Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-z5d2w Total loading time: 0.633 Render date: 2021-12-02T00:44:55.422Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

29 - Monitoring carotid interventions with xenon CT

from Monitoring the local and distal effects of carotid interventions

Published online by Cambridge University Press:  03 December 2009

Andrew Carlson
Affiliation:
University of New Mexico, Albuquerque NM, USA
Howard Yonas
Affiliation:
University of New Mexico, Albuquerque NM, USA
Jonathan Gillard
Affiliation:
University of Cambridge
Martin Graves
Affiliation:
University of Cambridge
Thomas Hatsukami
Affiliation:
University of Washington
Chun Yuan
Affiliation:
University of Washington
Get access

Summary

Introduction

Our knowledge of cerebral hemodynamics during carotid occlusion is derived from several pathophysiologically different clinical situations understood via myriad imaging and assessment modalities. This leads to what, at the outset, seems to be a vast and conflicting body of literature regarding the field. Our goal here is first, to carefully explore the physiologic information gained in these various clinical situations and second, to apply these principles, in so far as the available evidence allows, to patient care. It is important to understand that each of these disparate situations and technologies seek to offer some insight into the large picture of how cerebral blood flow (CBF) responds to various challenges. By focusing too closely on the minutia of any particular situation or technology without incorporating the alternate perspectives offered by other situations or technologies, one runs the risk of losing understanding of this larger picture.

There are two clinical scenarios in which we have gained our most extensive understanding of cerebral hemodynamics in relation to carotid occlusion. One is when the carotid artery is intentionally occluded as a test of tolerance to permanent occlusion (balloon test occlusion or BTO). The other involves the study of patients that present with chronic carotid occlusion who are objects of study in order to assess their risk for future stroke. Patients undergoing BTO are initially asymptomatic and temporary occlusion of the carotid provides the most “pure” study of cerebral hemodynamics – i.e. the physiological response to an abrupt carotid occlusion.

