Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-21T10:21:31.836Z Has data issue: false hasContentIssue false

30 - Late complications after leukemia therapy

from Part IV - Complications and supportive care

Published online by Cambridge University Press:  01 July 2010

Melissa M. Hudson
Affiliation:
Member, Department of Hematology/Oncology, Director, After Completion of Therapy Clinic St. Jude Children's Research Hospital, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Because cure rates for children with acute lymphoblastic leukemia (ALL) have improved over the last three decades, information concerning late treatment sequelae has become increasingly important. Earlier reports described long-term complications after relatively homogeneous, less intensive chemotherapy given with cranial or craniospinal irradiation for central nervous system (CNS) preventive therapy. Recognition of new prognostic clinical and biological features has permitted risk-directed treatment that now cures at least 70% of children with ALL. Continued surveillance of the survivor population will elucidate the sequelae of these modern, intensive therapies.

Similarly, the long-term survival of children with acute myeloid leukemia (AML) has improved substantially in the last decade with the use of more intensive chemotherapy regimens and allogeneic bone marrow transplantation. Today, approximately 40% of children with AML are cured of their disease. The increasing numbers of long-term survivors of AML mandate the evaluation of late treatment sequelae and their effect on morbidity and mortality.

This chapter presents a systematic review of late treatment complications of childhood acute leukemia. My purpose is to assist the reader in identifying treatment and patient characteristics that predict the risk for adverse sequelae. Once these risk features are recognized, appropriate surveillance studies can be undertaken, and the potential effects of various therapy-related complications can be addressed during the design of future treatment regimens.

Type
Chapter
Information
Childhood Leukemias , pp. 750 - 773
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morris, M. In vitro effects of antileukaemic drugs on cartilage metabolism and their effects on somatomedin production by the liver. Manchester University, 1981.
Kirk, J. A., Raghupathy, P., Stevens, M. M., et al.Growth failure and growth-hormone deficiency after treatment for acute lymphoblastic leukaemia. Lancet, 1987; 1: 190–3.CrossRefGoogle ScholarPubMed
Shalet, S. M., Clayton, P. E., Morris-Jones, P. H., & Price, D. A.Growth in children treated for acute lymphoblastic leukaemia. Lancet, 1988; 2: 164.CrossRefGoogle ScholarPubMed
Hokken-Koelega, A. C., Doorn, J. W., Hahlen, K., et al.Long-term effects of treatment for acute lymphoblastic leukemia with and without cranial irradiation on growth and puberty: a comparative study. Pediatr Res, 1993; 33: 577–82.CrossRefGoogle ScholarPubMed
Sklar, C., Mertens, A., Walter, A., et al.Final height after treatment for childhood acute lymphoblastic leukemia: comparison of no cranial irradiation with 1800 and 2400 centigrays of cranial irradiation. J Pediatr, 1993; 123: 59–64.CrossRefGoogle ScholarPubMed
Groot-Loonen, J. J., Otten, B. J., t’ Hof, M. A., Lippens, R. J., & Stoelinga, G. B.Chemotherapy plays a major role in the inhibition of catch-up growth during maintenance therapy for childhood acute lymphoblastic leukemia. Pediatrics, 1995; 96: 693–5.Google Scholar
Dalton, V. K., Rue, M., Silverman, L. B., et al.Height and weight in children treated for acute lymphoblastic leukemia: relationship to CNS treatment. J Clin Oncol, 2003; 21: 2953–60.CrossRefGoogle ScholarPubMed
Schell, M. J., Ochs, J. J., Schriock, E. A., & Carter, M.A method of predicting adult height and obesity in long-term survivors of childhood acute lymphoblastic leukemia. J Clin Oncol, 1992; 10: 128–33.CrossRefGoogle ScholarPubMed
Schriock, E. A., Schell, M. J., Carter, M., Hustu, O., & Ochs, J. J.Abnormal growth patterns and adult short stature in 115 long-term survivors of childhood leukemia. J Clin Oncol, 1991; 9: 400–5.CrossRefGoogle ScholarPubMed
Birkebaek, N. H. & Clausen, N.Height and weight pattern up to 20 years after treatment for acute lymphoblastic leukaemia. Arch Dis Child, 1998; 79: 161–4.CrossRefGoogle ScholarPubMed
Blatt, J., Bercu, B. B., Gillin, J. C., Mendelson, W. B., & Poplack, D. G.Reduced pulsatile growth hormone secretion in children after therapy for acute lymphoblastic leukemia. J Pediatr, 1984; 104: 182–6.CrossRefGoogle ScholarPubMed
Shalet, S. M., Price, D. A., Beardwell, C. G., Jones, P. H., & Pearson, D.Normal growth despite abnormalities of growth hormone secretion in children treated for acute leukemia. J Pediatr, 1979; 94: 719–22.CrossRefGoogle ScholarPubMed
Caruso-Nicoletti, M., Mancuso, M., Spadaro, G., et al.Growth and growth hormone in children during and after therapy for acute lymphoblastic leukaemia. Eur J Pediatr, 1993; 152: 730–3.CrossRefGoogle ScholarPubMed
Uruena, M., Stanhope, R., Chessells, J. M., & Leiper, A. D.Impaired pubertal growth in acute lymphoblastic leukaemia. Arch Dis Child, 1991; 66: 1403–7.CrossRefGoogle ScholarPubMed
Cicognani, A., Cacciari, E., Vecchi, V., et al.Differential effects of 18- and 24-Gy cranial irradiation on growth rate and growth hormone release in children with prolonged survival after acute lymphocytic leukemia. Am J Dis Child, 1988; 142: 1199–202.Google ScholarPubMed
Stubberfield, T. G., Byrne, G. C., & Jones, T. W.Growth and growth hormone secretion after treatment for acute lymphoblastic leukemia in childhood. 18-Gy versus 24-Gy cranial irradiation. J Pediatr Hematol Oncol, 1995; 17: 167–71.CrossRefGoogle ScholarPubMed
Moell, C., Marky, I., Hovi, L., et al.Cerebral irradiation causes blunted pubertal growth in girls treated for acute leukemia. Med Pediatr Oncol, 1994; 22: 375–9.CrossRefGoogle ScholarPubMed
Probert, J. C., Parker, B. R., & Kaplan, H. S.Growth retardation in children after megavoltage irradiation of the spine. Cancer, 1973; 32: 634–9.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Shalet, S. M., Gibson, B., Swindell, R., & Pearson, D.Effect of spinal irradiation on growth. Arch Dis Child, 1987; 62: 461–4.CrossRefGoogle ScholarPubMed
Silber, J. H., Littman, P. S., & Meadows, A. T.Stature loss following skeletal irradiation for childhood cancer. J Clin Oncol, 1990; 8: 304–12.CrossRefGoogle ScholarPubMed
Davies, H. A., Didcock, E., Didi, M., et al.Disproportionate short stature after cranial irradiation and combination chemotherapy for leukaemia. Arch Dis Child, 1994; 70: 472–5.CrossRefGoogle ScholarPubMed
Didcock, E., Davies, H. A., Didi, M., et al.Pubertal growth in young adult survivors of childhood leukemia. J Clin Oncol, 1995; 13: 2503–7.CrossRefGoogle ScholarPubMed
Leiper, A. D., Stanhope, R., Preece, M. A., Grant, D. B., & Chessells, J. M.Precocious or early puberty and growth failure in girls treated for acute lymphoblastic leukaemia. Horm Res, 1988; 30: 72–6.CrossRefGoogle ScholarPubMed
Moell, C., Garwicz, S., Westgren, U., Wiebe, T., & Albertsson-Wikland, K.Blunted pubertal growth after leukemia: a new pattern of growth hormone insufficiency. Horm Res, 1988; 30: 68–71.Google ScholarPubMed
Quigley, C., Cowell, C., Jimenez, M., et al.Normal or early development of puberty despite gonadal damage in children treated for acute lymphoblastic leukemia. N Engl J Med, 1989; 321: 143–51.CrossRefGoogle ScholarPubMed
Shalet, S. M., Beardwell, C. G., Twomey, J. A., Jones, P. H., & Pearson, D.Endocrine function following the treatment of acute leukemia in childhood. J Pediatr, 1977; 90: 920–3.CrossRefGoogle ScholarPubMed
