Climate Change and Cities
Buy print or eBook
[Opens in a new window] Second Assessment Report of the Urban Climate Change Research Network
Book contents
- Climate Change and Cities
- Praise for the ARC3.2 Report
- Climate Change and Cities
- Copyright page
- Contents
- UCCRN ARC3.2 List of Boxes
- Foreword – Anne Hidalgo, Mayor of Paris and Chair of C40
- Foreword – Eduardo Paes, Former Mayor of Rio de Janeiro and Former Chair of C40
- Foreword – James Nxumalo, Former Mayor of Durban
- Foreword – Joan Clos, Former Executive Secretary of UN-Habitat and Former Mayor of Barcelona
- Foreword – Christiana Figueres, Former Executive Secretary, United Nations Framework Convention on Climate Change and Vice Chair of the Global Covenant of Mayors
- Preface
- Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network
- Introduction
- Part I Cross-Cutting Themes
- Part II Urban Ecosystems and Human Services
- Part III Urban Infrastructure Systems
- Part IV Governance and Urban Futures
- Conclusion: Transforming Cities
- Annexes
- Appendices
- Index
- References
Introduction
Published online by Cambridge University Press: 12 April 2018
Book contents
- Climate Change and Cities
- Praise for the ARC3.2 Report
- Climate Change and Cities
- Copyright page
- Contents
- UCCRN ARC3.2 List of Boxes
- Foreword – Anne Hidalgo, Mayor of Paris and Chair of C40
- Foreword – Eduardo Paes, Former Mayor of Rio de Janeiro and Former Chair of C40
- Foreword – James Nxumalo, Former Mayor of Durban
- Foreword – Joan Clos, Former Executive Secretary of UN-Habitat and Former Mayor of Barcelona
- Foreword – Christiana Figueres, Former Executive Secretary, United Nations Framework Convention on Climate Change and Vice Chair of the Global Covenant of Mayors
- Preface
- Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network
- Introduction
- Part I Cross-Cutting Themes
- Part II Urban Ecosystems and Human Services
- Part III Urban Infrastructure Systems
- Part IV Governance and Urban Futures
- Conclusion: Transforming Cities
- Annexes
- Appendices
- Index
- References
- Type
- Chapter
- Information
- Climate Change and CitiesSecond Assessment Report of the Urban Climate Change Research Network, pp. 1 - 98Publisher: Cambridge University PressPrint publication year: 2018
References
Primary Sources
Balk, D., Montgomery, M. R., McGranahan, G., Kim, D., Mara, V., Todd, M., Buettner, T., and Dorelien, A. (2009). Mapping urban settlements and the risks of climate change in Africa, Asia, and South America. In Martine, G., Guzman, J. M., McGranahan, G., Schensul, D., and Tacoli, C. (eds.), Population Dynamics and Climate Change (pp. 80–103). United Nations Population Fund and International Institute for the Environment and Development.Google Scholar
Biermann, F., Betsill, M., Gupta, J., Kanie, N., Lebel, L., Liverman, D. D., Schroeder, H. H., and Siebenhüne, B. B. (2009). Earth System Governance: People, Places, and the Planet: Science and Implementation Plan of the Earth System Governance Project. Earth System Governance Report 1, IHDP Report 20. Bonn: The Earth System Governance Project.Google Scholar
Brown, K. (2014). Global environmental change | a social turn for resilience? Progress in Human Geography 38(1), 107–117.Google Scholar
Brown, K., O’Neill, S., and Fabricius, C. (2013). Social science understandings of transformation (pp. 100–106). World Social Science Report 2013: Changing Global Environments. ISSC, UNESCO.Google Scholar
Bulkeley, H., Broto, V. C., Hodson, M., and Marvin, S. (2012). Cities and Low Carbon Transitions. Routledege.Google Scholar
Bulkeley, H., Broto, V. C., Hodson, M., and Marvin, S. (2014). Low-carbon transitions and the reconfiguration of urban infrastructure. Urban Studies Journal, 51(7), 1471–1486, Accessed January 12, 2015: http://usj.sagepub.com/content/51/7/1471.full.pdf+htmlCrossRefGoogle Scholar
Burch, S., Shaw, A., Dale, A., and Robinson, J. (2014). Triggering transformative change: A development path approach to climate change response in communities. Climate Policy 14(4), doi:10.1080/14693062.2014.876342.Google Scholar
Cote, M., and Nightingale, A. J. (2011). Resilience thinking meets social theory: Situating social change in socio-ecological systems (SES) research. Progress in Human Geography. doi:10.1177/0309132511425708.CrossRefGoogle Scholar
Denton, F., Wilbanks, T. J., Abeysinghe, A. C., Burton, I., Gao, Q., Lemos, M. C., Masui, T. O’Brien, K. L., and Warner, K. (2014). Climate-resilient pathways: Adaptation, mitigation, and sustainable development. In Field, C. B., Barros, V. R., Dokken, D. J., et al. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1101–1131). Cambridge University Press.Google Scholar
Dodman, D. (2009a). Blaming cities for climate change: An analysis of urban greenhouse gas emissions inventories. Urbanization and Environment 21(1), 185–201.Google Scholar
Dodman, D. (2009b). Urban form, greenhouse gas emissions and climate vulnerability. In Guzmán, J. M., Martine, G., McGranahan, G., Schensul, D., and Tacoli, C. (eds.), Population Dynamics and Climate Change (pp. 64–79). UNFPA/IIED.Google Scholar
Ferguson, D. B., Rice, J., and Woodhouse, C. (2014). Linking Environmental Research and Practice: Lessons from the Integration of Climate Science and Water Management in the Western United States. Climate Assessment for the Southwest.Google Scholar
Grimm, N. B., Faeth, S. H., Redman, C. L., Wu, J., Bai, X., Briggs, J. and Golubiewski, N. E. (2008). Global change and the ecology of cities. Science 319(5864), 756–760.CrossRefGoogle ScholarPubMed
Hunter, L., and O’Neill, B. (2014). Enhancing engagement between the population, environment, and climate research communities: The shared socio-economic pathway process, Population and Environment. 35, 231–242.Google Scholar
ICLEI (2015). Who We Are. Accessed September 16, 2015: http://www.iclei.org/iclei-global/who-is-iclei.htmlGoogle Scholar
International Organization for Migration (IOM) (2015). World Migration Report 2015. Migrants and Cities: New Partnerships to Manage Mobility. International Organization for Migration. Accessed January 12, 2016: http://publications.iom.int/system/files/wmr2015_en.pdfGoogle Scholar
Marshall, N. A., Park, S. E., Adger, W. N., Brown, K., and Howden, S. M. (2012). Transformational capacity and the influence of place and identity. Environmental Research Letters 7(3), 1–9.Google Scholar
McDonald, R. I., Green, P. Balk, D., Fekete, B., Revenga, C., Todd, M., and Montgomery, M. (2011). Urban growth, climate change, and freshwater availability. Proceedings of the National Academy of Sciences 3(21), 1–6.Google Scholar
McGranahan, G., Balk, D., and Anderson, B. (2007). The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization 19, 17–37.Google Scholar
Mehrotra, S., Rosenzweig, C., Solecki, W. D., Natenzon, C. E., Omojola, A., Folorunsho, R., and Gilbride, J. (2011). Cities, disasters and climate risk. In Rosenzweig, C., Solecki, W. D., Hammer, S. A., and Mehrotra, S. (eds.), Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network (pp. 15–42). Cambridge University Press.Google Scholar
Montgomery, M. R. (2008, 8 February). The urban transformation of the developing world. Science 319(5864), 761–764.Google Scholar
Montgomery, M. R., Balk, D., Liu, Z., and Kim, D. (2012, 22 October). Understanding City Growth in Asia’s Developing Countries: The Role of Internal Migration, Working paper, Asia Development Bank.Google Scholar
O’Neill, B. C., Dalton, M., Fuchs, R., Jiang, L., Pachauri, S., and Zigova, K. (2010). Global demographic trends and future carbon emissions, Proceedings of the National Academy of Sciences of the United States of America 107(41), 17521–17526.Google Scholar
Redman, C. L., Grove, J. M., and Kuby, L. H. (2004). Integrating social science into the Long-Term Ecological Research (LTER) network: Social dimensions of ecological change and ecological dimensions of social change. Ecosystems 7(2), 161–171.Google Scholar
Sachs, J., and Tubiana, L. (2014). Pathways to deep decarbonization. Sustainable Development Solutions Network, Institute for Sustainable Development and International Relations, Accessed September 7, 2015: http://unsdsn.org/wp-content/uploads/2014/09/DDPP_Digit.pdfGoogle Scholar
Seto, K. C., Fragkias, M., Güneralp, B., and Reilly, M. K. (2011). A meta-analysis of global urban land expansion. PLoS ONE 6, e23777.Google Scholar
Seto, K. C., Reenberg, A., Boone, C. G., Fragkias, M., Haase, D., Langanke, T., Marcotullio, P., Munroe, D. K., Olah, B., and Simon, D. (2012). Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences of the United States of America 109, 7687–7692. Accessed August 11, 2015: http://dx.doi.org/10.1073/pnas.1117622109CrossRefGoogle ScholarPubMed