Type
Chapter
Information
Carotid Disease
The Role of Imaging in Diagnosis and Management
, pp. 396 - 417
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, H. P. Jr., Powers, W. J., Grubb, R. L.., Clarke, W. R. and Woolson, R. F. (2001). Preview of a new trial of extracranial-to-intracranial arterial anastomosis: the carotid occlusion surgery study. Neurosurgery Clinics of North America, 12, 613–24, ix–x.Google ScholarPubMed
American Society of International and Therapeutic Neuroradiology (2001). Carotid artery balloon test occlusion AJNR. American Journal of Neuroradiology, 22, S8–9.
Apruzzese, A., Silvestrini, M., Floris, R., et al. (2001). Cerebral hemodynamics in asymptomatic patients with internal carotid artery occlusion: a dynamic susceptibility contrast Magnetic resonance and transcranial Doppler study. AJNR. American Journal of Neuroradiology, 22, 1062–7.Google ScholarPubMed
Barker, D. W., Jungreis, C. A., Horton, J. A., Pentheny, S. and Lemley, T. (1993). Balloon test occlusion of the internal carotid artery: change in stump pressure over 15 minutes and its correlation with xenon Computerized tomography cerebral blood flow. AJNR. American Journal of Neuroradiology, 14, 587–90.Google Scholar
Barnett, D. W., Barrow, D. L. and Joseph, G. J. (1994). Combined extracranial-intracranial bypass and intraoperative balloon occlusion for the treatment of intracavernous and proximal carotid artery aneurysms. Neurosurgery, 35, 92–7; discussion 97–8.CrossRefGoogle ScholarPubMed
Barnett, H. J., Taylor, D. W., Eliasziw, M., et al. (1998). Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. New England Journal of Medicine, 339, 1415–25.CrossRefGoogle ScholarPubMed
Baumgartner, R. W., Arnold, M., Baumgartner, I., et al. (2001). Carotid dissection with and without ischemic events: local symptoms and cerebral artery findings. Neurology, 57, 827–32.CrossRefGoogle ScholarPubMed
Benninger, D. H., Georgiadis, D., Kremer, C., et al. (2004). Mechanism of ischemic infarct in spontaneous carotid dissection. Stroke, 35, 482–5.CrossRefGoogle ScholarPubMed
Bhattacharjee, A. K., Tamaki, N., Wada, T., Hara, Y. and Ehara, K. (1999). Transcranial Doppler findings during balloon test occlusion of the internal carotid artery. Journal of Neuroimaging, 9, 155–9.CrossRefGoogle ScholarPubMed
Bisschops, R. H., Klijn, C. J., Kappelle, L. J., Huffelen, A. C. and Grond, J. (2003). Association between impaired carbon dioxide reactivity and ischemic lesions in arterial border zone territories in patients with unilateral internal carotid artery occlusion. Archives of Neurology, 60, 229–33.CrossRefGoogle ScholarPubMed
Brunberg, J. A., Frey, K. A., Horton, J. A., et al. (1994). 15O H2O positron emission tomography determination of cerebral blood flow during balloon test occlusion of the internal carotid artery. AJNR. American Journal of Neuroradiology, 15, 725–32.Google ScholarPubMed
Burt, R. W., Witt, R. M., Cikrit, D. F. and Reddy, R. V. (1992). Carotid artery disease: evaluation with acetazolamide-enhanced Tc-99m HMPAO SPEComputerized tomography. Radiology, 182, 461–6.CrossRefGoogle Scholar
Bushnell, D. L., Gupta, S., Barnes, W. E., et al. (1991). Evaluation of cerebral perfusion reserve using 5% CO2 and SPEComputerized tomography neuroperfusion imaging. Clinical Nuclear Medicine, 16, 263–7.CrossRefGoogle ScholarPubMed
Chaves, C., Estol, C., Esnaola, M. M., et al. (2002). Spontaneous intracranial internal carotid artery dissection: report of 10 patients. Archives of Neurology, 59, 977–81.CrossRefGoogle ScholarPubMed
Cloughesy, T. F., Nuwer, M. R., Hoch, D., et al. (1993). Monitoring carotid test occlusions with continuous EEG and clinical examination. Journal of Clinical Neurophysiology, 10, 363–9.CrossRefGoogle ScholarPubMed
Dare, A. O., Chaloupka, J. C., Putman, C. M., Fayad, P. B. and Awad, I. A. (1998). Failure of the hypotensive provocative test during temporary balloon test occlusion of the internal carotid artery to predict delayed hemodynamic ischemia after therapeutic carotid occlusion. Surgical Neurology, 50, 147–55; discussion 155–6.CrossRefGoogle ScholarPubMed
Derdeyn, C. P., Grubb, R. L., Jr. and Powers, W. J. (1999). Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology, 53, 251–9.CrossRefGoogle ScholarPubMed
Derdeyn, C. P., Khosla, A., Videen, T. O., et al. (2001a). Severe hemodynamic impairment and border zone–region infarction. Radiology, 220, 195–201.CrossRefGoogle Scholar
Derdeyn, C. P., Videen, T. O., Grubb, R. L. Jr. and Powers, W. J. (2001b). Comparison of PET oxygen extraction fraction methods for the prediction of stroke risk. Journal of Nuclear Medicine, 42, 1195–7.Google Scholar
Derdeyn, C. P., Videen, T. O., Yundt, K. D., et al. (2002). Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain, 125, 595–607.CrossRefGoogle ScholarPubMed
Eckard, D. A., Purdy, P. D. and Bonte, F. J. (1992). Temporary balloon occlusion of the carotid artery combined with brain blood flow imaging as a test to predict tolerance prior to permanent carotid sacrifice. AJNR. American Journal of Neuroradiology, 13, 1565–9.Google ScholarPubMed
Eckert, B., Thie, A., Carvajal, M., Groden, C. and Zeumer, H. (1998). Predicting hemodynamic ischemia by transcranial Doppler monitoring during therapeutic balloon occlusion of the internal carotid artery. AJNR. American Journal of Neuroradiology, 19, 577–82.Google ScholarPubMed
European carotid surgery (1998). Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the Medical research council European Carotid Surgery Trial (European carotid surgery). Lancet, 351, 1379–87.CrossRef
Field, M., Jungreis, C. A., Chengelis, N., et al. (2003). Symptomatic cavernous sinus aneurysms: management and outcome after carotid occlusion and selective cerebral revascularization. AJNR. American Journal of Neuroradiology, 24, 1200–7.Google ScholarPubMed