Pasqualini, T., McCalla, J., Berg, S., et al.Subtle primary hypothyroidism in patients treated for acute lymphoblastic leukemia. Acta Endocrinol (Copenh), 1991; 124: 375–80.Google ScholarPubMed
Rose, S. R.Isolated central hypothyroidism in short stature. Pediatr Res, 1995; 38: 967–73.CrossRefGoogle ScholarPubMed
Mohn, A., Chiarelli, F., Di Marzio, A., et al.Thyroid function in children treated for acute lymphoblastic leukemia. J Endocrinol Invest, 1997; 20: 215–19.CrossRefGoogle ScholarPubMed
Rose, S. R., Lustig, R. H., Pitukcheewanont, P., et al.Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J Clin Endocrinol Metab, 1999; 84: 4472–9.Google ScholarPubMed
Rose, S. R., Leong, G. M., Yanovski, J. A., et al.Thyroid function in non-growth hormone-deficient short children during a placebo-controlled double blind trial of recombinant growth hormone therapy. J Clin Endocrinol Metab, 1995; 80: 320–4.Google ScholarPubMed
Lando, A., Holm, K., Nysom, K., et al.Thyroid function in survivors of childhood acute lymphoblastic leukaemia: the significance of prophylactic cranial irradiation. Clin Endocrinol (Oxf), 2001; 55: 21–5.CrossRefGoogle ScholarPubMed
Santen, H. M., Vulsma, T., Dijkgraaf, M. G., et al.No damaging effect of chemotherapy in addition to radiotherapy on the thyroid axis in young adult survivors of childhood cancer. J Clin Endocrinol Metab, 2003; 88: 3657–63.CrossRefGoogle ScholarPubMed
Sanders, J. E., Pritchard, S., Mahoney, P., et al.Growth and development following marrow transplantation for leukemia. Blood, 1986; 68: 1129–35.Google ScholarPubMed
Sanders, J. E.Endocrine problems in children after bone marrow transplant for hematologic malignancies. The Long-term Follow-up Team. Bone Marrow Transplant, 1991; 8 (Suppl. 1): 2–4.Google ScholarPubMed
Brauner, R., Fontoura, M., Zucker, J. M., et al.Growth and growth hormone secretion after bone marrow transplantation. Arch Dis Child, 1993; 68: 458–63.CrossRefGoogle ScholarPubMed
Huma, Z., Boulad, F., Black, P., Heller, G., & Sklar, C.Growth in children after bone marrow transplantation for acute leukemia. Blood, 1995; 86: 819–24.Google ScholarPubMed
Cohen, A., Rovelli, A., Bakker, B., et al.Final height of patients who underwent bone marrow transplantation for hematological disorders during childhood: a study by the Working Party for Late Effects-EBMT. Blood, 1999; 93: 4109–15.Google ScholarPubMed
Sanders, J., Sullivan, K., Witherspoon, R., et al.Long term effects and quality of life in children and adults after marrow transplantation. Bone Marrow Transplant, 1989; 4 (Suppl. 4): 27–9.Google ScholarPubMed
Leiper, A. D., Stanhope, R., Lau, T., et al.The effect of total body irradiation and bone marrow transplantation during childhood and adolescence on growth and endocrine function. Br J Haematol, 1987; 67: 419–26.CrossRefGoogle ScholarPubMed
Thomas, B. C., Stanhope, R., Plowman, P. N., & Leiper, A. D.Growth following single fraction and fractionated total body irradiation for bone marrow transplantation. Eur J Pediatr, 1993; 152: 888–92.CrossRefGoogle ScholarPubMed
Bozzola, M., Giorgiani, G., Locatelli, F., et al.Growth in children after bone marrow transplantation. Horm Res, 1993; 39: 122–6.CrossRefGoogle ScholarPubMed
Giorgiani, G., Bozzola, M., Locatelli, F., et al.Role of busulfan and total body irradiation on growth of prepubertal children receiving bone marrow transplantation and results of treatment with recombinant human growth hormone. Blood, 1995; 86: 825–31.Google ScholarPubMed
Cohen, A., Rovelli, A., Van-Lint, M. T., et al.Final height of patients who underwent bone marrow transplantation during childhood. Arch Dis Child, 1996; 74: 437–40.CrossRefGoogle ScholarPubMed
Clement-De Boers, A., Oostdijk, W., Weel-Sipman, M. H., et al.Final height and hormonal function after bone marrow transplantation in children. J Pediatr, 1996; 129: 544–50.CrossRefGoogle ScholarPubMed
Michel, G., Socie, G., Gebhard, F., et al.Late effects of allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in first complete remission: the impact of conditioning regimen without total-body irradiation – a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol, 1997; 15: 2238–46.CrossRefGoogle ScholarPubMed
Shankar, S. M., Bunin, N. J., Moshang, T. Jr.Growth in children undergoing bone marrow transplantation after busulfan and cyclophosphamide conditioning. J Pediatr Hematol Oncol, 1996; 18: 362–6.CrossRefGoogle ScholarPubMed
Probert, J. C. & Parker, B. R.The effects of radiation therapy on bone growth. Radiology, 1975; 114: 155–62.CrossRefGoogle ScholarPubMed
Yahalom, J. & Fuks, X. Strategies for the use of total body irradiation as systemic therapy in leukemia and lymphoma. In , J. Armitage & Antman, K., eds., High-dose Cancer Therapy (Baltimore, MD: Williams & Wilkins, 1992), p. 61.Google Scholar
Peters, L.Discussion: the radiobiological basis of TBI. Int J Radiat Oncol Biol Phys, 1980; 6: 785.CrossRefGoogle Scholar
Wingard, J. R., Plotnick, L. P., Freemer, C. S., et al.Growth in children after bone marrow transplantation: busulfan plus cyclophosphamide versus cyclophosphamide plus total body irradiation. Blood, 1992; 79: 1068–73.Google ScholarPubMed
Bushhouse, S., Ramsay, N. K., Pescovitz, O. H., Kim, T., & Robison, L. L.Growth in children following irradiation for bone marrow transplantation. Am J Pediatr Hematol Oncol, 1989; 11: 134–40.Google ScholarPubMed
Ogilvy-Stuart, A. L., Clark, D. J., Wallace, W. H., et al.Endocrine deficit after fractionated total body irradiation. Arch Dis Child, 1992; 67: 1107–10.CrossRefGoogle ScholarPubMed
Sklar, C. A., Kim, T. H., & Ramsay, N. K.Thyroid dysfunction among long-term survivors of bone marrow transplantation. Am J Med, 1982; 73: 688–94.CrossRefGoogle ScholarPubMed
Leung, W., Rose, S. R., Zhou, Y., et al.Outcomes of growth hormone replacement therapy in survivors of childhood acute lymphoblastic leukemia. J Clin Oncol, 2002; 20: 2959–64.CrossRefGoogle ScholarPubMed
Cara, J. F., Kreiter, M. L., & Rosenfield, R. L.Height prognosis of children with true precocious puberty and growth hormone deficiency: effect of combination therapy with gonadotropin releasing hormone agonist and growth hormone. J Pediatr, 1992; 120: 709–15.CrossRefGoogle ScholarPubMed
Estrov, Z., Meir, R., Barak, Y., Zaizov, R., & Zadik, Z.Human growth hormone and insulin-like growth factor-1 enhance the proliferation of human leukemic blasts. J Clin Oncol, 1991; 9: 394–9.CrossRefGoogle ScholarPubMed
Mercola, K. E., Cline, M. J., & Golde, D. W.Growth hormone stimulation of normal and leukemic human T-lymphocyte proliferation in vitro. Blood, 1981; 58: 337–40.Google ScholarPubMed
Fradkin, J. E., Mills, J. L., Schonberger, L. B., et al.Risk of leukemia after treatment with pituitary growth hormone. JAMA, 1993; 270: 2829–32.CrossRefGoogle ScholarPubMed
Stahnke, N.Leukemia in growth-hormone-treated patients: an update, 1992. Horm Res, 1992; 38 (Suppl. 1): 56–62.CrossRefGoogle Scholar
Moshang, T. Jr.Use of growth hormone in children surviving cancer. Med Pediatr Oncol, 1998; 31: 170–2.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Ogilvy-Stuart, A. L., Ryder, W. D., Gattamaneni, H. R., Clayton, P. E., & Shalet, S. M.Growth hormone and tumour recurrence. BMJ, 1992; 304: 1601–5.CrossRefGoogle ScholarPubMed
Sklar, C. A., Mertens, A. C., Mitby, P., et al.Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab, 2002; 87: 3136–41.CrossRefGoogle ScholarPubMed
Arslanian, S. A., Becker, D. J., Lee, P. A., Drash, A. L., & Foley, T. P. Jr.Growth hormone therapy and tumor recurrence. Findings in children with brain neoplasms and hypopituitarism. Am J Dis Child, 1985; 139: 347–50.CrossRefGoogle ScholarPubMed
Zee, P. & Chen, C. H.Prevalence of obesity in children after therapy for acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol, 1986; 8: 294–9.CrossRefGoogle ScholarPubMed