Seto, K. C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G. C., Dewar, D., Huang, L., Inaba, A., Kansal, A., Lwasa, S., McMahon, J. E., Müller, D. B., Murakami, J., Nagendra, H., and Ramaswami, A. (2014). Human settlements, infrastructure and spatial planning. In Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J. C. (eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Accessed July 12, 2015: http://www.ipcc.ch/pdf/assessment-report/ar5/ wg3/ipcc_wg3_ar5_chapter12.pdfGoogle Scholar
Shaw, A., Burch, S., Kristensen, F., Robinson, J., and Dale, A. (2014). Accelerating the sustainability transition: Exploring synergies between adaptation and mitigation in British Columbian communities. Global Environmental Change. Accessed March 13, 2015: http://dx.doi.org/10.1016/j.gloenvcha.2014.01.002Google Scholar
Simon, D. and Hayley, L. (2015). Sustainability challenges: Assessing climate adaptation in Africa. Current Opinion in Environmental Sustainability 13, iv–viii.Google Scholar
Skeldon, R. (2013). Global Migration: Demographic Aspects and Its Relevance for Development. UN DESA Technical paper 2013/6. Accessed July 29, 2014: www.un.org/esa/population/migration/documents/EGM.Skeldon_17.12.2013.pdfGoogle Scholar
Solecki, W., Rosenzweig, C., Solecki, S., Patrick, L., Horton, R., and Dorsch, M. (2017). New York, United States of America – Case Study. In Bartlett, S and Satterthwaite, D (eds.), Cities on a Finite Planet. Transformative Responses to Climate Change. Routledge.Google Scholar
Solecki, W., Seto, K. C., and Marcotullio, P. (2013). It’s time for an urbanization science. Environment 55, 12–16.Google Scholar
Sustainable Development Solutions Network, Thematic Group on Sustainable Cities (SDSN, TG09). (2013). The urban opportunity: Enabling transformative and sustainable development. Report to the High-Level Panel on Eminent Persons. Accessed May 24, 2014: http://unsdsn.org/wp-content/uploads/2014/02/Final-052013-SDSN-TG09-The-Urban-Opportunity1.pdfGoogle Scholar
Sustainable Development Solutions Network (SDSN). (2013). An Action Agenda for Sustainable Development: Report for the UN Secretary General, The United Nations. Accessed February 25, 2014: http://unsdsn.org/wp-content/uploads/2013/06/140505-An-Action-Agenda-for-Sustainable-Development.pdfGoogle Scholar
United Nations, Department of Economic and Social Affairs, Population Division. (2012). World Urbanization Prospects, the 2011 Revision. Final Report with Annex Tables. United Nations.Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division (2014). World Population Prospects: The 2012 Revision, Methodology of the United Nations Population Estimates and Projections. ESA/P/WP.235. The United Nations.Google Scholar
UN-Habitat. (2011). Urbanization and the challenge of climate change. In Cities and Climate Change: Global Report on Human Settlement (pp. 1–16). UN-Habitat.Google Scholar
United Nations, Department of Economics and Social Affairs, Population Division (2015). World Population Prospects: The 2015 Revision. New York: United Nations.Google Scholar
United Nations Office for Disaster Risk Reduction. (2012). How to Make Cities More Resilient: A Handbook for Local Government Leaders. United Nations. Accessed February 25, 2014: http://www.unisdr.org/files/26462_handbookfinalonlineversion.pdfGoogle Scholar
United Nations Population Fund (UNPF). (2007). State of the World Population. United Nations. Accessed September 7, 2015: www.unfpa.org/sites/default/files/pub-pdf/695_filename_sowp2007_eng.pdfGoogle Scholar
Urban Cities and Local Governments (UCLG). (2014). About Us. Accessed October 26, 2014: http://www.uclg.org/en/organisation/aboutGoogle Scholar
Wang, X., Khoo, Y. B., and Wang, C. H. (2014). Risk assessment and decision-making for residential housing adapting to increasing storm-tide inundation due to sea level rise in Australia. Civil Engineering and Environmental Systems 31(2), 125–139.Google Scholar
Wenban-Smith, B. H. (2009). Economies of scale, distribution costs and density effects in urban water supply: A spatial analysis of the role of infrastructure in urban agglomeration. PhD thesis, The London School of Economics and Political Science (LSE).Google Scholar
Zagheni, E. (2011). The leverage of demographic dynamics on carbon dioxide emissions: Does age structure matter? Demography 48, 371–399.Google Scholar
Secondary Sources
Abidin, H. Z., Djaja, R., Darmawan, D., Hadi, S., Akbar, A., Rajiyowiryono, H., Sudibyo, Y., Meilano, I., Kasuma, M. A., Kahar, J., and Subarya, C. (2001). Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system Natural Hazards 23(2–3), 365–387.Google Scholar
Adamowski, J., and Prokoph, A. (2013). Assessing the impacts of the urban heat island effect on streamflow patterns in Ottawa, Canada. Journal of Hydrology 496, 225–237.Google Scholar
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres 111(D5).Google Scholar
Anniballe, R., Bonafoni, S., and Pichierri, M. (2014). Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sensing of Environment 150(0), 163–171.Google Scholar
Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology 23(1), 1–26.Google Scholar
Balling, R. C., and Gober, P. (2007). Climate variability and residential water use in the city of Phoenix, Arizona. Journal of Applied Meteorology and Climatology 46(7), 1130–1137.Google Scholar
Basara, J. B., Illston, B. G., Fiebrich, C. A., Browder, P. D., Morgan, C. R., McCombs, A., Bostic, J. P., McPherson, R. A., Schroeder, A. J., and Crawford, K. C. (2011). The Oklahoma City micronet. Meteorological Applications 18(3), 252–261.CrossRefGoogle Scholar
Baxter, S., and Nigam, S. (2013). A subseasonal teleconnection analysis: PNA development and its relationship to the NAO. Journal of Climate 26(18), 6733–6741.Google Scholar
Bell, M. L., Goldberg, R., Hogrefe, C., Kinney, P. L., Knowlton, K., Lynn, B., Rosenthal, J., Rosenzweig, C., and Patz, J. A. (2007). Climate change, ambient ozone, and health in 50 US cities. Climatic Change 82(1), 61–76.Google Scholar
Bertaccini, P., Dukic, V., and Ignaccolo, R. (2012). Modeling the short-term effect of traffic and meteorology on air pollution in Turin with generalized additive models. Advances in Meteorology 2012, 16.Google Scholar
Best, M. J., and Grimmond, C. S. B. (2014). Key conclusions of the first International Urban Land Surface Model Comparison Project. Bulletin of the American Meteorological Society 96(5), 805–819.Google Scholar
Blake, R., Grimm, A., Ichinose, T., Horton, R., Gaffin, S., Jiong, S., Bader, D., and Cecil, D. W. (2011). Urban climate: Processes, trends, and projections. In Rosenzweig, C., Solecki, W. D., Hammer, S. A., and Mehrotra, S. (eds.), Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network (43–81). Cambridge University Press.Google Scholar
Bond, N. A., and Vecchi, G. A. (2003). The influence of the Madden–Julian Oscillation on precipitation in Oregon and Washington. Weather and Forecasting 18(4), 600–613.Google Scholar
Bornstein, R., and Lin, Q. (2000). Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmospheric Environment 34(3), 507–516.CrossRefGoogle Scholar
Bouma, M., and Dye, C. (1997). Cycles of malaria associated with El Niño in Venezuela. Journal of the American Medical Association 278(21), 1772–1774.Google Scholar
Burian, S. J., and Shepherd, J. M. (2005). Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrological Processes 19(5), 1089–1103.Google Scholar
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F. -F. (2014). Increasing frequency of extreme El Nino events due to greenhouse warming. Nature Climate Change 4(2), 111–116.Google Scholar
Casati, B., Yagouti, A., and Chaumont, D. (2013). Regional climate projections of extreme heat events in nine pilot Canadian communities for public health planning. Journal of Applied Meteorology and Climatology 52(12), 2669–2698.CrossRefGoogle Scholar
Cazenave, A., and Cozannet, G. L. (2014). Sea level rise and its coastal impacts. Earth’s Future 2(2), 15–34.Google Scholar
Chang, B., Wang, H. -Y., Peng, T. -Y., and Hsu, Y. -S. (2010). Development and evaluation of a city-wide wireless weather sensor network. Journal of Educational Technology & Society 13(3), 270–280.Google Scholar
Chang, H., Praskievicz, S., and Parandvash, H. (2014). Sensitivity of urban water consumption to weather and climate variability at multiple temporal scales: The case of Portland, Oregon International Journal of Geospatial and Environmental Research 1(1).Google Scholar
Chapman, L., Muller, C. L., Young, D. T., Warren, E. L., Grimmond, C. S. B., Cai, X. -M., and Ferranti, E. J. S. (2015). The Birmingham Urban Climate Laboratory: An open meteorological test bed and challenges of the smart city. Bulletin of the American Meteorological Society 96(9), 1545–1560.Google Scholar
Chen, F., Bornstein, R., Grimmond, S., Li, J., Liang, X., Martilli, A., Miao, S., Voogt, J., and Wang, Y. (2012). Research priorities in observing and modeling urban weather and climate. Bulletin of the American Meteorological Society 93(11), 1725–1728.Google Scholar
Chen, F., Yang, X., and Zhu, W. (2014). WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China Atmospheric Research 138 (2014), 364–377.Google Scholar
