRefGoogle Scholar
Stables, LA, Kennan, RP, Gore, JC.Asymmetric spin-echo imaging of magnetically inhomogeneous systems: theory, experiment, and numerical studies. Magn Reson Med 1998;40:432–42.CrossRefGoogle ScholarPubMed
Kennan, RP, Zhong, J, Gore, JC.Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 1994;31:9–21.CrossRefGoogle ScholarPubMed
Yablonskiy, DA, Haacke, EM.Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994;32:749–63.CrossRefGoogle ScholarPubMed
van Zijl, PC, Eleff, SM, Ulatowski, JA, et al. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. [see comments.]. Nat Med 1998;4:159–67.CrossRefGoogle Scholar
Qin, Q, Grgac, K, van Zijl, PC.Determination of whole-brain oxygen extraction fractions by fast measurement of blood T(2) in the jugular vein. Magn Reson Med 2011;65:471–9.CrossRefGoogle Scholar
Fernandez-Seara, MA, Techawiboonwong, A, Detre, JA, Wehrli, FW.MR susceptometry for measuring global brain oxygen extraction. Magn Reson Med 2006;55:967–73.CrossRefGoogle ScholarPubMed
Weisskoff, RM, Kiihne, S.MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn Reson Med 1992;24:375–83.CrossRefGoogle ScholarPubMed
Ma, J, Wehrli, FW.Method for image-based measurement of the reversible and irreversible contribution to the transverse-relaxation rate. J Magn Reson B 1996;111:61–9.CrossRefGoogle ScholarPubMed
An, H, Lin, W.Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab 2000;20:1225–36.CrossRefGoogle ScholarPubMed
An, H, Lin, W.Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using magnetic resonance imaging: effects of magnetic field variation. Magn Reson Med 2002;47:958–66.CrossRefGoogle ScholarPubMed
An, H, Lin, W.Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach. Magn Reson Med 2003;50:708–16.CrossRefGoogle ScholarPubMed
He, X, Yablonskiy, DA.Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med 2007;57:115–26.CrossRefGoogle ScholarPubMed
He, X, Zhu, M, Yablonskiy, DA.Validation of oxygen extraction fraction measurement by qBOLD technique. Magn Reson Med 2008;60:882–8.CrossRefGoogle ScholarPubMed
An, H, Lin, W.Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging. Magn Reson Med 2002;48:583–8.CrossRefGoogle ScholarPubMed
Duong, TQ, Kim, SG.In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain. Magn Reson Med 2000;43:393–402.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Pollard, V, Prough, DS, DeMelo, AE, et al. Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo. Anesth Analg 1996;82:269–77.Google ScholarPubMed
Schlemmer, HP, Pichler, BJ, Schmand, M, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008;248:1028–35.CrossRefGoogle ScholarPubMed
An, H, Liu, Q, Chen, Y, Lin, W.Evaluation of MR-derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia, and ischemia. Stroke 2009;40:2165–72.CrossRefGoogle ScholarPubMed
Sohlin, MC, Schad, LR.Susceptibility-related MR signal dephasing under nonstatic conditions: experimental verification and consequences for qBOLD measurements. J Magn Reson Imaging 2011;33:417–25.CrossRefGoogle ScholarPubMed
Sedlacik, J, Reichenbach, JR.Validation of quantitative estimation of tissue oxygen extraction fraction and deoxygenated blood volume fraction in phantom and in vivo experiments by using MRI. Magn Reson Med 2010;63:910–21.CrossRefGoogle ScholarPubMed
Christen, T, Lemasson, B, Pannetier, N, et al. Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed 2011; 24: 393–403.Google ScholarPubMed
Christen, T, Schmiedeskamp, H, Straka, M, Bammer, R, Zaharchuk, G.Measuring brain oxygenation in humans using a multiparametric quantitative blood oxygenation level dependent MRI approach. Magn Reson Med 2012; 68: 905–11.CrossRefGoogle ScholarPubMed
Reichenbach, JR, Venkatesan, R, Schillinger, DJ, Kido, DK, Haacke, EM.Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 1997;204:272–7.CrossRefGoogle ScholarPubMed
Shmueli, K, de Zwart, JA, van Gelderen, P, et al. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 2009;62:1510–22.CrossRefGoogle ScholarPubMed
Wharton, S, Schafer, A, Bowtell, R.Susceptibility mapping in the human brain using threshold-based k-space division. Magn Reson Med 2010;63:1292–304.CrossRefGoogle ScholarPubMed
Fan, AP, Benner, T, Bolar, DS, Rosen, BR, Adalsteinsson, E.Phase-based regional oxygen metabolism (PROM) using MRI. Magn Reson Med 2012;67:669–78.CrossRefGoogle ScholarPubMed
Jain, V, Langham, MC, Wehrli, FW.MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab 2010;30:1598–607.CrossRefGoogle ScholarPubMed
Golay, X, Silvennoinen, MJ, Zhou, J, et al. Measurement of tissue oxygen extraction ratios from venous blood T(2): increased precision and validation of principle. Magn Reson Med 2001;46:282–91.CrossRefGoogle Scholar
Oja, JM, Gillen, JS, Kauppinen, RA, Kraut, M, van Zijl, PC.Determination of oxygen extraction ratios by magnetic resonance imaging. J Cereb Blood Flow Metab 1999;19:1289–95.CrossRefGoogle ScholarPubMed
Lu, H, Xu, F, Grgac, K, et al. Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation. Magn Reson Med 2012; 67: 42–9.CrossRefGoogle ScholarPubMed
Lu, H, Ge, Y.Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med 2008;60:357–63.CrossRefGoogle ScholarPubMed
Bolar, DS, Rosen, BR, Sorensen, AG, Adalsteinsson, E.QUantitative Imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magn Reson Med 2011; 66: 1550–62.CrossRefGoogle ScholarPubMed
Xu, F, Ge, Y, Lu, H.Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 2009;62:141–8.CrossRefGoogle ScholarPubMed
An, H, Lin, W, Celik, A, Lee, YZ.Quantitative measurements of cerebral metabolic rate of oxygen utilization using MRI: a volunteer study. NMR Biomed 2001;14:441–7.CrossRefGoogle ScholarPubMed
Mintun, MA, Vlassenko, AG, Shulman, GL, Snyder, AZ.Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 2002;16:531–7.CrossRefGoogle ScholarPubMed
Law, I, Iida, H, Holm, S, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation. J Cereb Blood Flow Metab 2000;20:1252–63.CrossRefGoogle ScholarPubMed
Ashkanian, M, Borghammer, P, Gjedde, A, Ostergaard, L, Vafaee, M.Improvement of brain tissue oxygenation by inhalation of carbogen. Neuroscience 2008;156:932–8.CrossRefGoogle ScholarPubMed
Ford, AL, An, H, Vo, KD, et al. MR-derived oxygen metabolic index (OMI) predicts gray matter infarction better than ADC during the hyper-acute phase of ischemic stroke. J Cereb Blood Flow Metab 2009;29 (suppl 15):S90.Google Scholar
1
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×