Odame, I., Reilly, J. J., Gibson, B. E., & Donaldson, M. D.Patterns of obesity in boys and girls after treatment for acute lymphoblastic leukaemia. Arch Dis Child, 1994; 71: 147–9.CrossRefGoogle ScholarPubMed
Dongen-Melman, J. E., Hokken-Koelega, A. C., Hahlen, K., et al.Obesity after successful treatment of acute lymphoblastic leukemia in childhood. Pediatr Res, 1995; 38: 86–90.CrossRefGoogle ScholarPubMed
Didi, M., Didcock, E., Davies, H. A., et al.High incidence of obesity in young adults after treatment of acute lymphoblastic leukemia in childhood. J Pediatr, 1995; 127: 63–7.CrossRefGoogle ScholarPubMed
Oeffinger, K. C., Mertens, A. C., Sklar, C. A., et al.Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol, 2003; 21: 1359–65.CrossRefGoogle ScholarPubMed
Reilly, J. J., Kelly, A., Ness, P., et al.Premature adiposity rebound in children treated for acute lymphoblastic leukemia. J Clin Endocrinol Metab, 2001; 86: 2775–8.Google ScholarPubMed
Reilly, J. J., Ventham, J. C., Newell, J., et al.Risk factors for excess weight gain in children treated for acute lymphoblastic leukaemia. Int J Obes Relat Metab Disord, 2000; 24: 1537–41.CrossRefGoogle ScholarPubMed
Sklar, C. A., Mertens, A. C., Walter, A., et al.Changes in body mass index and prevalence of overweight in survivors of childhood acute lymphoblastic leukemia: role of cranial irradiation. Med Pediatr Oncol, 2000; 35: 91–5.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Warner, J. T., Gregory, J. W., & Webb, D. K.Patterns of obesity in boys and girls after treatment for acute lymphoblastic leukaemia. Arch Dis Child, 1995; 72: 97.CrossRefGoogle ScholarPubMed
Brennan, B. M., Rahim, A., Blum, W. F., et al.Hyperleptinaemia in young adults following cranial irradiation in childhood: growth hormone deficiency or leptin insensitivity ?Clin Endocrinol (Oxf), 1999; 50: 163–9.CrossRefGoogle ScholarPubMed
Warner, J. T., Evans, W. D., Webb, D. K., & Gregory, J. W.B. Composition of long-term survivors of acute lymphoblastic leukaemia. Med Pediatr Oncol, 2002; 38: 165–72.CrossRefGoogle Scholar
Collipp, P. J., Thomas, J., Curti, V., et al.Body composition changes in children receiving human growth hormone. Metabolism, 1973; 22: 589–95.CrossRefGoogle ScholarPubMed
Castillo, L. A., Craft, A. W., Kernahan, J., Evans, R. G., & Aynsley-Green, A.Gonadal function after 12-Gy testicular irradiation in childhood acute lymphoblastic leukaemia. Med Pediatr Oncol, 1990; 18: 185–9.CrossRefGoogle ScholarPubMed
Sklar, C. A., Robison, L. L., Nesbit, M. E., et al.Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Children Cancer Study Group. J Clin Oncol, 1990; 8: 1981–7.CrossRefGoogle ScholarPubMed
Blatt, J., Sherins, R. J., Niebrugge, D., Bleyer, W. A., & Poplack, D. G.Leydig cell function in boys following treatment for testicular relapse of acute lymphoblastic leukemia. J Clin Oncol, 1985; 3: 1227–31.CrossRefGoogle ScholarPubMed
Shalet, S. M., Horner, A., Ahmed, S. R., & Morris-Jones, P. H.Leydig cell damage after testicular irradiation for lymphoblastic leukaemia. Med Pediatr Oncol, 1985; 13: 65–8.CrossRefGoogle ScholarPubMed
Brauner, R., Czernichow, P., Cramer, P., Schaison, G., & Rappaport, R.Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia. N Engl J Med, 1983; 309: 25–8.CrossRefGoogle ScholarPubMed
Shalet, S. M., Hann, I. M., Lendon, M., Morris Jones, P. H., & Beardwell, C. G.Testicular function after combination chemotherapy in childhood for acute lymphoblastic leukaemia. Arch Dis Child, 1981; 56: 275–8.CrossRefGoogle ScholarPubMed
Lendon, M., Hann, I. M., Palmer, M. K., Shalet, S. M., & Jones, P. H.Testicular histology after combination chemotherapy in childhood for acute lymphoblastic leukaemia. Lancet, 1978; 2: 439–41.CrossRefGoogle ScholarPubMed
Lentz, R. D., Bergstein, J., Steffes, M. W., et al.Postpubertal evaluation of gonadal function following cyclophosphamide therapy before and during puberty. J Pediatr, 1977; 91: 385–94.CrossRefGoogle ScholarPubMed
Watson, A. R., Rance, C. P., & Bain, J.Long term effects of cyclophosphamide on testicular function. Br Med J, 1985; 291: 1457–60.CrossRefGoogle ScholarPubMed
Jaffe, N., Sullivan, M. P., Ried, H., et al.Male reproductive function in long-term survivors of childhood cancer. Med Pediatr Oncol, 1988; 16: 241–7.CrossRefGoogle ScholarPubMed
Matus-Ridley, M., Nicosia, S. V., & Meadows, A. T.Gonadal effects of cancer therapy in boys. Cancer, 1985; 55: 2353–63.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Blatt, J., Poplack, D. G., & Sherins, R. J.Testicular function in boys after chemotherapy for acute lymphoblastic leukemia. N Engl J Med, 1981; 304: 1121–4.CrossRefGoogle ScholarPubMed
Hayes, F. J., Hall, J. E., Boepple, P. A., & Crowley, W. F. Jr.Clinical review 96: differential control of gonadotropin secretion in the human: endocrine role of inhibin. J Clin Endocrinol Metab, 1998; 83: 1835–41.Google ScholarPubMed
Crofton, P. M., Evans, A. E., Groome, N. P., et al.Inhibin B in boys from birth to adulthood: relationship with age, pubertal stage, FSH and testosterone. Clin Endocrinol (Oxf), 2002; 56: 215–21.CrossRefGoogle ScholarPubMed
Wallace, W. H., Shalet, S. M., Tetlow, L. J., & Morris-Jones, P. H.Ovarian function following the treatment of childhood acute lymphoblastic leukaemia. Med Pediatr Oncol, 1993; 21: 333–9.CrossRefGoogle ScholarPubMed
Pasqualini, T., Escobar, M. E., Domene, H., et al.Evaluation of gonadal function following long-term treatment for acute lymphoblastic leukemia in girls. Am J Pediatr Hematol Oncol, 1987; 9: 15–22.CrossRefGoogle ScholarPubMed
Mills, J. L., Fears, T. R., Robison, L. L., et al.Menarche in a cohort of 188 long-term survivors of acute lymphoblastic leukemia. J Pediatr, 1997; 131: 598–602.CrossRefGoogle Scholar
Hamre, M. R., Robison, L. L., Nesbit, M. E., et al.Effects of radiation on ovarian function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Childrens Cancer Study Group. J Clin Oncol, 1987; 5: 1759–65.CrossRefGoogle ScholarPubMed
Byrne, J., Fears, T. R., Gail, M. H., et al.Early menopause in long-term survivors of cancer during adolescence. Am J Obstet Gynecol, 1992; 166: 788–93.CrossRefGoogle ScholarPubMed
Himelstein-Braw, R., Peters, H., & Faber, M.Morphological study of the ovaries of leukaemic children. Br J Cancer, 1978; 38: 82–7.CrossRefGoogle ScholarPubMed
Mertens, A. C., Ramsay, N. K., Kouris, S., & Neglia, J. P.Patterns of gonadal dysfunction following bone marrow transplantation. Bone Marrow Transplant, 1998; 22: 345–50.CrossRefGoogle ScholarPubMed
Sanders, J. E., Buckner, C. D., Amos, D., et al.Ovarian function following marrow transplantation for aplastic anemia or leukemia. J Clin Oncol, 1988; 6: 813–18.CrossRefGoogle ScholarPubMed
Afify, Z., Shaw, P. J., Clavano-Harding, A., & Cowell, C. T.Growth and endocrine function in children with acute myeloid leukaemia after bone marrow transplantation using busulfan/cyclophosphamide. Bone Marrow Transplant, 2000; 25: 1087–92.CrossRefGoogle ScholarPubMed
Thibaud, E., Rodriguez-Macias, K., Trivin, C., et al.Ovarian function after bone marrow transplantation during childhood. Bone Marrow Transplant, 1998; 21: 287–90.CrossRefGoogle ScholarPubMed
Sarafoglou, K., Boulad, F., Gillio, A., & Sklar, C.Gonadal function after bone marrow transplantation for acute leukemia during childhood. J Pediatr, 1997; 130: 210–6.CrossRefGoogle ScholarPubMed
Brennan, B. M., & Shalet, S. M.Endocrine late effects after bone marrow transplant. Br J Haematol, 2002; 118: 58–66.CrossRefGoogle ScholarPubMed
Sklar, C., Boulad, F., Small, T., & Kernan, N.Endocrine complications of pediatric stem cell transplantation. Front Biosci, 2001; 6: G17–22.CrossRefGoogle ScholarPubMed
Sanders, J. E., Hawley, J., Levy, W., et al.Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood, 1996; 87: 3045–52.Google ScholarPubMed