Cherry, J., Cullen, H., Visbeck, M., Small, A., and Uvo, C. (2005). Impacts of the North Atlantic Oscillation on Scandinavian hydropower production and energy markets. Water Resources Management 19(6), 673–691.Google Scholar
Cheval, S., and Dumitrescu, A. (2009). The July urban heat island of Bucharest as derived from modis images. Theoretical and Applied Climatology 96(1–2), 145–153.CrossRefGoogle Scholar
Childs, P., and Raman, S. (2005). Observations and numerical simulations of urban heat island and sea breeze circulations over New York City. Pure and Applied Geophysics 162(10), 1955–1980.Google Scholar
Christensen, J. H., Krishna Kumar, K., Aldrian, E., An, S. -I., Cavalcanti, I. F. A., Castro, M. D., Dong, W., Goswami, P., Hall, A., Kanyanga, J. K., Kitoh, A., Kossin, J., Lau, N. -C., Renwick, J., Stephenson, D. B., Xie, S. -P., and Zhou, T. (2013). Climate phenomena and their relevance for future regional climate change. In Stocker, T. F., Qin, D., Plattner, G. -K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (1217–1308). Cambridge University Press.Google Scholar
Chung, E. -S., Park, K., and Lee, K. S. (2011). The relative impacts of climate change and urbanization on the hydrological response of a Korean urban watershed. Hydrological Processes 25(4), 544–560.Google Scholar
City of New York. (2013). New York City Special Initiative on Rebuilding and Resiliency: A Stronger, More Resilient New York. City of New York.Google Scholar
Colle, B. A., Zhang, Z., Lombardo, K. A., Chang, E., Liu, P., and Zhang, M. (2013). Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. Journal of Climate 26(18), 6882–6903.Google Scholar
Collins, M. (2005). El Niño- or La Niña-like climate change?. Climate Dynamics 24(1), 89–104.Google Scholar
Collins, M., An, S. -I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F. -F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and Wittenberg, A. (2010). The impact of global warming on the tropical Pacific Ocean and El Nino. Nature Geoscience 3(6), 391–397.Google Scholar
Connors, J., Galletti, C., and Chow, W. L. (2013). Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona Landscape Ecology 28(2), 271–283.Google Scholar
Cooper, M. J., Martin, R. V., van Donkelaar, A., Lamsal, L., Brauer, M., and Brook, J. R. (2012). A satellite-based multi-pollutant index of global air quality Environmental Science & Technology 46(16), 8523–8524.Google Scholar
Coutts, A. M., Beringer, J., and Tapper, N. J. (2008). Investigating the climatic impact of urban planning strategies through the use of regional climate modelling: A case study for Melbourne, Australia. International Journal of Climatology 28(14), 1943–1957.Google Scholar
Cramer, W., Yohe, G. W., Auffhammer, M., Huggel, C., Molau, U., Dias, M. A. F. S., Solow, A., Stone, D. A., and Tibig, L. (2014). Detection and attribution of observed impacts. In Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (979–1037). Cambridge University Press.Google Scholar
Currie, B. A., and Bass, B. (2008). Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosystems 11(4), 409–422.Google Scholar
Dabberdt, W., Koistinen, J., Poutiainen, J., Saltikoff, E., and Turtiainen, H. (2005). Research: The Helsinki Mesoscale Testbed: An invitation to use a new 3-D observation network Bulletin of the American Meteorological Society 86(7), 906–907.Google Scholar
Davini, P., and Cagnazzo, C. (2014). On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Climate Dynamics 43(5), 1497–1511.Google Scholar
Dawson, J. P., Bryan, J. B., Darrell, A. W., and Christopher, P. W. (2014). Understanding the meteorological drivers of US particulate matter concentrations in a changing climate. Bulletin of the American Meteorological Society 95(4), 521–532.Google Scholar
Deser, C., Knutti, R., Solomon, S., and Phillips, A. S. (2012). Communication of the role of natural variability in future North American climate. Nature Climate Change 2(11), 775–779.CrossRefGoogle Scholar
Dessai, S. (2003). Heat stress and mortality in Lisbon Part II. An assessment of the potential impacts of climate change. International Journal of Biometeorology 48(1), 37–44.Google Scholar
Dobre, A., Arnold, S. J., Smalley, R. J., Boddy, J. W. D., Barlow, J. F., Tomlin, A. S., and Belcher, S. E. (2005). Flow field measurements in the proximity of an urban intersection in London, UK. Atmospheric Environment 39(26), 4647–4657.Google Scholar
Dobrovolný, P. (2013). The surface urban heat island in the city of Brno (Czech Republic) derived from land surface temperatures and selected reasons for its spatial variability. Theoretical and Applied Climatology 112(1–2), 89–98.Google Scholar
Earnest, A., Tan, S. B., and Wilder-Smith, A. (2012). Meteorological factors and El Niño southern oscillation are independently associated with dengue infections. Epidemiology & Infection 140(07), 1244–1251.Google Scholar
Emmanuel, R., and Krüger, E. (2012). Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. Building and Environment 53(0), 137–149.Google Scholar
Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G., and Meybeck, M. (2006). Effective sea-level rise and deltas: Causes of change and human dimension implications. Global and Planetary Change 50(1–2), 63–82.Google Scholar
eThekwini Municipality. (2011). Durbans Municipal Climate Protection Programme: Climate Change Adaptation Planning for a Resilient City (36), Durban, South Africa, EThekwini Municipality Environmental Planning and Climate Protection Department.Google Scholar
Formiga-Johnsson, R., and Britto, A. (2009). Climate Variability And Competing Demands For Urban Water Supply: Reducing Vulnerability Through River Basin Governance In Brazil. Marseille: Fifth Urban Research Symposium 2009.Google Scholar
Gaffin, S. R., Rosenzweig, C., Khanbilvardi, R., Parshall, L., Mahani, S., Glickman, H., Goldberg, R., Blake, R., Slosberg, R. B., and Hillel, D. (2008). Variations in New York City’s urban heat island strength over time and space Theoretical and Applied Climatology 94(1–2), 1–11.Google Scholar
Gedzelman, S. D., Austin, S., Cermak, R., Stefano, N., Partridge, S., Quesenberry, S., and Robinson, D. A. (2003). Mesoscale aspects of the urban heat island around New York City. Theoretical and Applied Climatology 75(1–2), 29–42.Google Scholar
Giannaros, T. M., and Melas, D. (2012). Study of the urban heat island in a coastal Mediterranean city: The case study of Thessaloniki, Greece. Atmospheric Research 118(0), 103–120.Google Scholar
Gidhagen, L., Engardt, M., Lövenheim, B., and Johansson, C. (2012). Modeling effects of climate change on air quality and population exposure in urban planning scenarios. Advances in Meteorology 2012, 12.Google Scholar
Goldbach, A., and Kuttler, W. (2013). Quantification of turbulent heat fluxes for adaptation strategies within urban planning. International Journal of Climatology 33(1), 143–159.Google Scholar
Gramsch, E., Cereceda-Balic, F., Oyola, P., and von Baer, D. (2006). Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and Ozone data, Atmospheric Environment 40(28), 5464–5475.Google Scholar
Grimm, A. M., and Tedeschi, R. G. (2009). ENSO and Extreme Rainfall Events in South America, Journal of Climate 22(7), 1589–1609.Google Scholar
Guo, G., Wu, Z., Xiao, R., Chen, Y., Liu, X., and Zhang, X. (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning 135, 1–10.Google Scholar
Gurjar, B. R., Butler, T. M., Lawrence, M. G., and Lelieveld, J. (2008). Evaluation of emissions and air quality in megacities. Atmospheric Environment 42(7), 1593–1606.Google Scholar
Han, J. -Y., Baik, J. -J., and Lee, H. (2014). Urban impacts on precipitation, Asia-Pacific Journal of Atmospheric Sciences 50(1), 17–30.Google Scholar
Hansen, J., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., Peterson, T., and Karl, T. (2001). A closer look at United States and global surface temperature change. Journal of Geophysical Research: Atmospheres 106(D20), 23947–23963.Google Scholar
Hansen, J., Ruedy, R., Sato, M., and Lo, K. (2010). Global surface temperature change. Reviews of Geophysics 48(4), RG4004.Google Scholar
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., and Chateau, J. (2011). A global ranking of port cities with high exposure to climate extremes. Climatic Change 104(1), 89–111.Google Scholar
Hausfather, Z., Menne, M. J., Williams, C. N., Masters, T., Broberg, R., and Jones, D. (2013). Quantifying the effect of urbanization on US Historical Climatology Network temperature records. Journal of Geophysical Research: Atmospheres 118(2), 481–494.Google Scholar
Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X. (2015). Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517(7535), 481–484.Google Scholar
Hicks, B. B., Callahan, W. J., Pendergrass, W. R., Dobosy, R. J., and Novakovskaia, E. (2012). Urban turbulence in space and in time. Journal of Applied Meteorology and Climatology 51(2), 205–218.Google Scholar
