Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-21T10:22:30.431Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2013

Camil Muscalu
Affiliation:
Cornell University, New York
Wilhelm Schlag
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ablowitz, M. and Segur, H. 1981. Solitons and the Inverse Scattering Transform. SIAM, Philadelphia, PA.CrossRefGoogle Scholar
[2] Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., and Tchamitchian, Ph. 2002a. The solution of the Kato square root problem for second order elliptic operators in ℝn. Ann. Math. 156, 633–654.CrossRefGoogle Scholar
[3] Auscher, P., Hofmann, S., Muscalu, C., Tao, T., and Thiele, C. 2002b. Carleson measures, trees, extrapolation and T(b) theorems. Publ. Mat. 46, 257–325.CrossRefGoogle Scholar
[4] Bahouri, H., Chemin, J.-Y., and Danchin, R. 2001. Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der MathematischenWissenschaften, vol. 343, Springer, Heidelberg.Google Scholar
[5] Bényi, A., Demeter, C., Nahmod, A., Thiele, C., Torres, R., and Villaroya, P. 2009. Modular invariant bilinear T(1) theorem. J. Anal. Math. 109, 279–352.CrossRefGoogle Scholar
[6] Bernicot, F. 2008. Local estimates and global continuities in Lebesgue spaces for bilinear operators. Anal. PDE 1, 1–27.CrossRefGoogle Scholar
[7] Bernicot, F. 2011. Lp estimates for non-smooth bilinear Littlewood–Paley square functions on ℝ. Math. Ann. 351, 1–49.CrossRefGoogle Scholar
[8] Billard, P. 1966/1967. Sur la convergence presque partout des séries de Fourier–Walsh de fonctions de l'espace L2(0, 1). Studia Math. 28, 363–388.CrossRefGoogle Scholar
[9] Bony, J. M. 1981. Calcul symbolique et equations non lineaires. Ann. Sci. Ecole Norm. Sup. 14, 209–246.CrossRefGoogle Scholar
[10] Calderón, A. 1965. Commutators of singular integral operators. Proc. Nat. Acad. Sci. USA 53, 1092–1099.CrossRefGoogle ScholarPubMed
[11] Calderón, A. 1978. Commutators, singular integrals on Lipschitz curves and applications. In Proc. Int. Congress of Math. (Helsinki), pp. 85–96.Google Scholar
[12] Carleson, L. 1966. On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157.CrossRefGoogle Scholar
[13] Chang, S.-Y. A. and Fefferman, R. 1985. Some recent developments in Fourier analysis and Hp-theory on product domains. Bull. Amer. Math. Soc. 12, 1–43.CrossRefGoogle Scholar
[14] Chow, Y. and Teicher, H. 1997. Probability Theory. Independency, Interchangeability and Martingales. Third edition. Springer Texts in Statistics, vol. 22, Springer, New York.Google Scholar
[15] Christ, M. 1990. Lectures on Singular Integral Operators. CBMS Regional Conference Series in Mathematics, vol. 77, published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI.Google Scholar
[16] Christ, M. 2001. On certain elementary trilinear operators. Math. Res. Lett. 8, 43–56.CrossRefGoogle Scholar
[17] Christ, M. and Journé, J. 1987. Polynomial growth estimates for multilinear singular integrals. Acta Math. 159, 51–80.CrossRefGoogle Scholar
[18] Christ, M. and Kiselev, A. 2001a. Maximal functions associated to filtrations. J. Funct. Anal. 179, 409–425.CrossRefGoogle Scholar
[19] Christ, M. and Kiselev, A. 2001b. WKB asymptotic behaviour of almost all generalized eigenfunctions of one-dimensional Schrödinger operators. J. Funct. Anal. 179, 426–447.CrossRefGoogle Scholar
[20] Christ, M. and Weinstein, M. 1991. Dispersion of small amplitude solutions of the generalized KdV equation. J. Funct. Anal. 100, 87–109.CrossRefGoogle Scholar
[21] Christ, M., Li, X., Tao, T., and Thiele, C. 2005. On multilinear oscillatory integrals, nonsingular and singular. Duke Math. J. 130, 321–351.Google Scholar