Nygaard, R., Clausen, N., Siimes, M. A., et al.Reproduction following treatment for childhood leukemia: a population-based prospective cohort study of fertility and offspring. Med Pediatr Oncol, 1991; 19: 459–66.CrossRefGoogle ScholarPubMed
Nicholson, H. S. & Byrne, J.Fertility and pregnancy after treatment for cancer during childhood or adolescence. Cancer, 1993; 71(Suppl.): 3392–9.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Green, D. M., Hall, B., & Zevon, M. A.Pregnancy outcome after treatment for acute lymphoblastic leukemia during childhood or adolescence. Cancer, 1989; 64: 2335–9.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Mulvihill, J. J., Myers, M. H., Connelly, R. R., et al.Cancer in offspring of long-term survivors of childhood and adolescent cancer. Lancet, 1987; 2: 813–17.CrossRefGoogle ScholarPubMed
Hawkins, M. M., Draper, G. J., & Winter, D. L.Cancer in the offspring of survivors of childhood leukaemia and non-Hodgkin lymphomas. Br J Cancer, 1995; 71: 1335–9.CrossRefGoogle ScholarPubMed
Blatt, J., Mulvihill, J. J., Ziegler, J. L., Young, R. C., & Poplack, D. G.Pregnancy outcome following cancer chemotherapy. Am J Med, 1980; 69: 828–32.CrossRefGoogle ScholarPubMed
Green, D. M., Whitton, J. A., Stovall, M., et al.Pregnancy outcome of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Am J Obstet Gynecol, 2002; 187: 1070–80.CrossRefGoogle ScholarPubMed
Green, D. M., Whitton, J. A., Stovall, M., et al.Pregnancy outcome of partners of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol, 2003; 21: 716–21.CrossRefGoogle ScholarPubMed
Kenney, L. B., Nicholson, H. S., Brasseux, C., et al.Birth defects in offspring of adult survivors of childhood acute lymphoblastic leukemia. A Childrens Cancer Group/National Institutes of Health Report. Cancer, 1996; 78: 169–76.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Sankila, R., Olsen, J. H., Anderson, H., et al.Risk of cancer among offspring of childhood-cancer survivors. Association of the Nordic Cancer Registries and the Nordic Society of Paediatric Haematology and Oncology. N Engl J Med, 1998; 338: 1339–44.CrossRefGoogle ScholarPubMed
Green, D. M., Zevon, M. A., Lowrie, G., Seigelstein, N., & Hall, B.Congenital anomalies in children of patients who received chemotherapy for cancer in childhood and adolescence. N Engl J Med, 1991; 325: 141–6.CrossRefGoogle ScholarPubMed
Waber, D. P., Tarbell, N. J., Fairclough, D., et al.Cognitive sequelae of treatment in childhood acute lymphoblastic leukemia: cranial radiation requires an accomplice. J Clin Oncol, 1995; 13: 2490–6.CrossRefGoogle ScholarPubMed
Christie, D., Leiper, A. D., Chessells, J. M., & Vargha-Khadem, F.Intellectual performance after presymptomatic cranial radiotherapy for leukaemia: effects of age and sex. Arch Dis Child, 1995; 73: 136–40.CrossRefGoogle ScholarPubMed
Anderson, V., Smibert, E., Ekert, H., & Godber, T.Intellectual, educational, and behavioural sequelae after cranial irradiation and chemotherapy. Arch Dis Child, 1994; 70: 476–83.CrossRefGoogle ScholarPubMed
Jankovic, M., Brouwers, P., Valsecchi, M. G., et al.Association of 1800 cGy cranial irradiation with intellectual function in children with acute lymphoblastic leukaemia. ISPACC. International Study Group on Psychosocial Aspects of Childhood Cancer. Lancet, 1994; 344: 224–7.CrossRefGoogle ScholarPubMed
Bleyer, W. A., Fallavollita, J., Robison, L., et al.Influence of age, sex, and concurrent intrathecal methotrexate therapy on intellectual function after cranial irradiation during childhood: a report from the Children's Cancer Study Group. Pediatr Hematol Oncol, 1990; 7: 329–38.CrossRefGoogle ScholarPubMed
Silber, J. H., Radcliffe, J., Peckham, V., et al.Whole-brain irradiation and decline in intelligence: the influence of dose and age on IQ score. J Clin Oncol, 1992; 10: 1390–6.CrossRefGoogle ScholarPubMed
Kato, M., Azuma, E., Ido, M., et al.Ten-year survey of the intellectual deficits in children with acute lymphoblastic leukemia receiving chemoimmunotherapy. Med Pediatr Oncol, 1993; 21: 435–40.CrossRefGoogle ScholarPubMed
Mulhern, R. K., Fairclough, D., & Ochs, J.A prospective comparison of neuropsychologic performance of children surviving leukemia who received 18-Gy, 24-Gy, or no cranial irradiation. J Clin Oncol, 1991; 9: 1348–56.CrossRefGoogle ScholarPubMed
Mulhern, R. K., Kovnar, E., Langston, J., et al.Long-term survivors of leukemia treated in infancy: factors associated with neuropsychologic status. J Clin Oncol, 1992; 10: 1095–102.CrossRefGoogle ScholarPubMed
Butler, R. W., Hill, J. M., Steinherz, P. G., Meyers, P. A., & Finlay, J. L.Neuropsychologic effects of cranial irradiation, intrathecal methotrexate, and systemic methotrexate in childhood cancer. J Clin Oncol, 1994; 12: 2621–9.CrossRefGoogle ScholarPubMed
Haupt, R., Fears, T. R., Robison, L. L., et al.Educational attainment in long-term survivors of childhood acute lymphoblastic leukemia. JAMA, 1994; 272: 1427–32.CrossRefGoogle ScholarPubMed
Wilson, D. A., Nitschke, R., Bowman, M. E., et al.Transient white matter changes on MR images in children undergoing chemotherapy for acute lymphocytic leukemia: correlation with neuropsychologic deficiencies. Radiology, 1991; 180: 205–9.CrossRefGoogle ScholarPubMed
Kingma, A., Mooyaart, E. L., Kamps, W. A., Nieuwenhuizen, P., & Wilmink, J. T.Magnetic resonance imaging of the brain and neuropsychological evaluation in children treated for acute lymphoblastic leukemia at a young age. Am J Pediatr Hematol Oncol, 1993; 15: 231–8.CrossRefGoogle Scholar
Hertzberg, H., Huk, W. J., Ueberall, M. A., et al.CNS late effects after ALL therapy in childhood. Part I: Neuroradiological findings in long-term survivors of childhood ALL – an evaluation of the interferences between morphology and neuropsychological performance. The German Late Effects Working Group. Med Pediatr Oncol, 1997; 28: 387–400.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Ueberall, M. A., Skirl, G., Strassburg, H. M., et al.Neurophysiological findings in long-term survivors of acute lymphoblastic leukaemia in childhood treated with the BFM protocol 81 SR-A/B. Eur J Pediatr, 1997; 156: 727–33.CrossRefGoogle ScholarPubMed
Lahteenmaki, P. M., Holopainen, I., Krause, C. M., et al.Cognitive functions of adolescent childhood cancer survivors assessed by event-related potentials. Med Pediatr Oncol, 2001; 36: 442–50.CrossRefGoogle ScholarPubMed
Iuvone, L., Mariotti, P., Colosimo, C., et al.Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer, 2002; 95: 2562–70.CrossRefGoogle ScholarPubMed
Langer, T., Martus, P., Ottensmeier, H., et al.CNS late-effects after ALL therapy in childhood. Part III: neuropsychological performance in long-term survivors of childhood ALL: impairments of concentration, attention, and memory. Med Pediatr Oncol, 2002; 38: 320–8.CrossRefGoogle ScholarPubMed
Waber, D. P., Shapiro, B. L., Carpentieri, S. C., et al.Excellent therapeutic efficacy and minimal late neurotoxicity in children treated with 18 grays of cranial radiation therapy for high-risk acute lymphoblastic leukemia: a 7-year follow-up study of the Dana-Farber Cancer Institute Consortium Protocol 87–01. Cancer, 2001; 92: 15–22.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Copeland, D. R., Moore, B. D., 3rd, Francis, D. J., Jaffe, N. & Cublert, S. J.Neuropsychologic effects of chemotherapy on children with cancer: a longitudinal study. J Clin Oncol, 1996; 14: 2826–35.CrossRefGoogle ScholarPubMed
Christie, D., Battin, M., Leiper, A. D., et al.Neuropsychological and neurological outcome after relapse of lymphoblastic leukaemia. Arch Dis Child, 1994; 70: 275–80.CrossRefGoogle ScholarPubMed
Davidson, A., Childs, J., Hopewell, J. W., & Tait, D.Functional neurological outcome in leukaemic children receiving repeated cranial irradiation. Radiother Oncol, 1994; 31: 101–9.CrossRefGoogle ScholarPubMed