Hiroyuki, K., Nawata, K., Suzuki-Parker, A., Takane, Y., and Furuhashi, N. (2013). Mechanism of precipitation increase with urbanization in Tokyo as revealed by ensemble climate simulations. Journal of Applied Meteorology and Climatology 53(4), 824–839.Google Scholar
Hoerling, M., Eischeid, J., and Perlwitz, J. (2010). Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. Journal of Climate 23(8), 2131–2145.Google Scholar
Holmer, B., and Eliasson, I. (1999). Urban–rural vapour pressure differences and their role in the development of urban heat islands. International Journal of Climatology 19(9), 989–1009.Google Scholar
Horton, R. M., Gornitz, V., Bader, D. A., Ruane, A. C., Goldberg, R., and Rosenzweig, C. (2011). Climate hazard assessment for stakeholder adaptation planning in New York City. Journal of Applied Meteorology and Climatology 50(11), 2247–2266.Google Scholar
Hung, T., Uchihama, D., Oci, S., and Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation 8, 34–48.Google Scholar
Hung, T. K., and Wo, O. C. (2012). Development of a Community Weather Information Network (Co-WIN) in Hong Kong. Weather 67(2), 48–50.Google Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M. (2003). An overview of the North Atlantic oscillation. Geophysical Monograph-American Geophysical Union 134, 1–36.Google Scholar
Imhoff, M. L., Zhang, P., Wolfe, R. E., and Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment 114(3), 504–513.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Field, C. B., Barros, V. R., Stocker, T. F. et al. (eds.). Cambridge University Press. 582.Google Scholar
Jacob, D. J., and Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment 43(1), 51–63.Google Scholar
Janhäll, S., Olofson, K. F. G., Andersson, P. U., Pettersson, J. B. C., and Hallquist, M. (2006). Evolution of the urban aerosol during winter temperature inversion episodes. Atmospheric Environment 40(28), 5355–5366.Google Scholar
Jauregui, E. (1997). Heat island development in Mexico City. Atmospheric Environment 31(22), 3821–3831.Google Scholar
Jauregui, E., and Romales, E. (1996). Urban effects on convective precipitation in Mexico city Atmospheric Environment 30(20), 3383–3389.Google Scholar
Jiong, S. (2004). Shanghai’s land use pattern, temperature, relative humidity, and precipitation. Atlas of Shanghai Urban Geography.Google Scholar
Johnson, K., and Breil, M. (2012). Conceptualizing urban adaptation to climate change: Findings from an applied adaptation assessment. In Carraro, C. (ed.), Climate Change and Sustainable Development Series (66), Venice, Italy, CMCC Research Paper.Google Scholar
Jones, P. D., Lister, D. H., and Li, Q. (2008). Urbanization effects in large-scale temperature records, with an emphasis on China. Journal of Geophysical Research: Atmospheres 113(D16).Google Scholar
Kalnay, E., and Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature 423(6939), 528–531.Google Scholar
Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., and Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment 120, 475–483.Google Scholar
Katragkou, E., Zanis, P., Kioutsioukis, I., Tegoulias, I., Melas, D., Krüger, B. C., and Coppola, E. (2011). Future climate change impacts on summer surface ozone from regional climate-air quality simulations over Europe. Journal of Geophysical Research: Atmospheres 116(D22).Google Scholar
Katsoulis, B. D., and Theoharatos, G. A. (1985). Indications of the urban heat island in Athens, Greece. Journal of Climate and Applied Meteorology 24(12), 1296–1302.Google Scholar
Kerr, R. A. (2011). Time to adapt to a warming world, but where’s the science?. Science 334(6059), 1052–1053.Google Scholar
Kim, J. -S., Zhou, W., Cheung, H., and Chow, C. (2013). Variability and risk analysis of Hong Kong air quality based on Monsoon and El Niño conditions. Advances in Atmospheric Sciences 30(2), 280–290.Google Scholar
Klok, L., Zwart, S., Verhagen, H., and Mauri, E. (2012). The surface heat island of Rotterdam and its relationship with urban surface characteristics Resources, Conservation and Recycling 64, 23–29.Google Scholar
Knowlton, K., Lynn, B., Goldberg, R. A., Rosenzweig, C., Hogrefe, C., Rosenthal, J. K., and Kinney, P. L. (2007). Projecting heat-related mortality impacts under a changing climate in the New York City region. American Journal of Public Health 97(11), 2028–2034.Google Scholar
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M., Rasmussen, D. J., Strauss, B. H., and Tebaldi, C. (2014). Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2(8), 383–406.Google Scholar
Koskinen, J. T., Poutiainen, J., Schultz, D. M., Joffre, S., Koistinen, J., Saltikoff, E., Gregow, E., Turtiainen, H., Dabberdt, W. F., Damski, J., Eresmaa, N., Göke, S., Hyvärinen, O., Järvi, L., Karppinen, A., Kotro, J., Kuitunen, T., Kukkonen, J., Kulmala, M., Moisseev, D., Nurmi, P., Pohjola, H., Pylkkö, P., Vesala, T., and Viisanen, Y. (2010). The Helsinki testbed: A mesoscale measurement, research, and service platform. Bulletin of the American Meteorological Society 92(3), 325–342.Google Scholar
Kura, B., Verma, S., Ajdari, E., and Iyer, A. (2013). Growing public health concerns from poor urban air quality: Strategies for sustainable urban living Computational Water, Energy, and Environmental Engineering 2(02), 1.Google Scholar
Kuttler, W., Weber, S., Schonnefeld, J., and Hesselschwerdt, A. (2007). Urban/rural atmospheric water vapour pressure differences and urban moisture excess in Krefeld, Germany. International Journal of Climatology 27(14), 2005–2015.Google Scholar
Lamsal, L. N., Martin, R. V., Parrish, D. D., and Krotkov, N. A. (2013). Scaling relationship for NO2 pollution and urban population size: A satellite perspective. Environmental Science & Technology 47(14), 7855–7861.Google Scholar
Lauwaet, D., Hooyberghs, H., Maiheu, B., Lefebvre, W., Driesen, G., Van Looy, S., and De Ridder, K. (2015). Detailed urban heat island projections for cities worldwide: Dynamical downscaling CMIP5 global climate models. Climate 3(2), 391.Google Scholar
Lee, D. O. (1979). The influence of atmospheric stability and the urban heat island on urban-rural wind speed differences. Atmospheric Environment (1967) 13(8), 1175–1180.Google Scholar
Lemonsu, A., and Masson, V. (2002). Simulation of a summer urban breeze over Paris. Boundary-Layer Meteorology 104(3), 463–490.Google Scholar
Lemos, M. C., Agrawal, A., Eakin, H., Nelson, D. R., Engle, N. L., and Johns, O. (2013). Building adaptive capacity to climate change in less developed countries. In Asrar, G. R., and Hurrell, J. W. (eds.), Climate Science for Serving Society (437–457). Springer Netherlands.Google Scholar
Lemos, M. C., and Morehouse, B. J. (2005). The co-production of science and policy in integrated climate assessments. Global Environmental Change 15(1), 57–68.Google Scholar
Li, D., and Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology 52(9), 2051–2064.Google Scholar
Li, D., Bou-Zeid, E., Baeck, M. L., Jessup, S., and Smith, J. A. (2013), Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations. Journal of Hydrometeorology 14(4), 1098–1118.Google Scholar
Lin, C. -Y., Chen, W. -C., Chang, P. -L., and Sheng, Y. -F. (2010). Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan Journal of Applied Meteorology and Climatology 50(2), 339–353.Google Scholar
London Climate Change Partnership (LCCP). (2002). London’s Warming. The Impacts of Climate Change on London: Technical Report (311). LCCP.Google Scholar
Luković, J., Blagojevć, D., Kilibarda, M., and Bajat, B. (2015). Spatial pattern of North Atlantic oscillation impact on rainfall in Serbia. Spatial Statistics 14(Part A), 39–52.Google Scholar
Mackey, C. W., Lee, X., and Smith, R. B. (2012). Remotely sensing the cooling effects of city scale efforts to reduce urban heat island. Building and Environment 49(0), 348–358.Google Scholar
Major, D. C., and O’Grady, M. (2010). Adaptation Assessment Guidebook. In Rosenzweig, C., and Solecki, W. (eds.), Climate Change Adaptation in New York City: Building a Risk Management Response (229–292). Blackwell Publishing on behalf of the New York Academy of Sciences.Google Scholar
Mantua, N. J., Hare, S., Zhang, Y., Wallace, J. M., and Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78(6), 1069–1079.Google Scholar
Marengo, A. J. (2004). Interdecadal variability and trends of rainfall across the Amazon basin Theoretical and Applied Climatology 78(1), 79–96.Google Scholar
Mauser, W., Klepper, G., Rice, M., Schmalzbauer, B. S., Hackmann, H., Leemans, R., and Moore, H. (2013). Transdisciplinary global change research: The co-creation of knowledge for sustainability. Current Opinion in Environmental Sustainability 5(3–4), 420–431.Google Scholar
Mearns, L. O., Lettenmaier, D. P., and McGinnis, S. (2015). Uses of results of regional climate model experiments for impacts and adaptation studies: The example of NARCCAP. Current Climate Change Reports 1(1), 1–9.Google Scholar