[22] Cohen, J. and Gosselin, J. 1986. A BMO estimate for multi-linear singular integrals. Illinois J. Math. 30, 445–465.Google Scholar
[23] Coifman, R. and Grafakos, L. 1992. Hardy space estimates for multilinear operators I. Revista Mat. Iberoamericana 8, 45–67.CrossRefGoogle Scholar
[24] Coifman, R. and Meyer, Y. 1975. On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc. 212, 315–331.CrossRefGoogle Scholar
[25] Coifman, R. and Meyer, Y. 1978. Au delá des opérateurs pseudo-différentieles. Astérisque 57.Google Scholar
[26] Coifman, R. and Meyer, Y. 1997. Wavelets, Calderón Zygmund Operators and Multilinear Operators. Translated from the 1990 and 1991 French originals by David Salinger. Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge.Google Scholar
[27] Coifman, R. and Rochberg, R. 1980. Another characterization of BMO. Proc. Amer. Math. Soc. 79, 249–254.CrossRefGoogle Scholar
[28] Coifman, R., Rochberg, R., and Weiss, G. 1976. Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635.CrossRefGoogle Scholar
[29] Coifman, R., McIntosh, A., and Meyer, Y. 1982. L'integral de Cauchy définit un opérateur bourné sur le courbes Lipschitziennes. Ann. Math. 116, 361–387.CrossRefGoogle Scholar
[30] Coifman, R., Jones, P., and Semmes, S. 1989a. Two elementary proofs of the L2-boundedness of the Cauchy integral on Lipschitz curves. J. Amer. Math. Soc. 2, 553–564.Google Scholar
[31] Coifman, R., Lions, P., Meyer, Y., and Semmes, S. 1989b. Compacité par compensation et espaces de Hardy. C.R. Acad. Sci. Paris 309, 945–949.Google Scholar
[32] Dahlberg, B. 1983. Real analysis and potential theory. In Proc. Int.CongressMathematics (Warszawa), 953–959.Google Scholar
[33] David, G. and Journé, J.-L. 1984. A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. (2)120, 371–397.CrossRefGoogle Scholar
[34] Demeter, C. 2008. Divergence of some combinatorial averages and the unboundedness of the trilinear Hilbert transform. Ergodic Theory Dynam. Systems 28, 1453–1464.CrossRefGoogle Scholar
[35] Demeter, C. and Thiele, C. 2010. On the two-dimensional bilinear Hilbert transform. Amer. J. Math. 132, 201–256.CrossRefGoogle Scholar
[36] Demeter, C., Pramanik, M., and Thiele, C. 2010. Multilinear singular operators with fractional rank. Pacific J. Math. 246, 293–324.CrossRefGoogle Scholar
[37] Do, Y., Muscalu, C., and Thiele, C. 2012. Variational estimates on paraproducts. Revista Math. Iberoamericana 28, 857–878.CrossRefGoogle Scholar
[38] Egorov, Yu. V. 1975. Subelliptic operators. Uspekhi Mat. Nauk. 30, 57–104.Google Scholar
[39] Fefferman, C. 1971. On the divergence of multiple Fourier series. Bull. Amer. Math. Soc. 77, 191–195.CrossRefGoogle Scholar
[40] Fefferman, C. 1973. Pointwise convergence of Fourier series. Ann Math. 98, 551–571.CrossRefGoogle Scholar
[41] Fefferman, C. 1983. The uncertainty principle. Bull. Amer. Math. Soc. 9, 129–206.CrossRefGoogle Scholar
[42] Fefferman, R. and Stein, E. 1982. Singular integrals on product spaces. Adv. Math. 45, 117–143.CrossRefGoogle Scholar
[43] Ferguson, S. and Lacey, M. 2002. A characterization of product BMO by commutators. Acta Math. 189, 143–160.CrossRefGoogle Scholar
[44] Frazier,, M. and Jawert, B. 1990. A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 190, 34–170.CrossRefGoogle Scholar
[45] Germain, P., Masmoudi, N., and Shatah, J. 2012. Global solutions for the gravity water wave equation in dimension 3. Ann. Math. 175, 691–754.CrossRefGoogle Scholar
[46] Germain, P., Masmoudi, N., and Shatah, J. 2010b. Global solutions for 2D quadratic Schrödinger equations. To appear in J. Analyse Math.
