Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-8r8mm Total loading time: 0.809 Render date: 2021-11-29T15:52:04.282Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Chapter 2 - Basic Principles in Clinical Neuroendocrinology II: Assays, Rhythms and Pulses

Published online by Cambridge University Press:  24 December 2018

Michael Wilkinson
Affiliation:
Dalhousie University, Nova Scotia
S. Ali Imran
Affiliation:
Dalhousie University, Nova Scotia
Get access
Type
Chapter
Information
Clinical Neuroendocrinology
An Introduction
, pp. 14 - 28
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bedrosian, T A, Fonken, L K & Nelson, R J. (2016). Endocrine effects of circadian disruption. Ann Rev Physiol 78, 109131.CrossRefGoogle ScholarPubMed
Budan, R M & Georgescu, C E. (2016). Multiple pituitary adenomas: A systematic review. Front Endocr 7, 1.CrossRefGoogle ScholarPubMed
Keenan, D M & Veldhuis, J D. (2016). Pulsatility of hypothalamo–pituitary hormones: a challenge in quantification. Physiol 31, 3450.CrossRefGoogle ScholarPubMed
Lightman, S (2016). Rhythms within rhythms: the importance of oscillations for glucocorticoid hormones. In: A Time for Metabolism and Hormones; Sassone-Corsi, P & Christen, Y, Eds. (New York: Springer), 8799.CrossRefGoogle ScholarPubMed
Oster, H, Challet, E, Ott, V et al. (2017). The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev 38, 345.Google ScholarPubMed
Partch, C L, Green, C B & Takahashi, J S. (2014). Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24, 9099.CrossRefGoogle ScholarPubMed
Prasa, M J, Pernicova, I, Grant, P J & Scott, E M. (2011). An endocrinologist’s guide to the clock. J Clin Endocr Metab 96, 913922.CrossRefGoogle Scholar
Angelousi, A, Kassi, E, Nasiri-Ansari, N et al. (2018). Clock genes alterations and endocrine disorders. Europ J Clin Invest 48, e12927.CrossRefGoogle ScholarPubMed
Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 72, 415.CrossRefGoogle Scholar
Bedrosian, T A, Fonken, L K & Nelson, R J. (2016). Endocrine effects of circadian disruption. Ann Rev Physiol 78, 109131.CrossRefGoogle ScholarPubMed
Blackman, M R. (2000). Age-related alterations in sleep quality and neuroendocrine function. J Am Med Assoc 284, 879881.CrossRefGoogle ScholarPubMed
Daniel, E, Aylwin, S, Mustafa, O et al. (2015). Effectiveness of metyrapone in treating Cushing’s syndrome: a retrospective multicenter study in 195 patients. J Clin Endocr Metab 100, 41464154.CrossRefGoogle ScholarPubMed
Engel, J B & Schally, A V. (2007). Drug insight: clinical use of agonists and antagonists of luteinizing-hormone-releasing hormone. Nat Clin Practice Endocr Metab 3, 157167.CrossRefGoogle ScholarPubMed
Fonken, L K & Nelson, R J. (2014). The effects of light at night on circadian clocks and metabolism. Endocr Rev 35, 648670.CrossRefGoogle ScholarPubMed
Gamble, KL, Berry, R, Frank, SJ & Young, ME. (2014). Circadian clock control of endocrine factors. Nat Rev Endocr 10, 466475.CrossRefGoogle ScholarPubMed
Gibbison, B, Spiga, F, Walker, JJ et al. (2015). Dynamic pituitary–adrenal interactions in response to cardiac surgery. Crit Care Med 43, 791800.CrossRefGoogle ScholarPubMed
Gómez-Abellán, P, Hernández-Morante, JJ, Luján, JA, Madrid, JA & Garaulet, M. (2008). Clock genes are implicated in the human metabolic syndrome. Int J Obes 32,121128.CrossRefGoogle ScholarPubMed
Henley, DE, Leendertz, JA, Russell, GM et al. (2009). Development of an automated blood sampling system for use in humans. J Med Eng Technol 33, 199208.CrossRefGoogle ScholarPubMed
Hofman, MA & Swaab, DF. (2006). Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5, 3351.CrossRefGoogle ScholarPubMed
Kalafatakis, K, Russell, GM, Harmer, CJ et al. (2018). Ultradian rhythmicity of plasma cortisol is necessary for normal emotional and cognitive responses in man. Proc Nat Acad Sci USA 115, E4091E4100.CrossRefGoogle ScholarPubMed
Keller, J, Flores, B, Gomez, RG et al. (2006). Cortisol circadian rhythm alterations in psychotic major depression. Biol Psychiatr 60, 275281.CrossRefGoogle ScholarPubMed
Langelaan, MLP, Kisters, JMH, Oosterwerff, MM & Boer, A-K. (2018). Salivary cortisol in the diagnosis of adrenal insufficiency – cost efficient and patient friendly. Endocr Connect 7, 560566.CrossRefGoogle Scholar
Lightman, S. (2016). Rhythms within rhythms: the importance of oscillations for glucocorticoid hormones. In: A Time for Metabolism and Hormones; Sassone-Corsi, P & Christen, Y, Eds. (New York: Springer), 8799.CrossRefGoogle ScholarPubMed
Lightman, SL & Conway-Campbell, BL. (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat Rev Neurosci 11, 710718.CrossRefGoogle ScholarPubMed