Mikami, T., Ando, H., Morishima, W., Izumi, T., and Shioda, T. (2003). A new urban heat island monitoring system in Tokyo. In Fifth International Conference on Urban Climate, Lodz, Poland.Google Scholar
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J. (2008). Stationarity is dead: Whither water management? Science 319(5863), 573–574.Google Scholar
Mishra, V., Ganguly, A. R., Nijssen, B., and Lettenmaier, D. P. (2015). Changes in observed climate extremes in global urban areas. Environmental Research Letters 10(2), 024005.Google Scholar
Mishra, V., and Lettenmaier, D. P. (2011). Climatic trends in major US urban areas, 1950–2009. Geophysical Research Letters 38(16).Google Scholar
Mohan, M., Kikegawa, Y., Gurjar, B. R., Bhati, S., Kandya, A., and Ogawa, K. (2009). Assessment of Urban Heat Island Intensities over Delhi. The Seventh International Conference on Urban Climate. Yokohama, Japan.Google Scholar
Morris, C. J. G., and Simmonds, I. (2000). Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. International Journal of Climatology 20(15), 1931–1954.Google Scholar
Morris, C. J. G., Simmonds, I., and Plummer, N. (2001). Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. Journal of Applied Meteorology 40(2), 169–182.Google Scholar
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature 463(7282), 747–756.Google Scholar
Moss, R. H., Meehl, G. A., Lemos, M. C., Smith, J. B., Arnold, J. R., Arnott, J. C., Behar, D., Brasseur, G. P., Broomell, S. B., Busalacchi, A. J., Dessai, S., Ebi, K. L., Edmonds, J. A., Furlow, J., Goddard, L., Hartmann, H. C., Hurrell, J. W., Katzenberger, J. W., Liverman, D. M., Mote, P. W., Moser, S. C., Kumar, A., Pulwarty, R. S., Seyller, E. A., Turner, B. L., Washington, W. M., and Wilbanks, T. J. (2013). Hell and high water: Practice-relevant adaptation science. Science 342(6159), 696–698.Google Scholar
Muller, C. L., Chapman, L., Grimmond, C. S. B., Young, D. T., and Cai, X. (2013a). Sensors and the city: A review of urban meteorological networks. International Journal of Climatology 33(7), 1585–1600.Google Scholar
Muller, C. L., Chapman, L., Grimmond, C. S. B., Young, D. T., and Cai, X. (2013b). Toward a standardized metadata protocol for urban meteorological networks. Bulletin of the American Meteorological Society 94(8), 1161–1185.Google Scholar
Muller, C. L., Chapman, L., Johnston, S., Kidd, C., Illingworth, S., Foody, G., Overeem, A., and Leigh, R. R. (2015). Crowdsourcing for climate and atmospheric sciences: current status and future potential. International Journal of Climatology 35(11), 3185–3203.Google Scholar
Müller, N., Kuttler, W., and Barlag, A. -B. (2013). Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology 115(1), 243–257.Google Scholar
New York City Panel on Climate Change (NPCC). (2015). Building the Knowledge Base for Climate Resiliency: New York City Panel on Climate Change 2015 Report. Annals of the New York Academy of Sciences.Google Scholar
Nicholls, R. (1995). Coastal megacities and climate change. GeoJournal 37(3), 369–379.Google Scholar
Ning, L., and Bradley, R. S. (2015). Winter climate extremes over the northeastern United States and Southeastern Canada and teleconnections with large-scale modes of climate variability. Journal of Climate 28(6), 2475–2493.Google Scholar
Niyogi, D., Pyle, P., Lei, M., Arya, S. P., Kishtawal, C. M., Shepherd, M., Chen, F., and Wolfe, B. (2010). Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and Climatology 50(5), 1129–1144.Google Scholar
Ohashi, Y., Genchi, Y., Kondo, H., Kikegawa, Y., Yoshikado, H., and Hirano, Y. (2007). Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. Journal of Applied Meteorology and Climatology 46(1), 66–81.Google Scholar
Oke, T. R. (2006). Towards better scientific communication in urban climate. Theoretical and Applied Climatology 84(1–3), 179–190.Google Scholar
Overeem, A., Leijnse, H., and Uijlenhoet, R. (2013). Country-wide rainfall maps from cellular communication networks. Proceedings of the National Academy of Sciences 110(8), 2741–2745.Google Scholar
Parker, D. E. (2006). A demonstration that large-scale warming is not urban. Journal of Climate 19(12), 2882–2895.Google Scholar
Patt, A., and Gwata, C. (2002). Effective seasonal climate forecast applications: Examining constraints for subsistence farmers in Zimbabwe. Global Environmental Change 12(3), 185–195.Google Scholar
Peterson, T. C. (2003). Assessment of urban versus rural in situ surface temperatures in the contiguous United States: No difference found. Journal of Climate 16(18), 2941–2959.Google Scholar
Power, S., Delage, F., Chung, C., Kociuba, G., and Keay, K. (2013). Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502(7472), 541–545.Google Scholar
Pozo-Vázquez, D., Esteban-Parra, J. M., Rodrigo, S. F., and Castro-Díez, Y. (2001). A study of NAO variability and its possible non-linear influences on European surface temperature. Climate Dynamics 17(9), 701–715.Google Scholar
Pugh, T. A. M., MacKenzie, A. R., Whyatt, J. D., and Hewitt, C. N. (2012). Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environmental Science & Technology 46(14), 7692–7699.Google Scholar
Rasmusson, E. M., and Wallace, J. M. (1983). Meteorological aspects of the El Niño/Southern Oscillation. Science 222(4629), 1195–1202.Google Scholar
Richards, K. (2005). Urban and rural dewfall, surface moisture, and associated canopy-level air temperature and humidity measurements for Vancouver, Canada. Boundary-Layer Meteorology 114(1), 143–163.Google Scholar
Rinner, C., and Hussain, M. (2011). Toronto’s urban heat island—Exploring the relationship between land use and surface temperature Remote Sensing 3(6), 1251–1265.Google Scholar
Robaa, S. M. (2003). Urban-suburban/rural differences over greater Cairo, Egypt. Atmosfera 16(3), 157–171.Google Scholar
Rosenzweig, C. and Solecki, W. (eds.). (2010). Climate change adaptation in New York City: Building a risk management response. New York City Panel on Climate Change 2010 Report. Annals of the New York Academy of Sciences 1196, 354.Google Scholar
Rosenzweig, C., Solecki, W. D., Cox, J., Hodges, S., Parshall, L., Lynn, B., Goldberg, R., Gaffin, S., Slosberg, R. B., Savio, P., Watson, M., and Dunstan, F. (2009). Mitigating New York City’s heat island: Integrating stakeholder perspectives and scientific evaluation. Bulletin of the American Meteorological Society 90(9), 1297–1312.Google Scholar
Rotem-Mindali, O., Michael, Y., Helman, D., and Lensky, I. M. (2015). The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Applied Geography 56(0), 145–153.Google Scholar
Rummukainen, M., Rockel, B., Bärring, L., Christensen, J. H., and Reckermann, M. (2015). Twenty-first-century challenges in regional climate modeling. Bulletin of the American Meteorological Society 96(8), ES135–ES138.Google Scholar
Ryu, Y. -H., and Baik, J. -J. (2012). Quantitative analysis of factors contributing to urban heat island intensity. Journal of Applied Meteorology and Climatology 51(5), 842–854.Google Scholar
Seifert, A., Köhler, C., and Beheng, K. D. (2012). Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmospheric Chemistry and Physics 12(2), 709–725. doi: 10.5194/acp-12-709-2012Google Scholar
Seiki, A., Nagura, M., Hasegawa, T., and Yoneyama, K. (2015). Seasonal onset of the Madden-Julian Oscillation and its relation to the southeastern Indian Ocean cooling. Journal of the Meteorological Society of Japan. Ser. II 93A, 139–156.Google Scholar
Shepherd, J. M. (2006). Evidence of urban-induced precipitation variability in arid climate regimes. Journal of Arid Environments 67(4), 607–628.Google Scholar
Shepherd, J. M., Carter, M., Manyin, M., Messen, D., and Burian, S. (2010). The impact of urbanization on current and future coastal precipitation: A case study for Houston. Environment and Planning B: Planning and Design 37(2), 284–304.Google Scholar
Sismanidis, P., Keramitsoglou, I., and Kiranoudis, C. T. (2015). A satellite-based system for continuous monitoring of Surface Urban Heat Islands. Urban Climate 14(Part 2), 141–153.Google Scholar
Smith, M., and Emberlin, J. (2006). A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology 50(4), 233–242.Google Scholar
Sobral, H. R. (2005). Heat island in São Paulo, Brazil: Effects on health. Critical Public Health 15(2), 147–156.Google Scholar
Solecki, W., Rosenzweig, C., Blake, R., de Sherbinin, A., Matte, T., Moshary, F., Rosenweig, B., Arend, M., Gaffin, S., Bou-Zeif, E., Rule, K., Sweeny, G., and Dessy, W. (2015). New York City Panel on Climate Change 2015 Report: Indicators and monitoring. Annals of the New York Academy of Science 1336, 89–106.Google Scholar
Stone, B. (2007). Urban and rural temperature trends in proximity to large US cities: 1951–2000. International Journal of Climatology 27(13), 1801–1807.Google Scholar
Stone, B. (2009). Land use as climate change mitigation. Environmental Science & Technology 43(24), 9052–9056.Google Scholar
Strauss, B. H., Ziemlinski, R., Weiss, J. L., and Overpeck, J. T. (2012). Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States. Environmental Research Letters 7(1), 014033.Google Scholar