[47] Gilbert, J. and Nahmod, A. 2001. Bilinear operators with nonsmooth symbols I. J. Fourier Anal. Appl. 7, 435–467.CrossRefGoogle Scholar
[48] Grafakos, L. 1992. Hardy space estimates for multilinear operators II. Revista Mat. Iberoamericana 8, 69–92.CrossRefGoogle Scholar
[49] Grafakos, L. and Honzík P., 2006. Maximal transference and summability of multilinear Fourier series. J. Aust. Math. Soc. 80, 65–80.CrossRefGoogle Scholar
[50] Grafakos, L. and Kalton, N. 2001. The Marcinkiewicz multiplier condition for bilinear operators. Studia Math. 146, 115–156.CrossRefGoogle Scholar
[51] Grafakos, L. and Li, X. 2004. Uniform estimates for the bilinear Hilbert transform I. Ann. Math. 159, 889–933.CrossRefGoogle Scholar
[52] Grafakos, L. and Li, X. 2006. The disc as a bilinear multiplier. Amer. J. Math. 128, 91–119.CrossRefGoogle Scholar
[53] Grafakos, L. and Tao, T. 2003. Multilinear interpolation between adjoint operators. J. Funct. Anal. 199, 379–385.CrossRefGoogle Scholar
[54] Grafakos, L. and Torres, R. 2002a. Discrete decompositions for bilinear operators and almost diagonal conditions. Trans. Amer. Math. Soc. 354, 1153–1176.CrossRefGoogle Scholar
[55] Grafakos, L. and Torres, R. 2002b. Multilinear Calderón Zygmund theory. Adv. Math. 165, 124–164.CrossRefGoogle Scholar
[56] Hunt, R. 1968. On the convergence of Fourier series. Orthogonal Expansions and their Continuous Analogues. Proc. Conf. Edwardsville, IL, 1967. Southern Illinois University Press, Carbondale, IL, pp. 235–255.Google Scholar
[57] Janson, S. 1988. On interpolation ofmultilinear operators. Lecture Notes in Mathematics, vol. 1302, Springer, pp. 290–302.Google Scholar
[58] Jerison, D. and Kenig, C. 1981. The Dirichlet problem in non-smooth domains. Ann. Math. 113, 367–382.CrossRefGoogle Scholar
[59] Journé, J. L. 1985. Calderón–Zygmund operators on product spaces. Revista Mat. Iberoamericana 1, 55–91.CrossRefGoogle Scholar
[60] Journé, J. L. 1986. A covering lemma for product spaces. Ann. Inst. Fourier 96, 593–598.Google Scholar
[61] Journé, J. L. 1988. Two problems of Calderón–Zygmund theory on product-spaces. Ann. Inst. Fourier 38, 111–132.CrossRefGoogle Scholar
[62] Kato, T. and Ponce, G. 1988. Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41, 891–907.CrossRefGoogle Scholar
[63] Kenig, C. 1994. Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Conference Series in Mathematics, vol.83, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[64] Kenig, C. 2004. On the local and global well-posedness theory for the KP-I equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 827–838.CrossRefGoogle Scholar
[65] Kenig, C. and Stein, E. M. 1999. Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15.CrossRefGoogle Scholar
[66] Kenig, C., Ponce, G., and Vega, L. 1989. On the (generalized) KdV equations. Duke Math. J. 59, 585–610.CrossRefGoogle Scholar
[67] Kovać, V. 2010. Boundedness of the twisted paraproduct. arXiv: 1011:6140, 21 pp.
[68] Lacey, M. 1998. On the bilinear Hilbert transform. In Proc. ICM Berlin, pp. 647–656.