Clarke, M., Gaynon, P., Hann, I., et al.CNS-directed therapy for childhood acute lymphoblastic leukemia: Childhood ALL Collaborative Group overview of 43 randomized trials. J Clin Oncol, 2003; 21: 1798–809.CrossRefGoogle Scholar
Pui, C. H.Toward optimal central nervous system-directed treatment in childhood acute lymphoblastic leukemia. J Clin Oncol, 2003; 21: 179–81.CrossRefGoogle ScholarPubMed
Price, R. Therapy-related central nervous system diseases inchildren with acute lymphocyte leukemia. In , R. Mastrangelo, , D. G. Poplack, & , R. Riccardi, eds., Central Nervous System Leukemia Prevention and Treatment (Boston, MA: Martinus Nijhoff, 1983), pp. 71–83.Google Scholar
Prassopoulos, P., Cavouras, D., Golfinopoulos, S., et al.Quantitative assessment of cerebral atrophy during and after treatment in children with acute lymphoblastic leukemia. Invest Radiol, 1996; 31: 749–54.CrossRefGoogle ScholarPubMed
Vainionpaa, L., Kovala, T., Tolonen, U., & Lanning, M.Chemotherapy for acute lymphoblastic leukemia may cause subtle changes of the spinal cord detectable by somatosensory evoked potentials. Med Pediatr Oncol, 1997; 28: 41–7.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Hasle, H., Helgestad, J., Christensen, J. K., Jacobsen, B. B., & Kamper, J.Prolonged intrathecal chemotherapy replacing cranial irradiation in high-risk acute lymphatic leukaemia: long-term follow up with cerebral computed tomography scans and endocrinological studies. Eur J Pediatr, 1995; 154: 24–9.CrossRefGoogle ScholarPubMed
Laitt, R. D., Chambers, E. J., Goddard, P. R., et al.Magnetic resonance imaging and magnetic resonance angiography in long term survivors of acute lymphoblastic leukemia treated with cranial irradiation. Cancer, 1995; 76: 1846–52.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Liang, D. C., Lin, J. C., Shih, S. L., et al.Cranial computed tomography in children with acute lymphoblastic leukemia after prophylactic treatment with cranial radiation therapy and intrathecal methotrexate. Cancer, 1993; 71: 2105–8.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Matsumoto, K., Takahashi, S., Sato, A., et al.Leukoencephalopathy in childhood hematopoietic neoplasm caused by moderate-dose methotrexate and prophylactic cranial radiotherapy – an MR analysis. Int J Radiat Oncol Biol Phys, 1995; 32: 913–18.CrossRefGoogle ScholarPubMed
Paakko, E., Lehtinen, S., Harila-Saari, A., et al.Perfusion MRI and SPECT of brain after treatment for childhood acute lymphoblastic leukemia. Med Pediatr Oncol, 2003; 40: 88–92.CrossRefGoogle ScholarPubMed
Asato, R., Akiyama, Y., Ito, M., et al.Nuclear magnetic resonance abnormalities of the cerebral white matter in children with acute lymphoblastic leukemia and malignant lymphoma during and after central nervous system prophylactic treatment with intrathecal methotrexate. Cancer, 1992; 70: 1997–2004.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Brouwers, P., Riccardi, R., Poplack, D., & Fedio, P.Attentional deficits in long-term survivors of childhood acute lymphoblastic leukemia (ALL). J Clin Neuropsychol, 1984; 6: 325–36.CrossRefGoogle Scholar
Leung, W., Hudson, M., Zhu, Y., et al.Late effects in survivors of infant leukemia. Leukemia, 2000; 14: 1185–90.CrossRefGoogle ScholarPubMed
Leung, W., Hudson, M. M., Strickland, D. K., et al.Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol, 2000; 18: 3273–9.CrossRefGoogle ScholarPubMed
Belkacemi, Y., Labopin, M., Vernant, J. P., et al.Cataracts after total body irradiation and bone marrow transplantation in patients with acute leukemia in complete remission: a study of the European Group for Blood and Marrow Transplantation. Int J Radiat Oncol Biol Phys, 1998; 41: 659–68.CrossRefGoogle ScholarPubMed
Hoover, D. L., Smith, L. E., Turner, S. J., Gelber, R. D., & Sallan, S. E.Ophthalmic evaluation of survivors of acute lymphoblastic leukemia. Ophthalmology, 1988; 95: 151–5.CrossRefGoogle ScholarPubMed
Deeg, H. J., Flournoy, N., Sullivan, K. M., et al.Cataracts after total body irradiation and marrow transplantation: a sparing effect of dose fractionation. Int J Radiat Oncol Biol Phys, 1984; 10: 957–64.CrossRefGoogle ScholarPubMed
Cuthbertson, D., Epstein, S., Lipshultz, S. E., et al.Anthracycline cardiotoxicity in children with cancer. Circulation, 1994; 90: 1–50.Google Scholar
Lipshultz, S. E., Colan, S. D., Gelber, R. D., et al.Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med, 1991; 324: 808–15.CrossRefGoogle ScholarPubMed
Lipshultz, S. E., Lipsitz, S. R., Mone, S. M., et al.Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med, 1995; 332: 1738–43.CrossRefGoogle ScholarPubMed
Steinherz, L. J., Steinherz, P. G., & Tan, C.Cardiac failure and dysrhythmias 6–19 years after anthracycline therapy: a series of 15 patients. Med Pediatr Oncol, 1995; 24: 352–61.CrossRefGoogle ScholarPubMed
Sorensen, K., Levitt, G., Bull, C., Chessells, J., & Sullivan, I.Anthracycline dose in childhood acute lymphoblastic leukemia: issues of early survival versus late cardiotoxicity. J Clin Oncol, 1997; 15: 61–8.CrossRefGoogle ScholarPubMed
Kremer, L. C., Pal, H. J., Offringa, M., Dalen, E. C., & Voute, P. A.Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann Oncol, 2002; 13: 819–29.CrossRefGoogle ScholarPubMed
Rammeloo, L. A., Postma, A., Sobotka-Plojhar, M. A., et al.Low-dose daunorubicin in induction treatment of childhood acute lymphoblastic leukemia: no long-term cardiac damage in a randomized study of the Dutch Childhood Leukemia Study Group. Med Pediatr Oncol, 2000; 35: 13–19.3.0.CO;2-G>CrossRefGoogle Scholar
Sorensen, K., Levitt, G. A., Bull, C., Dorup, I., & Sullivan, I. D.Late anthracycline cardiotoxicity after childhood cancer: a prospective longitudinal study. Cancer, 2003; 97: 1991–8.CrossRefGoogle ScholarPubMed
Kremer, L. C., Dalen, E. C., Offringa, M., Ottenkamp, J., & Voute, P. A.Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J Clin Oncol, 2001; 19: 191–6.CrossRefGoogle Scholar
Bossi, G., Lanzarini, L., Laudisa, M. L., et al.Echocardiographic evaluation of patients cured of childhood cancer: a single center study of 117 subjects who received anthracyclines. Med Pediatr Oncol, 2001; 36: 593–600.CrossRefGoogle ScholarPubMed
Goorin, A. M., Chauvenet, A. R., Perez-Atayde, A. R., et al.Initial congestive heart failure, six to ten years after doxorubicin chemotherapy for childhood cancer. J Pediatr, 1990; 116: 144–7.CrossRefGoogle ScholarPubMed
Yeung, S. T., Yoong, C., Spink, J., Galbraith, A., & Smith, P. J.Functional myocardial impairment in children treated with anthracyclines for cancer. Lancet, 1991; 337: 816–18.CrossRefGoogle ScholarPubMed
Steinherz, L. J, Steinherz, P. G., Tan, C. T., Heller, G., & Murphy, M. L.Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA, 1991; 266: 1672–7.CrossRefGoogle ScholarPubMed
Larsen, R. L., Jakacki, R. I., Vetter, V. L., et al.Electrocardiographic changes and arrhythmias after cancer therapy in children and young adults. Am J Cardiol, 1992; 70: 73–7.CrossRefGoogle ScholarPubMed
Freter, C. E., Lee, T. C., Billingham, M. E., Chak, L., & Bristow, M. R.Doxorubicin cardiac toxicity manifesting seven years after treatment. Case report and review. Am J Med, 1986; 80: 483–5.CrossRefGoogle ScholarPubMed
Ali, M. K., Ewer, M. S., Gibbs, H. R., Swafford, J., & Graff, K. L.Late doxorubicin-associated cardiotoxicity in children. The possible role of intercurrent viral infection. Cancer, 1994; 74: 182–8.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Lipshultz, S. E.Dexrazoxane for protection against cardiotoxic effects of anthracyclines in children. J Clin Oncol, 1996; 14: 328–31.CrossRefGoogle ScholarPubMed