Streutker, D. R. (2003). Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment 85(3), 282–289.Google Scholar
Sweet, W. V., and Park, J. (2014). From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise. Earth’s Future 2(12), 579–600.Google Scholar
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vorosmarty, C., Saito, Y., Giosan, L., and Nicholls, R. J. (2009). Sinking deltas due to human activities. Nature Geoscience 2(10), 681–686.Google Scholar
Takahashi, H., Mikami, T., and Takahashi, H. (2009). Influence of the urban heat island phenomenon in Tokyo in land and sea breezes. In The Seventh International Conference on Urban Climate, Yokohama, Japan.Google Scholar
Tam, B. Y., Gough, W. A., and Mohsin, T. (2015). The impact of urbanization and the urban heat island effect on day-to-day temperature variation. Urban Climate 12(0), 1–10.Google Scholar
Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A., Li, F., and Chen, H. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology 54(1), 75–84.Google Scholar
Tayanc, M., and Toros, H. (1997). Urbanization effects on regional climate change in the case of four large cities of Turkey. Climatic Change 35(4), 501–524.Google Scholar
Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93(4), 485–498.Google Scholar
Tran, H., Uchihama, D., Ochi, S., and Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation 8(1), 34–48.Google Scholar
Tremeac, B., Bousquet, P., de Munck, C., Pigeon, G., Masson, V., Marchadier, C., Merchat, M., Poeuf, P., and Meunier, F. (2012). Influence of air conditioning management on heat island in Paris air street temperatures. Applied Energy 95(0), 102–110.Google Scholar
Trenberth, K.E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B., and Zhai, P. (2007). Observations: Surface and atmospheric climate change. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Vanhuysse, S., Depireux, J., and Wolff, E. (2006). Etude de l’évolution de l’imperméabilisation du sol en région de Bruxelles-Capitale. Université Libre de Bruxelles, IGEAT.Google Scholar
Vardoulakis, E., Karamanis, D., Fotiadi, A., and Mihalakakou, G. (2013). The urban heat island effect in a small Mediterranean city of high summer temperatures and cooling energy demands. Solar Energy 94, 128–144.Google Scholar
Vaughan, C. (2016). An Institutional Analysis of the IPCC Task Group on Data and Scenario Support for Impacts and Climate Analysis (TGICA). IPCC Task Group on Data and Scenario Support for Impacts and Climate Analysis, Geneva, Switzerland.Google Scholar
Vietnam Climate Adaptation PartnerShip. (2013). Ho Chi Minh City Climate Adaptation Strategy. Vietnam Climate Adaptation Partnership.Google Scholar
Visbeck, M. H., Hurrell, J. W., Polvani, L., and Cullen, H. M. (2001). The North Atlantic Oscillation: Past, present, and future. Proceedings of the National Academy of Sciences 98(23), 12876–12877.Google Scholar
Walsh, C. L., Roberts, D., Dawson, R. J., Hall, J. W., Nickson, A., and Hounsome, R. (2013). Experiences of integrated assessment of climate impacts, adaptation and mitigation modelling in London and Durban. Environment and Urbanization 25(2), 361–380.Google Scholar
Weiss, J. L., Overpeck, J. T., and Strauss, B. (2011). Implications of recent sea level rise science for low-elevation areas in coastal cities of the conterminous USA Climatic Change 105(3), 635–645.Google Scholar
Willows, R., Reynard, N., Meadowcroft, I., and Connell, R. (2003). Climate Adaptation: Risk, Uncertainty and Decision-making. UKCIP Technical Report, UK. Climate Impacts Programme.Google Scholar
Wood, C. R., Järvi, L., Kouznetsov, R. D., Nordbo, A., Joffre, S., Drebs, A., Vihma, T., Hirsikko, A., Suomi, I., Fortelius, C., O’Connor, E., Moiseev, D., Haapanala, S., Moilanen, J., Kangas, M., Karppinen, A., Vesala, T., and Kukkonen, J. (2013). An overview of the urban boundary layer atmosphere network in Helsinki. Bulletin of the American Meteorological Society 94(11), 1675–1690.Google Scholar
Yang, X., Hou, Y., and Chen, B. (2011). Observed surface warming induced by urbanization in east China. Journal of Geophysical Research: Atmospheres 116(D14).Google Scholar
Yin, J., Schlesinger, M. E., and Stouffer, R. J. (2009). Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geoscience 2(4), 262–266.Google Scholar
Zambrano-Barragán, C., Zevallos, O., Villacís, M., and Enríquez, D. (2011). Quito’s climate change strategy: A response to climate change in the metropolitan district of Quito, Ecuador. In Otto-Zimmerman, K. (ed.), Resilient Cities: Cities and Adaptation to Climate Change Proceedings of the Global Forum 2010 (515–529). Springer Science and Business Media.Google Scholar
Zauli, S., Scotto, F., Lauriola, P., Galassi, F., and Montanari, A. (2004). Urban air pollution monitoring and correlation properties between fixed-site stations. Journal of the Air & Waste Management Association 54(10), 1236–1241.Google Scholar
Zhang, G. J., Cai, M., and Hu, A. (2013a), Energy consumption and the unexplained winter warming over northern Asia and North America. Nature Climate Change 3(5), 466–470.Google Scholar
Zhang, H., Qi, Z. -F., Ye, X. -Y., Cai, Y. -B., Ma, W. -C., and Chen, M. -N. (2013b). Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography 44, 121–133.Google Scholar
Zhao, L., Lee, X., Smith, R. B., and Oleson, K. (2014). Strong contributions of local background climate to urban heat islands. Nature 511(7508), 216–219.Google Scholar
Zhou, Z. -Q., Xie, S. -P., Zheng, X. -T., Liu, Q., and Wang, H. (2014). Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. Journal of Climate 27(24), 9050–9064.Google Scholar
Camuffo, D., and Jones, P. (2002). Improved understanding of past climatic variability from early daily European instrumental sources. In Camuffo, D., and Jones, P. (eds.), Improved Understanding of Past Climatic Variability from Early Daily European Instrumental Sources (1–4). Springer Netherlands.Google Scholar
Demarée, G. R., Lachaert, P. J., Verhoeve, T., and Thoen, E. (2002). The long-term daily Central Belgium Temperature (CBT) series (1767–1998) and early instrumental meteorological observations in Belgium. Climatic Change 53(1–3), 269–293.Google Scholar
Fricke, R., and Wolff, E. (2002). The MURBANDY Project: Development of land use and network databases for the Brussels area (Belgium) using remote sensing and aerial photography. International Journal of Applied Earth Observation and Geoinformation 4(1), 33–50.Google Scholar
Hamdi, R., and Schayes, G. (2008). Sensitivity study of the urban heat island intensity to urban characteristics. International Journal of Climatology 28(7), 973–982.Google Scholar
Hamdi, R., and Van de Vyver, H. (2011). Estimating urban heat island effects on near-surface air temperature records of Uccle (Brussels, Belgium): An observational and modeling study. Advances in Science and Research 6, 27–34.Google Scholar
Hua, L. J., Ma, Z. G., and Guo, W. D. (2008). The impact of urbanization on air temperature across China. Theoretical and Applied Climatology 93(3–4), 179–194.Google Scholar
Kalnay, E., and Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature 423(6939), 528–531.Google Scholar
Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4(2), 462.Google Scholar
Vanhuysse, S., Depireux, J., and Wolff, E. (2006). Etude de l’évolution de l’imperméabilisation du sol en région de Bruxelles-Capitale. Université Libre de Bruxelles, IGEAT.Google Scholar
World Bank. (2017). 2016 GNI per capita, Atlas method (current US$). Accessed August 9, 2017: http://data.worldbank.org/indicator/NY.GNP.PCAP.CDGoogle Scholar
Breon, F. M., et al. (2014). An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements, Atmos. Chem. Phys. Discuss., 14, 9647–9703, 2014. Accessed January 21, 2015: www.atmos-chem-phys-discuss.net/14/9647/2014/ doi:10.5194/acpd-14–9647–2014Google Scholar
Duren, R., and Miller, C. E.. (2012). Measuring the carbon emissions of megacities. Nature Climate Change 2 (8) 560–562. doi:10.1038/nclimate1629.Google Scholar
Gurney, K. R., Razlivanov, I., Song, Y. Zhou, Y., Benes, B., and Abdul-Massih, M. (2012). Quantification of fossil fuel CO2 at the building/street scale for a large US city. Environmental Science and Technology 46 (21), 12194–12202. dx.doi.org/10.1021/es3011282.Google Scholar
Hutyra, L. R., Duren, R., Gurney, K. R., Grimm, N., Kort, E. A., Larson, E., and Shrestha, G. (2014). Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. Earth’s Future 2(10), 473–495.Google Scholar
Kort, E. A., Angevine, W., Duren, R., and Miller, C. E. (2013). Surface observations for monitoring urban fossil fuel CO2 emissions: minimum site location requirements for the Los Angeles megacity, Journal of Geophysical Research 118, 1577–1584. doi: 10.1002/jgrd.50135.Google Scholar
Kort, E. A., Frankenberg, C., Miller, C. E., and Oda, T. (2012). Space-based observations of megacity carbon dioxide. Geophysical Research Letters 39, L17806. doi:10.1029/2012GL052738Google Scholar