[69] Lacey, M. 2000. The bilinear maximal functions map into Lp for 2/3 < p ≤ 1. Ann. Math. 155, 35–57.CrossRefGoogle Scholar
[70] Lacey, M. and Thiele, C. 1997. Lp estimates for the bilinear Hilbert transform. Ann. Math. 146, 693–724.CrossRefGoogle Scholar
[71] Lacey, M. and Thiele, C. 1999. On Calderón's conjecture. Ann. Math. 150, 475–496.CrossRefGoogle Scholar
[72] Lacey, M. and Thiele, C. 2000. A proof of boundedness of the Carleson operator. Math. Res. Lett. 7, 361–370.CrossRefGoogle Scholar
[73] Lacey, M., Petermichl, S., Pipher, J., and Wick, B. 2009. Multiparameter Riesz commutators. Amer. J. Math. 131, 731–769.CrossRefGoogle Scholar
[74] Li, X. 2006. Uniform estimates for the bilinear Hilbert transform II. Revista Mat. Iberoamericana 22, 1069–1126.CrossRefGoogle Scholar
[75] Li, X. and Muscalu, C. 2007. Generalizations of the Carleson–Hunt theorem I. The classical singularity case. Amer. J. Math. 129, 983–1019.CrossRefGoogle Scholar
[76] Lie, V. 2009. The (weak) L2 boundedness of the quadratic Carleson operator. Geom. Funct. Anal. 19, 457–497.CrossRefGoogle Scholar
[77] Lie, V. 2011. The polynomial Carleson operator. arXiv:1105.4504, 37 pp.
[78] Linares, F. and Ponce, G. 2009. Introduction toNonlinearDispersive Equations. Springer, New York.Google Scholar
[79] Mitrea, M. 1994. Clifford wavelets, singular integrals and Hardy spaces. Lecture Notes in Mathematics, vol. 1575, Springer, New York.Google Scholar
[80] Murai, T. 1984. A Real Variable Method for the Cauchy Transform and Analytic Capacity. Lecture Notes in Mathematics, vol. 1307, Springer, New York.Google Scholar
[81] Muscalu, C. 2000. Ph. D. thesis. Brown University.
[82] Muscalu, C. 2003a. Unpublished notes I. IAS Princeton.
[83] Muscalu, C. 2003b. Unpublished notes II. IAS Princeton.
[84] Muscalu, C. 2007. Paraproducts with flag singularities I. A case study. Revista Mat. Iberoamericana 23, 705–742.CrossRefGoogle Scholar
[85] Muscalu, C. 2010. Flag paraproducts. Contemp. Math. 505, 131–151.CrossRefGoogle Scholar
[86] Muscalu, C. 2012a. Calderón commutators and the Cauchy integral on Lipschitz curves revisited I. First commutator and generalizations. arXiv:1201.3845, 23 pp.
[87] Muscalu, C. 2012b. Calderón commutators and the Cauchy integral on Lipschitz curves revisited II. Cauchy integral and generalizations. arXiv:1201.3850, 29 pp.
[88] Muscalu, C. 2012c. Calderón commutators and the Cauchy integral on Lipschitz curves revisited III. Polydisc extensions. arXiv:1201.3855, 25 pp.
[89] Muscalu, C., Tao, T., and Thiele, C. 2002a. Adiscrete model for the Bi-Carleson operator. Geom. Funct. Anal. 12, 1324–1364.CrossRefGoogle Scholar
[90] Muscalu, C., Tao, T., and Thiele, C. 2002b. Multilinear multipliers given by singular symbols. J. Amer. Math. Soc. 15, 469–496.CrossRefGoogle Scholar
[91] Muscalu, C., Tao, T., and Thiele, C. 2003a. A Carleson theorem for a Cantor group model of the scattering transform. Nonlinearity 16, 219–246.CrossRefGoogle Scholar
[92] Muscalu, C., Tao, T., and Thiele, C. 2003b. A counterexample to a multilinear endpoint question of Christ and Kiselev. Math. Res. Lett. 10, 237–246.CrossRefGoogle Scholar
[93] Muscalu, C., Pipher, J., Tao, T., and Thiele, C. 2004a. Bi-parameter paraproducts. Acta Math. 193, 269–296.CrossRefGoogle Scholar
[94] Muscalu, C., Tao, T., and Thiele, C. 2004b. Lp estimates for the biest II. The Fourier case. Math. Ann. 329, 427–461.Google Scholar
[95] Muscalu, C., Tao, T., and Thiele, C. 2004c. The bi-Carleson operator. Geom. Funct. Anal. 16, 230–277.CrossRefGoogle Scholar
[96] Muscalu, C., Pipher, J., Tao, T., and Thiele, C. 2006. Multi-parameter paraproducts. Revista Mat. Iberoamericana 22, 963–976.CrossRefGoogle Scholar
[97] Muscalu, C., Tao, T., and Thiele, C. 2007. Multi-linear multipliers associated to simplexes of arbitrary length. arXiv:0712.2420, 52 pp.