Lipshultz, S. E., Giantris, A. L., Lipsitz, S. R., et al.Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91–01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol, 2002; 20: 1677–82.CrossRefGoogle Scholar
Gupta, M., Steinherz, P. G., Cheung, N. K., & Steinherz, L.Late cardiotoxicity after bolus versus infusion anthracycline therapy for childhood cancers. Med Pediatr Oncol, 2003; 40: 343–7.CrossRefGoogle ScholarPubMed
Turner-Gomes, S. O., Lands, L. C., Halton, J., et al.Cardiorespiratory status after treatment for acute lymphoblastic leukemia. Med Pediatr Oncol, 1996; 26: 160–5.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Jenney, M. E., Faragher, E. B., Jones, P. H., & Woodcock, A.Lung function and exercise capacity in survivors of childhood leukaemia. Med Pediatr Oncol, 1995; 24: 222–30.CrossRefGoogle ScholarPubMed
Prince, D. S., Wingard, J. R., Saral, R., Santos, G. W., & Wise, R. A.Longitudinal changes in pulmonary function following bone marrow transplantation. Chest, 1989; 96: 301–6.CrossRefGoogle ScholarPubMed
Uderzo, C., Rovelli, A., Meloni, G., et al.Evaluation of late side-effects after bone marrow transplantation in children with leukemia. Bone Marrow Transplant, 1991; 8(Suppl. 1): 44–6.Google ScholarPubMed
Thuret, I., Michel, G., Carla, H., et al.Long-term side-effects in children receiving allogeneic bone marrow transplantation in first complete remission of acute leukaemia. Bone Marrow Transplant, 1995; 15: 337–41.Google ScholarPubMed
Griese, M., Rampf, U., Hofmann, D., et al.Pulmonary complications after bone marrow transplantation in children: twenty-four years of experience in a single pediatric center. Pediatr Pulmonol, 2000; 30: 393–401.3.0.CO;2-W>CrossRefGoogle Scholar
Cerveri, I., Zoia, M. C., Fulgoni, P., et al.Late pulmonary sequelae after childhood bone marrow transplantation. Thorax, 1999; 54: 131–5.CrossRefGoogle ScholarPubMed
Rosenberg, S. W., Kolodney, H., Wong, G. Y., & Murphy, M. L.Altered dental root development in long-term survivors of pediatric acute lymphoblastic leukemia. A review of 17 cases. Cancer, 1987; 59: 1640–8.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Pajari, U. & Lanning, M.Developmental defects of teeth in survivors of childhood ALL are related to the therapy and age at diagnosis. Med Pediatr Oncol, 1995; 24: 310–4.CrossRefGoogle ScholarPubMed
Sonis, A. L., Tarbell, N., Valachovic, R. W., et al.Dentofacial development in long-term survivors of acute lymphoblastic leukemia. A comparison of three treatment modalities. Cancer, 1990; 66: 2645–52.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Sonis, A. L., Waber, D. P., Sallan, S., & Tarbell, N. J.The oral health of long-term survivors of acute lymphoblastic leukaemia: a comparison of three treatment modalities. Eur J Cancer B Oral Oncol, 1995; 31B: 250–2.CrossRefGoogle ScholarPubMed
Jaffe, N., Toth, B. B., Hoar, R. E., et al.Dental and maxillofacial abnormalities in long-term survivors of childhood cancer: effects of treatment with chemotherapy and radiation to the head and neck. Pediatrics, 1984; 73: 816–23.Google ScholarPubMed
Kaste, S. C., Hopkins, K. P., Jones, D., et al.Dental abnormalities in children treated for acute lymphoblastic leukemia. Leukemia, 1997; 11: 792–6.CrossRefGoogle ScholarPubMed
Nunn, J. H., Welbury, R. R., Gordon, P. H., Kernahan, J., & Craft, A. W.Dental caries and dental anomalies in children treated by chemotherapy for malignant disease: a study in the north of England. Int J Paediatr Dent, 1991; 1: 131–5.CrossRefGoogle ScholarPubMed
Gilsanz, V., Carlson, M. E., Roe, T. F., & Ortega, J. A.Osteoporosis after cranial irradiation for acute lymphoblastic leukemia. J Pediatr, 1990; 117: 238–44.CrossRefGoogle ScholarPubMed
Halton, J. M., Atkinson, S. A., Fraher, L., et al.Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukemia. J Bone Miner Res, 1996; 11: 1774–83.CrossRefGoogle ScholarPubMed
Kaste, S. C., Jones-Wallace, D., Rose, S. R., et al.Bone mineral decrements in survivors of childhood acute lymphoblastic leukemia: frequency of occurrence and risk factors for their development. Leukemia, 2001; 15: 728–34.CrossRefGoogle ScholarPubMed
Brennan, B. M., Rahim, A., Adams, J. A., Eden, O. B., & Shalet, S. M.Reduced bone mineral density in young adults following cure of acute lymphoblastic leukaemia in childhood. Br J Cancer, 1999; 79: 1859–63.CrossRefGoogle ScholarPubMed
Hoorweg-Nijman, J. J., Kardos, G., Roos, J. C., et al.Bone mineral density and markers of bone turnover in young adult survivors of childhood lymphoblastic leukaemia. Clin Endocrinol (Oxf), 1999; 50: 237–44.CrossRefGoogle ScholarPubMed
Nysom, K., Holm, K., Michaelsen, K. F., et al.Bone mass after treatment for acute lymphoblastic leukemia in childhood. J Clin Oncol, 1998; 16: 3752–60.CrossRefGoogle ScholarPubMed
Nysom, K., Holm, K., Hertz, H., et al.Bone mass after treatment for acute lymphoblastic leukemia in childhood. J Clin Oncol, 2001; 19: 2970–1.CrossRefGoogle ScholarPubMed
Barr, R. D., Halton, J., Willan, A., et al.Impact of age and cranial irradiation on radiographic skeletal pathology in children with acute lymphoblastic leukemia. Med Pediatr Oncol, 1998; 30: 347–50.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Arikoski, P., Komulainen, J., Voutilainen, R., et al.Reduced bone mineral density in long-term survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol, 1998; 20: 234–40.CrossRefGoogle ScholarPubMed
Atkinson, S. A., Halton, J. M., Bradley, C., Wu, B., & Barr, R. D.Bone and mineral abnormalities in childhood acute lymphoblastic leukemia: influence of disease, drugs and nutrition. Int J Cancer Suppl, 1998; 11: 35–9.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Chan-Lam, D., Prentice, A. G., Copplestone, J. A., et al.Avascular necrosis of bone following intensified steroid therapy for acute lymphoblastic leukaemia and high-grade malignant lymphoma. Br J Haematol, 1994; 86: 227–30.CrossRefGoogle ScholarPubMed
Murphy, R. G. & Greenberg, M. L.Osteonecrosis in pediatric patients with acute lymphoblastic leukemia. Cancer, 1990; 65: 1717–21.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Ojala, A. E., Lanning, F. P., Paakko, E., & Lanning, B. M.Osteonecrosis in children treated for acute lymphoblastic leukemia: a magnetic resonance imaging study after treatment. Med Pediatr Oncol, 1997; 29: 260–5.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Ojala, A. E., Paakko, E., Lanning, F. P., & Lanning, M.Osteonecrosis during the treatment of childhood acute lymphoblastic leukemia: a prospective MRI study. Med Pediatr Oncol, 1999; 32: 11–17.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Felix, C., Blatt, J., Goodman, M. A., & Medina, J.Avascular necrosis of bone following combination chemotherapy for acute lymphocytic leukemia. Med Pediatr Oncol, 1985; 13: 269–72.CrossRefGoogle ScholarPubMed
Mattano, L. A. Jr., Sather, H. N., Trigg, M. E., & Nachman, J. B.Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol, 2000; 18: 3262–72.CrossRefGoogle ScholarPubMed
Strauss, A. J., Su, J. T., Dalton, V. M., et al.Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol, 2001; 19: 3066–72.CrossRefGoogle ScholarPubMed
Johnson, W. W. & Meadows, D. C.Urinary-bladder fibrosis and telangiectasia associated with long-term cyclophosphamide therapy. N Engl J Med, 1971; 284: 290–4.CrossRefGoogle ScholarPubMed
Lawrence, H. J., Simone, J., & Aur, R. J.Cyclophosphamide-induced hemorrhagic cystitis in children with leukemia. Cancer, 1975; 36: 1572–6.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Hersh, E. M., Wong, V. G., Henderson, E. S., & Freireich, E. J.Hepatotoxic effects of methotrexate. Cancer, 1966; 19: 600–6.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Bessho, F., Kinumaki, H., Yokota, S., et al.Liver function studies in children with acute lymphocytic leukemia after cessation of therapy. Med Pediatr Oncol, 1994; 23: 111–15.CrossRefGoogle Scholar