Mendoza, D., Gurney, K. R., Geethakumar, S., Chandrasekaran, V., Zhou, Y., and Razlivanov, I. (2013). US regional greenhouse gas emissions mitigation implications based on high-resolution on road CO2 emissions estimation. Energy Policy 55, 386–395.Google Scholar
NRC. (2010). Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements. National Academies Press.Google Scholar
Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4(2), 462.Google Scholar
Silva, S. J., Arellano, A. F., and Worden, H. M. (2013). Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity. Geophysical Research Letters 40(18), 4971–4976.Google Scholar
U.S. Census Bureau (2010). 2010 Census Data. Accessed December 21, 2014: http://www.census.gov/topics/population/data.htmlGoogle Scholar
Wong, K. W., Fu, D., Pongetti, T. J., Newman, S., Kort, E. A., Duren, R., Hsu, Y.-K., Miller, C. E., Yung, Y. L., and Sander, S. P. (2015). Mapping CH4 : CO2 ratios in Los Angeles with CLARS-FTS from Mount Wilson, California. Atmospheric Chemistry and Physics 15, 241–252. doi:10.5194/acp-15-241-2015.Google Scholar
World Bank. (2017). 2016 GNI per capita, Atlas method (current US$). Accessed August 9, 2017: http://data.worldbank.org/indicator/NY.GNP.PCAP.CDGoogle Scholar
Wunch, D., Wennberg, P. O., Toon, G. C., Keppel-Aleks, G., and Yavin, Y. G. (2009). Emissions of greenhouse gases from a North American megacity. Geophysical Research Letters 36, L15810. doi:10.1029/2009GL039825.Google Scholar
Corpo de Bombeiros. (2014). Histórico do Corpo de Bombeiros Militar do Estado do Rio de Janeiro. Accessed September 7, 2015: http://www.cbmerj.rj.gov.br.Google Scholar
Costa, H., and Teuber, W. (2001). Enchentes no Estado do Rio de Janeiro: Uma abordagem geral. SEMADS.Google Scholar
Dereczynski, C. P., Oliveria, J. S., and Machado, C. O. (2009). Climatologia da precipita?? O no município do Rio de Janeiro. Revista Brasileira de Meteorologia 24(1), 24–38.Google Scholar
Grimm, A. M., and Tedeschi, R. G. (2009). ENSO and extreme rainfall events in South America. Journal of Climate 22(7), 1589–1609.Google Scholar
Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4(2), 462.Google Scholar
Tedeschi, R. G., Grimm, A. M., and Cavalcanti, I. F. A. (2015). Influence of Central and East ENSO on extreme events of precipitation in South America during austral spring and summer. International Journal of Climatology 35(8), 2045–2064.Google Scholar
Universidade Estadual de Londrina (UEL). (2014). Cidade alagada: Chuvas de verão, classe e estado no Rio de Janeiro 1966–1967.Google Scholar
United Nations Disaster Relief Organization (UNDRO). (1988). Brazil – Floods Feb 1988 UNDRO Information Reports 1–5.Google Scholar
World Bank. (2017). 2016 GNI per capita, Atlas method (current US$). Accessed August 9, 2017: http://data.worldbank.org/indicator/NY.GNP.PCAP.CDGoogle Scholar
Cox, J., Craig, M., Le Sueur, D., and Sharp, B. (1999). Mapping Malaria Risk in the Highlands of Africa. MARA/HIMAL Technical Report (96).Google Scholar
Ermert, V., Fink, A. H., Morse, A. P., and Paeth, H. (2012). The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environmental Health Perspectives 120(1), 77.Google Scholar
Hay, S. I., Cox, J., Rogers, D. J., Randolph, S. E., Stern, D. I., Shanks, G. D., Myers, M. F., and Snow, R. W. (2002). Climate change and the resurgence of malaria in the East African highlands. Nature 415(6874), 905–909.Google Scholar
Hashizume, M., Chaves, L. F., and Minakawa, N. (2012). Indian Ocean Dipole drives malaria resurgence in East African highlands. Scientific Reports 2, 269.Google Scholar
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Kim, Y. -M., Park, J. -W., and Cheong, H. -K. (2012). Estimated effect of climatic variables on the transmission of Plasmodium vivax malaria in the Republic of Korea. Environmental Health Perspectives 120(9), 1314.Google Scholar
Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4(2), 462.Google Scholar
Shanks, G. D., Hay, S. I., Omumbo, J. A., and Snow, R. W. (2005). Malaria in Kenya’s western highlands. Emerging Infectious Diseases 11(9), 1425–1432.Google Scholar
Smith, K. R., Woodward, A., Campbell-Lendrum, D., Chadee, D. D., Honda, Y., Liu, Q., Olwoch, J. M., Revich, B., and Sauerborn, R. (2014). Human health: Impacts, adaptation, and co-benefits. In Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (709–754). Cambridge University Press.Google Scholar
Tonui, W. K. S., Otor, C. J., Kabiru, E. W., and Kiplagat, W. K. (2013). Patterns and trends of malaria morbidity in western highlands of Kenya. International Journal of Education and Research 1(12), 1–8.Google Scholar
World Bank. (2017). 2016 GNI per capita, Atlas method (current US$). Accessed August 9, 2017: http://data.worldbank.org/indicator/NY.GNP.PCAP.CDGoogle Scholar
Chi, Y., Zhang, F., Li, W., He, J., and Guan, Z. (2014). Correlation between the onset of the east Asian subtropical summer monsoon and the eastward propagation of the Madden–Julian Oscillation. Journal of the Atmospheric Sciences 72(3), 1200–1214.Google Scholar
Demographia (2016). Demographia World Urban Areas 2016. Accessed August 9, 2017: http://www.demographia.com/db-worldua.pdfGoogle Scholar
Lee, S. H., and Baik, J. -J. (2010). Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theoretical and Applied Climatology doi: 10.1007/s00704-009-0247-1.Google Scholar
Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4(2), 462.Google Scholar
Son, J. –Y., Lee, J. –T., Anderson, B., and Bell, M. L. (2012). The impact of heat waves on mortality in seven major cities in Korea. Environmental Health Perspectives 120(4), 566–571.Google Scholar
World Bank. (2017). 2016 GNI per capita, Atlas method (current US$). Accessed August 9, 2017: http://data.worldbank.org/indicator/NY.GNP.PCAP.CDGoogle Scholar
AIR Worldwide. (2013). AIR estimates insured losses from super typhoon Haiyan between USD 300 million and USD 700 million. AIR Press Release. Accessed January 13, 2016: http://www.air-worldwide.com/Press-Releases/AIR-Estimates-Insured-Losses-from-Super-Typhoon-Haiyan-at-Between–USD-300-Million-and-USD-700-Million/Google Scholar
Anderson, M. B., and Woodrow, P. J. (1998). Rising from the Ashes: Development Strategies in Times of Disaster. Intermediate Technology Publications.Google Scholar
Bahadur, A., and Tanner, T. (2014). Transformational resilience thinking: Putting people, power and politics at the heart of urban climate resilience. Environment & Urbanization 26(1), 200–214.Google Scholar
Bai, X. (2007). Integrating global environmental concerns into urban management. Journal of Industrial Ecology 11(2), 15–29.Google Scholar
Balk, D., Montgomery, M. R., McGranahan, G., Kim, D., Mara, V., Todd, M., … and Dorélien, A. (2009). Mapping urban settlements and the risks of climate change in Africa, Asia and South America. Population Dynamics and Climate Change, 80.Google Scholar
Barton, J., and Heinrichs, D. (2011). Santiago de Chile: Adaptation, water management, and the challenges for spatial planning. In Rosenzweig, C., Solecki, W. D., Hammer, S. A., and Mehrotra, S. (eds.), Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network (125–126). Cambridge University Press.Google Scholar
Bell, M. L., O’Neill, M. S., Ranjit, N., Borja-Aburto, V. H., Cifuentes, L. A., and Gouveia, N. C. (2008). Vulnerability to heat-related mortality in Latin America: A case-crossover study in São Paulo, Brazil, Santiago, Chile and Mexico City, Mexico. International Journal of Epidemiology 37(4), 796–804.Google Scholar
Berke, P. R., Kartez, J., and Wenger, D. (1993). Recovery after disaster: Achieving sustainable development, mitigation and equity. Disasters 17(2), 93–109.Google Scholar
Blanco, H., McCarney, P., Parnell, S., Schmidt, M., and Seto, K. C. (2011). The role of urban land in climate change. In Rosenzweig, C., Solecki, W. D., Hammer, S. A., Mehrotra, S. (eds.), Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network (217–248). Cambridge University Press.Google Scholar
Braimoh, A. K., and Onishi, T. (2007). Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 24(2), 502–515.Google Scholar
Capacity Development for Hazard Risk Reduction and Adaptation (CATALYST). (2013). Before Disaster Strikes: Transformations in Practice and Policy. CATALYST Best Practice paper on the Central America and the Caribbean region. Accessed August 20, 2015: www.catalyst-project.euGoogle Scholar
Carter, T. R., Jones, R. N., Lu, X., Bhadwal, S., Conde, C. Mearns, L. O., O’Neill, B. C., Rounsevell, M. D. A., and Zurek, M. B.. (2007). New assessment methods and the characterisation of future conditions. In Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E. (eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (133–171). Cambridge University Press.Google Scholar
City of New York. (2013). PlaNYC: A Stronger, More Resilient New York. Mayor’s Office of the City of New York.Google Scholar