Lightman, S & Terry, JR. (2014). The importance of dynamic signalling for endocrine regulation and drug development: relevance for glucocorticoid hormones. Lancet Diabetes Endocr 2, 593599.CrossRefGoogle ScholarPubMed
Matysik, S & Liebisch, G. (2017). Quantification of steroid hormones in human serum by liquid chromatography-high resolution tandem mass spectrometry. J Chromatog A 1526, 112118.CrossRefGoogle ScholarPubMed
Meyer, JS & Novak, MA. (2012). Minireview: Hair cortisol: a novel biomarker of hypothalamic–pituitary–adrenocortical activity. Endocr 153, 41204127.CrossRefGoogle ScholarPubMed
Millar, RP. (2015). New insights into GnRH neuron development, programming and regulation in health and disease. Neuroendocr 102, 181183.CrossRefGoogle ScholarPubMed
Nader, N, Chrousos, GP & Kino, T. (2010). Interactions of the circadian CLOCK system and the HPA axis. Trends Endocr Metab 21, 277286.CrossRefGoogle ScholarPubMed
Nicolaides, NC, Charmandari, E, Kino, T & Chrousos, GP. (2017). Stress-related and circadian secretion and target tissue actions of glucocorticoids: impact on health. Front Endocr 8, 70.CrossRefGoogle ScholarPubMed
Oster, H, Challet, E, Ott, V et al. (2017). The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev 38, 345.Google ScholarPubMed
Pérez, S, Murias, L, Fernández-Plaza, C et al. (2015). Evidence for clock genes circadian rhythms in human full-term placenta. Systems Biol Reprod Med 61, 360366.CrossRefGoogle ScholarPubMed
Potter, GDM, Skene, DJ, Arendt, J et al. (2016). Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. Endocr Rev 37, 584608CrossRefGoogle ScholarPubMed
Russell, GM, Durant, C, Ataya, A et al. (2014). Subcutaneous pulsatile glucocorticoid replacement therapy. Clin Endocr 81, 289293.CrossRefGoogle ScholarPubMed
Schmitz, O, Brock, B, Hollingdal, M, Juhl, CB & Porksen, N. (2002). High-frequency insulin pulsatility and type 2 diabetes: from physiology and pathophysiology to clinical pharmacology. Diabetes Metab 28 (6 Suppl.), 4S14–4S20.Google ScholarPubMed
Sen, A & Sellix, MT. (2016). The circadian timing system and environmental circadian disruption: from follicles to fertility. Endocr 157, 33663373.CrossRefGoogle ScholarPubMed
Sheikh-Ali, M & Maharaj, J. (2014). Circadian clock desynchronisation and metabolic syndrome. Postgrad Med J 90, 461466.CrossRefGoogle ScholarPubMed
Sookoian, S, Gemma, C, Gianotti, TF et al. (2008). Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr 87, 16061615.CrossRefGoogle ScholarPubMed
Southworth, MB, Matsumoto, AM, Gross, KM, Soules, MR & Bremner, WJ. (1991). The importance of signal pattern in the transmission of endocrine information: pituitary gonadotropin responses to continuous and pulsatile gonadotropin-releasing hormone. J Clin Endocr Metab 72, 12861289.CrossRefGoogle ScholarPubMed
Stanczyk, FZ & Clarke, NJ. (2014). Measurement of estradiol: challenges ahead. J Clin Endocr Metab 99, 5658.CrossRefGoogle ScholarPubMed
Steeves, TDL, King, DP, Zhao, Y et al. (1999). Molecular cloning and characterization of the human CLOCK gene: expression in the suprachiasmatic nuclei. Genomics 57, 189200.CrossRefGoogle ScholarPubMed
Stephen, L & Guest, PC. (2017). Multiplex immunoassay profiling of hormones involved in metabolic regulation. Meth Mol Biol 1735, 449456.CrossRefGoogle Scholar
Stephen, L, Schwarz, E & Guest, PC. (2017). Multiplex immunoassay profiling of serum in psychiatric disorders. Adv Exp Med Biol 974, 149156.CrossRefGoogle ScholarPubMed
Sturmer, LR, Dodd, D, Chao, CS & Shi, R-Z. (2018). Clinical utility of an ultrasensitive late night salivary cortisol assay by tandem mass spectrometry. Steroids 129, 3540.CrossRefGoogle ScholarPubMed
Van Cauter, E, Plat, L & Copinschi, G. (1998). Interrelations between sleep and the somatotropic axis. Sleep 21, 553566.Google ScholarPubMed
Van Cauter, E, Leproult, R & Plat, L. (2000). Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. J Am Med Assoc 284, 861868.CrossRefGoogle ScholarPubMed
Van den Berg, G, Frölich, M, Veldhuis, JD & Roelfsema, F. (1995). Combined amplification of the pulsatile and basal modes of adrenocorticotropin and cortisol secretion in patients with Cushing’s disease: evidence for decreased responsiveness of the adrenal glands. J Clin Endocr Metab 80, 37503757.CrossRefGoogle ScholarPubMed
Vgontzas, AN, Zoumakis, M, Bixler, EO et al. (2003). Impaired nighttime sleep in healthy old versus young adults is associated with elevated plasma interleukin-6 and cortisol levels: physiologic and therapeutic implications. J Clin Endocr Metab 88, 20872095.CrossRefGoogle ScholarPubMed
Wester, VL & van Rossum, EFC. (2015). Clinical applications of cortisol measurements in hair. Europ J Endocr 173, M1M10.CrossRefGoogle ScholarPubMed

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×