Einhorn, M. & Davidsohn, I.Hepatotoxicity of mercaptopurine. JAMA, 1964: 102–6.Google ScholarPubMed
Nesbit, M., Krivit, W., Heyn, R., & Sharp, H.Acute and chronic effects of methotrexate on hepatic, pulmonary, and skeletal systems. Cancer, 1976; 37(Suppl.): 1048–57.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
McIntosh, S., Davidson, D. L., O'Brien, R. T., & Pearson, H. A.Methotrexate hepatotoxicity in children with leukemia. J Pediatr, 1977; 90: 1019–21.CrossRefGoogle ScholarPubMed
Lascari, A. D., Givler, R. L., Soper, R. T., & Hill, L. F.Portal hypertension in a case of acute leukemia treated with antimetabolites for ten years. N Engl J Med, 1968; 279: 303–6.CrossRefGoogle Scholar
Ruymann, F. B., Mosijczuk, A. D., & Sayers, R. J.Hepatoma in a child with methotrexate-induced hepatic fibrosis. JAMA, 1977; 238: 2631–3.CrossRefGoogle Scholar
Topley, J. M., Benson, J., Squier, M. V., & Chessells, J. M.Hepatotoxicity in the treatment of acute lymphoblastic leukaemia. Med Pediatr Oncol, 1979; 7: 393–9.CrossRefGoogle ScholarPubMed
Parker, D., Bate, C. M., Craft, A. W., et al.Liver damage in children with acute leukaemia and non-Hodgkin's lymphoma on oral maintenance chemotherapy. Cancer Chemother Pharmacol, 1980; 4: 121–7.CrossRefGoogle ScholarPubMed
Bortolotti, F., Vajro, P., Barbera, C., et al.Patterns of antibodies to hepatitis C virus and hepatitis C virus replication in children with chronic non-A, non-B hepatitis. J Pediatr, 1994; 125: 916–18.CrossRefGoogle ScholarPubMed
Locasciulli, A., Cavalletto, D., Pontisso, P., et al.Hepatitis C virus serum markers and liver disease in children with leukemia during and after chemotherapy. Blood, 1993; 82: 2564–7.Google ScholarPubMed
Sharara, A. I., Hunt, C. M., & Hamilton, J. D.Hepatitis C. Ann Intern Med, 1996; 125: 658–68.CrossRefGoogle ScholarPubMed
Locasciulli, A., Gornati, G., Tagger, A., et al.Hepatitis C virus infection and chronic liver disease in children with leukemia in long-term remission. Blood, 1991; 78: 1619–22.Google ScholarPubMed
Strickland, D. K., Jenkins, J. J., & Hudson, M. M.Hepatitis C infection and hepatocellular carcinoma after treatment of childhood cancer. J Pediatr Hematol Oncol, 2001; 23: 527–9.CrossRefGoogle ScholarPubMed
Strickland, D. K., Riely, C. A., Patrick, C. C., et al.Hepatitis C infection among survivors of childhood cancer. Blood, 2000; 95: 3065–70.Google ScholarPubMed
Lackner, H., Moser, A., Deutsch, J., et al.Interferon-alpha and ribavirin in treating children and young adults with chronic hepatitis C after malignancy. Pediatrics, 2000; 106: E53.CrossRefGoogle Scholar
Paul, I. M., Sanders, J., Ruggiero, F., et al.Chronic hepatitis C virus infections in leukemia survivors: prevalence, viral load, and severity of liver disease. Blood, 1999; 93: 3672–7.Google ScholarPubMed
Cesaro, S., Petris, M. G., Rossetti, F., et al.Chronic hepatitis C virus infection after treatment for pediatric malignancy. Blood, 1997; 90: 1315–20.Google ScholarPubMed
Locasciulli, A., Testa, M., Pontisso, P., et al.Prevalence and natural history of hepatitis C infection in patients cured of childhood leukemia. Blood, 1997; 90: 4628–33.Google ScholarPubMed
Neilson, J. R., Harrison, P., Skidmore, S. J., et al.Chronic hepatitis C in long term survivors of haematological malignancy treated in a single centre. J Clin Pathol, 1996; 49: 230–2.CrossRefGoogle Scholar
Arico, M., Maggiore, G., Silini, E., et al.Hepatitis C virus infection in children treated for acute lymphoblastic leukemia. Blood, 1994; 84: 2919–22.Google ScholarPubMed
Castellino, S., Lensing, S., Riely, C., et al.The epidemiology of chronic hepatitis C in survivors of childhood cancer: an update of the St Jude Children's Research Hospital hepatitis C seropositive cohort. Blood, 2004, 103: 2460–6.CrossRefGoogle ScholarPubMed
Fujisawa, T., Inui, A., Ohkawa, T., et al.Response to interferon therapy in children with chronic hepatitis C. J Pediatr, 1995; 127: 660–2.CrossRefGoogle ScholarPubMed
Ruiz-Moreno, M., Rua, M. J., Castillo, I., et al.Treatment of children with chronic hepatitis C with recombinant interferon-alpha: a pilot study. Hepatology, 1992; 16: 882–5.CrossRefGoogle ScholarPubMed
Mustafa, M. M., Buchanan, G. R., Winick, N. J., et al.Immune recovery in children with malignancy after cessation of chemotherapy. J Pediatr Hematol Oncol, 1998; 20: 451–7.CrossRefGoogle ScholarPubMed
Katz, J., Walter, B. N., Bennetts, G. A., & Cairo, M. S.Abnormal cellular and humoral immunity in childhood acute lymphoblastic leukemia in long-term remission. West J Med, 1987; 146: 179–87.Google ScholarPubMed
Rautonen, J., Siimes, M. A., Lundstrom, U., et al.Vaccination of children during treatment for leukemia. Acta Paediatr Scand, 1986; 75: 579–85.CrossRefGoogle ScholarPubMed
Ridgway, D., Wolff, L. J., & Deforest, A.Immunization response varies with intensity of acute lymphoblastic leukemia therapy. Am J Dis Child, 1991; 145: 887–91.Google ScholarPubMed
Borella, L. & Webster, R. G.The immunosuppressive effects of long-term combination chemotherapy in children with acute leukemia in remission. Cancer Res, 1971; 31: 420–6.Google ScholarPubMed
Borella, L., Green, A. A., & Webster, R. G.Immunologic rebound after cessation of long-term chemotherapy in acute leukemia. Blood, 1972; 40: 42–51.Google ScholarPubMed
Alanko, S., Pelliniemi, T. T., & Salmi, T. T.Recovery of blood B-lymphocytes and serum immunoglobulins after chemotherapy for childhood acute lymphoblastic leukemia. Cancer, 1992; 69: 1481–6.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Hitzig, W. H., Pluss, H. J., Joller, P., et al.Studies on the immune status of children with acute lymphocytic leukaemia. II. In remission with and without cytostatic treatment. Clin Exp Immunol, 1976; 26: 414–18.Google ScholarPubMed
Feldman, S., Gigliotti, F., Shenep, J. L., Roberson, P. K., & Lott, L.Risk of Haemophilus influenzae type b disease in children with cancer and response of immunocompromised leukemic children to a conjugate vaccine. J Infect Dis, 1990; 161: 926–31.CrossRefGoogle ScholarPubMed
Ogra, P. L., Sinks, L. F., & Karzon, D. T.Poliovirus antibody response in patients with acute leukemia. J Pediatr, 1971; 79: 444–9.CrossRefGoogle ScholarPubMed
Layward, L., Levinsky, R. J., & Butler, M.Long-term abnormalities in T and B lymphocyte function in children following treatment for acute lymphoblastic leukaemia. Br J Haematol, 1981; 49: 251–8.CrossRefGoogle Scholar
Lange, B., Jakacki, R., Nasab, A. H., Luery, N., & McVerry, P. H.Immunization of leukemic children with Haemophilus conjugate vaccine. Pediatr Infect Dis J, 1989; 8: 883–4.CrossRefGoogle ScholarPubMed
Nilsson, A., De Milito, A., Engstrom, P., et al.Current chemotherapy protocols for childhood acute lymphoblastic leukemia induce loss of humoral immunity to viral vaccination antigens. Pediatrics, 2002; 109: e91.CrossRefGoogle ScholarPubMed
Ljungman, P., Lewensohn-Fuchs, I., Hammarstrom, V., et al.Long-term immunity to measles, mumps, and rubella after allogeneic bone marrow transplantation. Blood, 1994; 84: 657–63.Google ScholarPubMed
Feldman, S., Gigliotti, F., Bockhold, C., & Naegele, R.Measles and rubella antibody status in previously vaccinated children with cancer. Med Pediatr Oncol, 1988; 16: 308–11.CrossRefGoogle ScholarPubMed
Caver, T. E., Slobod, K. S., Flynn, P. M., et al.Profound abnormality of the B/T lymphocyte ratio during chemotherapy for pediatric acute lymphoblastic leukemia. Leukemia, 1998; 12: 619–22.CrossRefGoogle Scholar
Smith, S., Schiffman, G., Karayalcin, G., & Bonagura, V.Immunodeficiency in long-term survivors of acute lymphoblastic leukemia treated with Berlin-Frankfurt-Munster therapy. J Pediatr, 1995; 127: 68–75.CrossRefGoogle ScholarPubMed