[98] Oberlin, R., Seeger, A., Tao, T., Thiele, C., and Wright, J. 2009. A variation norm Carleson operator. arXiv:0910.1555, 41 pp.
[99] Palsson, E. 2011. Ph. D. thesis. Cornell University.
[100] Pipher, J. 1986. Journé's covering lemma and its extension to higher dimensions. Duke Math. J. 53, 683–690.CrossRefGoogle Scholar
[101] Pipher, J. 2001. Personal communication. Mount Holyoke.
[102] Ponce, G. and Vega, L. 1988. Nonlinear small data for the gKdV equation. J. Funct. Anal. 90, 445–457.CrossRefGoogle Scholar
[103] Rochberg, R. and Weiss, G. 1983. Derivatives of analytic families of Banach spaces. Ann. Math. 118, 315–347.CrossRefGoogle Scholar
[104] Sjölin, P. 1971. Convergence almost everywhere of certain singular integrals andmultiple Fourier series. Ark. Mat. 9, 65–90.CrossRefGoogle Scholar
[105] Stein, E. 1993. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton, NJ.Google Scholar
[106] Stein, E. and Wainger, S. 2001. Oscillatory integrals related to Carleson theorem. Math. Res. Lett. 8, 789–800.CrossRefGoogle Scholar
[107] Strauss, W. 1974. Dispersion of low energy waves for two conservative equations. Arch. Rational Mech. Anal. 55, 110–133.CrossRefGoogle Scholar
[108] Strichartz, R. 1969. A multilinear version of Marcinkiewicz interpolation theorem. Proc. Amer. Math. Soc. 21, 441–444.CrossRefGoogle Scholar
[109] Tao, T. 2002. Lectures in harmonic analysis. Notes from UCLA.
[110] Tao, T. and Thiele, C. 2003. Nonlinear Fourier analysis. Lectures at Park City.
[111] Taylor, M. 1998. Tools for PDEs. Pseudodifferential Operators, Paradifferential Operators and Layer Potentials. Mathematical Surveys Monographs, vol. 10, American Mathematical Society, Providence, RI.Google Scholar
[112] Thiele, C. 1995. Ph. D. thesis. Yale University.
[113] Thiele, C. 2000. The quartile operator and pointwise convergence of Walsh series. Trans. Amer. Math. Soc. 351, 5745–5766.Google Scholar
[114] Thiele, C. 2002a. A uniform estimate. Ann. Math. 156, 519–563.CrossRefGoogle Scholar
[115] Thiele, C. 2002b. Singular integrals meet modulation invariance. In Proc. ICM(Beijing), pp. 721–732.Google Scholar
[116] Thiele, C. 2006. Wave Packet Analysis. CBMS Conference Series in Mathematics, vol. 105, American Mathematical Society, Providence, RI.
[117] Verchota, G. 1984. Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. J. Funct. Anal. 59, 572–611.CrossRefGoogle Scholar
[118] Verdera, J. 2001. L2 boundedness of theCauchy integral and Menger curvature. Contemp. Math. 277, 139–158.CrossRefGoogle Scholar
[119] Workman, J. 2008. Ph. D. thesis. Cornell University.
[120] Wu, S. 2009. Almost global wellposedness of the 2D full water wave problem. Invent. Math. 177, 45–135.CrossRefGoogle Scholar
[121] Wu, S. 2011. Global wellposedness of the 3D full water wave problem. Invent. Math. 184, 125–220.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Camil Muscalu, Cornell University, New York, Wilhelm Schlag, University of Chicago
  • Book: Classical and Multilinear Harmonic Analysis
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139410397.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Camil Muscalu, Cornell University, New York, Wilhelm Schlag, University of Chicago
  • Book: Classical and Multilinear Harmonic Analysis
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139410397.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Camil Muscalu, Cornell University, New York, Wilhelm Schlag, University of Chicago
  • Book: Classical and Multilinear Harmonic Analysis
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139410397.011
Available formats
×