Comerio, M. C. (1998). Disaster Hits Home: New Policy for Urban Housing Recover. University of California Press.Google Scholar
Comisión Económica para América Latina y el Caribe (CEPAL), and Banco Inter-Americano de Desarrollo (BID), [Economic Commission for Latin America and the Caribbean (ECLAC) and the Inter-American Development Bank (IADB)]. (2007). Information for disaster risk management: Case study of five countries. Summary report. [Información para la gestión de riesgo de desastres. Estudios de caso de cinco países. Informe resumido]. Mexico City, Mexico.Google Scholar
Conacher Travers Pty. Ltd. (2001). Gosford City Council Biodiversity Project: Winter–Spring 2000 Fauna Survey Component. Local study, Gosford City Council.Google Scholar
de Groot, R., Wilson, M., and Boumans, R. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41, 393–408.Google Scholar
Department for International Development (DFID). (2005). Disaster Risk Reduction: A Development Concern. DFID.Google Scholar
Ebert, A., Welz, J., Heinrichs, D., Krellenberg, K., and Hansjürgens, B. (2010). Socio-environmental Change and Flood Risks: The Case of Santiago de Chile (303–313). Erdkunde.Google Scholar
EM-DAT: The OFDA/CRED International Disaster Database. Brussels, Belgium: Université Catholique de Louvain, Center for Research on the Epidemiology of Disasters (CRED). Accessed September 14, 2015: http://www.em-dat.netGoogle Scholar
Folke, C., Carpenter, S. R., Walker, B. H., Scheffer, M., Chapin, T., and Rockstrom, J. (2010). Resilience thinking: Integrating resilience, adaptability and transformability. Ecology and Society 15(4), 20.Google Scholar
Fraser, E. D. G., Dougill, A. J., Mabee, W. E., Reed, M., and McAlpine, P. (2006). Bottom up and top down analysis of participatory processes for sustainability indicator identification as a pathway to community empowerment and sustainable environmental management. Journal of Environmental Management 78 (2), 114–127.Google Scholar
Garschagen, M., and Romero-Lankao, P. (2015). Exploring the relationships between urbanization trends and climate change vulnerability. Climatic Change. 133, 37–52. doi: 10.1007/s10584-013-081-6Google Scholar
Gencer, E. A. (2008). Natural Disasters, Vulnerability, and Sustainable Development. VDM Verlag.Google Scholar
Gencer, E. A. (2013a). The Interplay between Urban Development, Vulnerability, and Risk Management: A Case Study of the Istanbul Metropolitan Area. Vol. 7. Springer Science & Business Media. Springer Briefs in Environment, Security, Development and Peace. Heidelberg, New York, Dordrecht, London.Google Scholar
Gencer, E. A. (2013b). An Overview of Urban Vulnerability to Natural Disasters and Climate Change in Central America and the Caribbean Region. FEEM Nota di Lavoro 78.2013. Fondazione Eni Enrico Mattei (FEEM): Milan, Italy.Google Scholar
Gencer, E. A. (2014). A Compendium of Disaster Risk Reduction Practices in Cities of the Western Balkans and Turkey. United Nations Office for Disaster Risk Reduction (UNISDR) and World Meteorological Organization (WMO).Google Scholar
Gencer, E.A., Mysiak, J., and Breil, M., 2013. Resilient City Characteristics and a Questionnaire to Assess Resiliency in Urban Areas. Working paper. Centro Euro-Mediterraneo sui Cambiamenti Climatici: Venice, Italy. (unpublished).Google Scholar
Gibson, T. D., Pelling, M., Ghosh, A., Matyas, D., Siddiqi, A., Solecki, W., … and Du Plessis, R. (2016). Pathways for Transformation: Disaster Risk Management to Enhance Resilience to Extreme Events. Journal of Extreme Events 3(01), 1671002.Google Scholar
GIZ. (2012). Disaster risk management and adaptation to climate change: Experience from German development cooperation. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Project ‘Disaster Risk Management in Development Cooperation’. Bonn. Accessed July 17, 2015: file:///C:/Users/SAK/Downloads/giz2012-0275en-disaster-risk-management-climate-change.pdfGoogle Scholar
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Jianguo, W., Bai, X., and Briggs, J. M. (2008). Global change and the ecology of cities. Science 319(5864), 756–760.Google Scholar
Harlan, S. L., Brazel, A. J., Darrel Jenerette, G., Jones, N. S., Larsen, L., Prashad, L., and Stefanov, W. L. (2007). In the shade of affluence: the inequitable distribution of the urban heat island. In Equity and the Environment (173–202). Emerald Group Publishing Limited.Google Scholar
Harty, C., and Cheng, D. (2003). Ecological assessment and strategies for the management of mangroves in Brisbane water—Gosford, New South Wales, Australia. Landscape Urban Planning 62, 219–240.Google Scholar
Hori, T. and Shaw, R.. (2011). Incorporation of potential climate change impacts into local disaster risk management in Costa Rica. Journal of Risk, Hazards and Crisis in Public Policy (RHCPP) 2(4). Accessed November 27, 2014: http://onlinelibrary.wiley.com/doi/10.2202/1944-4079.1094/abstract.Google Scholar
Hunter and Central Coast Regional Environmental Management Strategy (HCCREMS). (2010). Potential Impacts of Climate Change on the Hunter, Central and Lower North Coast of NSW. Hunter Councils, NSW.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Field, C.B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G. -K., Allen, S. K., Tignor, M., and Midgley, P. M. (eds.). Cambridge University Press.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2014a). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the fifth assessment report of the Intergovernmental Panel on Climate Change, Annex I: Glossary. Cambridge University Press.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2014b). Climate Change 2014: Synthesis Report. Cambridge University Press.Google Scholar
International Recovery Platform (IRP). (2007). Learning from Disaster Recovery Guidance for Decision Makers. UNISDR, Geneva.Google Scholar
International Society of City and Regional Planning (ISOCARP). (2005). Four Decades of Knowledge Creation and Sharing. ISOCARP, Madrid.Google Scholar
Institute for Business and Home Safety (IBHS). (2002). Are we planning safer communities? Results of a national survey of community planners and natural disasters. Accessed December 8, 2014: http://www.ibhs.org/publicationsGoogle Scholar
Kan, H., London, S. J., Chen, G., Zhang, Y., Song, G., Zhao, N., Jiang, L., and Chen, B. (2008). Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) study. Environmental Health Perspectives 116(9), 1183.Google Scholar
Kates, R. W., Travis, W. R., and Wilbanks, T. J. (2012). Transformational adaptation when incremental adaptations to climate change are insufficient. PNAS 109(19), 7156–7161. doi 10.1073/pnas.1115521109Google Scholar
Laegdsgaard, P. (2006). Ecology, disturbance and restoration of coastal saltmarsh in Australia: A review. Wetlands Ecological Management 14, 379–399.Google Scholar
Lewis, J. (1999). Development in Disaster-prone Places: Studies of Vulnerability. Intermediate Technology Publications.Google Scholar
Lin, B., Khoo, Y. B., Inman, M., Wang, C. H., Tapsuwan, S., and Wang, X. (2014). Assessing inundation damage and timing of adaptation: sea level rise and the complexities of land use in coastal communities. Mitigation Adaptation Strategies Global Change 19, 551–568.Google Scholar
Magrin, G. O., Marengo, J. A., Boulanger, J. P., Buckeridge, M. S., Castellanos, E., Poveda, G., Scarano, F. R., and Vicuña, S. (2014). Central and South America. In Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (1499–1566). Cambridge University Press.Google Scholar
Mazumder, D., Saintilan, N., and Williams, R. J. (2006). Tropic relationships between itinerant fish and crab larvae in a temperate Australian saltmarsh. Marsh Freshwater Research 57, 193–199.Google Scholar
McGranahan, G. (2007). Urban Environments, Wealth and Health: Shifting Burdens and Possible Responses in Low and Middle-Income Nations. Human Settlements Working Paper, Urban Environments No. 1, International Institute for Environment and Development (IIED), London.Google Scholar
Mehrotra, S., Rosenzweig, C., Solecki, W. D., Natenzon, C. E., Omojola, A., Folorunsho, R., and Gilbride, J. (2011). Cities, disasters and climate risks. In Rosenzweig, C., Solecki, W. D., Hammer, S. A., and Mehrotra, Mehrotra. (eds.), Climate Change and Cities: First Assessment Report of Climate Change Research Network (15–42). Cambridge University Press.Google Scholar
Melo, O., Vargas, X., Vicuna, S., Meza, F., and McPhee, J. (2010). Climate change economic impacts on supply of water for the M & I sector in the metropolitan region of Chile. In 2010 Watershed Management Conference: Innovations in Watershed Management Under Land Use and Climate Change, August (23–27).Google Scholar
Mendler de Suarez, J., Suarez, P., Bachofen, C., Fortugno, N., Goentzel, J., Gonçalves, P., Grist, N., Macklin, C., Pfeifer, K., Schweizer, S., Van Aalst, M., and Virji, H. (2012). Games for a New Climate: Experiencing the Complexity of Future Risks. Pardee Center Task Force Report. Boston University.