Pauksen, K., Duraj, V., Ljungman, P., et al.Immunity to and immunization against measles, rubella and mumps in patients after autologous bone marrow transplantation. Bone Marrow Transplant, 1992; 9: 427–32.Google ScholarPubMed
Engelhard, D., Handsher, R., Naparstek, E., et al.Immune response to polio vaccination in bone marrow transplant recipients. Bone Marrow Transplant, 1991; 8: 295–300.Google ScholarPubMed
Ljungman, P., Wiklund-Hammarsten, M., Duraj, V., et al.Response to tetanus toxoid immunization after allogeneic bone marrow transplantation. J Infect Dis, 1990; 162: 496–500.CrossRefGoogle ScholarPubMed
Ljungman, P., Fridell, E., Lonnqvist, B., et al.Efficacy and safety of vaccination of marrow transplant recipients with a live attenuated measles, mumps, and rubella vaccine. J Infect Dis, 1989; 159: 610–5.CrossRefGoogle ScholarPubMed
Ljungman, P., Cordonnier, C., de Bock, R., et al.Immunisations after bone marrow transplantation: results of a European survey and recommendations from the infectious diseases working party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant, 1995; 15: 455–60.Google ScholarPubMed
Meadows, A. T., Baum, E., Fossati-Bellani, F., et al.Second malignant neoplasms in children: an update from the Late Effects Study Group. J Clin Oncol, 1985; 3: 532–8.CrossRefGoogle ScholarPubMed
Zarrabi, M. H., Rosner, F., & Grunwald, H. W.Second neoplasms in acute lymphoblastic leukemia. Cancer, 1983; 52: 1712–19.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Nygaard, R., Garwicz, S., Haldorsen, T., et al.Second malignant neoplasms in patients treated for childhood leukemia. A population-based cohort study from the Nordic countries. The Nordic Society of Pediatric Oncology and Hematology (NOPHO). Acta Paediatr Scand, 1991; 80: 1220–8.CrossRefGoogle ScholarPubMed
Neglia, J. P., Meadows, A. T., Robison, L. L., et al.Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med, 1991; 325: 1330–6.CrossRefGoogle ScholarPubMed
Neglia, J. P., Friedman, D. L., Yasui, Y., et al.Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J Natl Cancer Inst, 2001; 93: 618–29.CrossRefGoogle ScholarPubMed
Bhatia, S., Sather, H. N., Pabustan, O. B., et al.Low incidence of second neoplasms among children diagnosed with acute lymphoblastic leukemia after 1983. Blood, 2002; 99: 4257–64.CrossRefGoogle ScholarPubMed
Kimball Dalton, V. M., Gelber, R. D., Li, F., et al.Second malignancies in patients treated for childhood acute lymphoblastic leukemia. J Clin Oncol, 1998; 16: 2848–53.CrossRefGoogle ScholarPubMed
Loning, L., Zimmermann, M., Reiter, A., et al.Secondary neoplasms subsequent to Berlin-Frankfurt-Munster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy. Blood, 2000; 95: 2770–5.Google ScholarPubMed
Pui, C. H., Cheng, C., Leung, W., et al.Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med, 2003; 349: 640–9.CrossRefGoogle ScholarPubMed
Hawkins, M. M., Draper, G. J., & Kingston, J. E.Incidence of second primary tumours among childhood cancer survivors. Br J Cancer, 1987; 56: 339–47.CrossRefGoogle ScholarPubMed
Iyer, R. S., Soman, C. S., Nair, C. N., et al.Brain tumors following cure of acute lymphoblastic leukemia. Leuk Lymphoma, 1994; 13: 183–6.CrossRefGoogle ScholarPubMed
Farwell, J. & Flannery, J. T.Cancer in relatives of children with central-nervous-system neoplasms. N Engl J Med, 1984; 311: 749–53.CrossRefGoogle ScholarPubMed
Walter, A. W., Hancock, M. L., Pui, C. H., et al.Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children's Research Hospital. J Clin Oncol, 1998; 16: 3761–7.CrossRefGoogle ScholarPubMed
Cavin, L. W., Dalrymple, G. V., McGuire, E. L., Maners, A. W., & Broadwater, J. R.CNS tumor induction by radiotherapy: a report of four new cases and estimate of dose required. Int J Radiat Oncol Biol Phys, 1990; 18: 399–406.CrossRefGoogle ScholarPubMed
Rimm, I. J., Li, F. C., Tarbell, N. J., Winston, K. R., & Sallan, S. E.Brain tumors after cranial irradiation for childhood acute lymphoblastic leukemia. A 13-year experience from the Dana-Farber Cancer Institute and the Children's Hospital. Cancer, 1987; 59: 1506–8.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Fontana, M., Stanton, C., Pompili, A., et al.Late multifocal gliomas in adolescents previously treated for acute lymphoblastic leukemia. Cancer, 1987; 60: 1510–8.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
McWhirter, W. R., Pearn, J. H., Smith, H., & O'Regan, P.Cerebral astrocytoma as a complication of acute lymphoblastic leukaemia. Med J Aust, 1986; 145: 96–7.Google ScholarPubMed
Malone, M., Lumley, H., & Erdohazi, M.Astrocytoma as a second malignancy in patients with acute lymphoblastic leukemia. Cancer, 1986; 57: 1979–85.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Judge, M. R., Eden, O. B., & O'Neill, P.Cerebral glioma after cranial prophylaxis for acute lymphoblastic leukaemia. Br Med J, 1984; 289: 1038–9.CrossRefGoogle ScholarPubMed
Salvati, M., Artico, M., Caruso, R., et al.A report on radiation-induced gliomas. Cancer, 1991; 67: 392–7.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Tiberin, P., Maor, E., Zaizov, R., et al.Brain sarcoma of meningeal origin after cranial irradiation in childhood acute lymphocytic leukemia. Case report. J Neurosurg, 1984; 61: 772–6.CrossRefGoogle ScholarPubMed
Relling, M. V., Rubnitz, J. E., Rivera, G. K., et al.High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet, 1999; 354: 34–9.CrossRefGoogle ScholarPubMed
Kreissman, S. G., Gelber, R. D., Cohen, H. J., et al.Incidence of secondary acute myelogenous leukemia after treatment of childhood acute lymphoblastic leukemia. Cancer, 1992; 70: 2208–13.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Pui, C. H., Ribeiro, R. C., Hancock, M. L., et al.Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1682–7.CrossRefGoogle ScholarPubMed
Pui, C. H., Relling, M. V., Rivera, G. K., et al.Epipodophyllotoxin-related acute myeloid leukemia: a study of 35 cases. Leukemia, 1995; 9: 1990–6.Google ScholarPubMed
Pui, C. H., Behm, F. G., Raimondi, S. C., et al.Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med, 1989; 321: 136–42.CrossRefGoogle ScholarPubMed
Pui, C. H., Relling, M. V., Behm, F. G., et al.L-asparaginase may potentiate the leukemogenic effect of the epipodophyllotoxins. Leukemia, 1995; 9: 1680–4.Google ScholarPubMed
Winick, N., Buchanan, G. R., & Kamen, B. A.Secondary acute myeloid leukemia in Hispanic children. J Clin Oncol, 1993; 11: 1433.CrossRefGoogle ScholarPubMed
Albain, K. S., Le Beau, M. M., Ullirsch, R., & Schumacher, H.Implication of prior treatment with drug combinations including inhibitors of topoisomerase II in therapy-related monocytic leukemia with a 9;11 translocation. Genes Chromosomes Cancer, 1990; 2: 53–8.CrossRefGoogle ScholarPubMed
Whitlock, J. A., Greer, J. P., & Lukens, J. N.Epipodophyllotoxin-related leukemia. Identification of a new subset of secondary leukemia. Cancer, 1991; 68: 600–4.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Smith, M. A., Rubinstein, L., Anderson, J. R., et al.Secondary leukemia or myelodysplastic syndrome after treatment with epipodophyllotoxins. J Clin Oncol, 1999; 17: 569–77.CrossRefGoogle ScholarPubMed
Relling, M. V., Boyett, J. M., Blanco, J. G., et al.Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood, 2003; 101: 3862–7.CrossRefGoogle ScholarPubMed
Sandler, E. S., Friedman, D. J., Mustafa, M. M., et al.Treatment of children with epipodophyllotoxin-induced secondary acute myeloid leukemia. Cancer, 1997; 79: 1049–54.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Hudson, M. M., Mertens, A. C., Yasui, Y., et al.Health status of adult long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. JAMA, 2003; 290: 1583–92.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×