Firlik, A. D., Kaufmann, A. M., Wechsler, L. R., et al. (1997). Quantitative cerebral blood flow determinations in acute ischemic stroke. Relationship to computed tomography and angiography. Stroke, 28, 2208–13.CrossRefGoogle ScholarPubMed
Giller, C. A., Mathews, D., Walker, B., Purdy, P. and Roseland, A. M. (1994). Prediction of tolerance to carotid artery occlusion using transcranial Doppler ultrasound. Journal of Neurosurgery, 81, 15–19.CrossRefGoogle ScholarPubMed
Grubb, R. L. Jr., Derdeyn, C. P., Fritsch, S. M., et al. (1998). Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. Journal of the American Medical Association, 280, 1055–60.CrossRefGoogle ScholarPubMed
Grubb, R. L. Jr., Powers, W. J., Derdeyn, C. P., Adams, H. P. Jr. and Clarke, W. R. (2003). The carotid occlusion surgery study. Neurosurgical Focus, 14, e9.CrossRefGoogle ScholarPubMed
Guillon, B., Levy, C. and Bousser, M. G. (1998). Internal carotid artery dissection: an update. Journal of the Neurological Sciences, 153, 146–58.CrossRefGoogle ScholarPubMed
Gupta, D. K., Young, W. L., Hashimoto, T., et al. (2002). Characterization of the cerebral blood flow response to balloon deflation after temporary internal carotid artery test occlusion. Journal of Neurosurgical Anesthesiology, 14, 123–9.CrossRefGoogle ScholarPubMed
Gur, A. Y., Bova, I. and Bornstein, N. M. (1996). Is impaired cerebral vasomotor reactivity a predictive factor of stroke in asymptomatic patients?Stroke, 27, 2188–90.CrossRefGoogle ScholarPubMed
Halsey, J. H. Jr. (1992). Risks and benefits of shunting in carotid endarterectomy. The International Transcranial Doppler Collaborators. Stroke, 23, 1583–7.CrossRefGoogle ScholarPubMed
Hasegawa, Y., Yamaguchi, T., Tsuchiya, T., Minematsu, K. and Nishimura, T. (1992). Sequential change of hemodynamic reserve in patients with major cerebral artery occlusion or severe stenosis. Neuroradiology, 34, 15–21.CrossRefGoogle ScholarPubMed
Herkes, G. K., Morgan, M., Grinnell, V., et al. (1993). EEG monitoring during angiographic balloon test carotid occlusion: experience in sixteen cases. Clinical and Experimental Neurology, 30, 98–103.Google ScholarPubMed
Hetzel, A., Reutern, G., Wernz, M. G., Droste, D. W. and Schumacher, M. (2000). The carotid compression test for therapeutic occlusion of the internal carotid artery. Comparison of angiography with transcranial Doppler sonography. Cerebrovascular Disease, 10, 194–9.CrossRefGoogle ScholarPubMed
Hirano, T., Minematsu, K., Hasegawa, Y., et al. (1994). Acetazolamide reactivity on 123I-IMP single photon emission computed tomography in patients with major cerebral artery occlusive disease: correlation with positron emission tomography parameters. Journal of Cerebral Blood Flow and Metabolism, 14, 763–70.CrossRefGoogle ScholarPubMed
Imaizumi, M., Kitagawa, K., Hashikawa, K., et al. (2002). Detection of misery perfusion with split-dose 123I-iodoamphetamine single-photon emission computed tomography in patients with carotid occlusive diseases. Stroke, 33, 2217–23.CrossRefGoogle ScholarPubMed
Isaka, Y., Nagano, K., Narita, M., Ashida, K. and Imaizumi, M. (1997). High signal intensity on T2-weighted magnetic resonance imaging and cerebral hemodynamic reserve in carotid occlusive disease. Stroke, 28, 354–7.CrossRefGoogle ScholarPubMed
Kaminogo, M., Ochi, M., Onizuka, M., Takahata, H. and Shibata, S. (1999). An additional monitoring of regional cerebral oxygen saturation to HMPAO SPEComputerized tomography study during balloon test occlusion. Stroke, 30, 407–13.CrossRefGoogle ScholarPubMed
Karnik, R., Valentin, A., Ammerer, H. P., Donath, P. and Slany, J. (1992). Evaluation of vasomotor reactivity by transcranial Doppler and acetazolamide test before and after extracranial-intracranial bypass in patients with internal carotid artery occlusion. Stroke, 23, 812–17.CrossRefGoogle ScholarPubMed
Kavec, M., Usenius, J. P., Tuunanen, P. I., Rissanen, A. and Kauppinen, R. A. (2004). Assessment of cerebral hemodynamics and oxygen extraction using dynamic susceptibility contrast and spin echo blood oxygenation level-dependent magnetic resonance imaging: applications to carotid stenosis patients. Neuroimage, 22, 258–67.CrossRefGoogle ScholarPubMed
Kleinschmidt, A., Steinmetz, H., Sitzer, M., Merboldt, K. D. and Frahm, J. (1995). Magnetic resonance imaging of regional cerebral blood oxygenation changes under acetazolamide in carotid occlusive disease. Stroke, 26, 106–10.CrossRefGoogle ScholarPubMed
Kleiser, B. and Widder, B. (1992). Course of carotid artery occlusions with impaired cerebrovascular reactivity. Stroke, 23, 171–4.CrossRefGoogle ScholarPubMed
Klijn, C. J., Kappelle, L. J., Huffelen, A. C., et al. (2000). Recurrent ischemia in symptomatic carotid occlusion: prognostic value of hemodynamic factors. Neurology, 55, 1806–12.CrossRefGoogle ScholarPubMed
Kofke, W. A., Brauer, P., Policare, R., et al. (1995). Middle cerebral artery blood flow velocity and stable xenon-enhanced computed tomographic blood flow during balloon test occlusion of the internal carotid artery. Stroke, 26, 1603–6.CrossRefGoogle ScholarPubMed
Krapf, H., Widder, B. and Skalej, M. (1998). Small rosarylike infarctions in the centrum ovale suggest hemodynamic failure. AJNR. American Journal of Neuroradiology, 19, 1479–84.Google ScholarPubMed
Kuroda, K., Shiga, T., Houkin, K., et al. (2006 in press). Cerebral oxygen metabolism and neuronal integrity in patients with impaired vasoreactivity due to occlusive carotid artery disease. Stroke.CrossRefGoogle ScholarPubMed
Kuroda, S., Houkin, K., Kamiyama, H., et al. (2001). Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it?Stroke, 32, 2110–16.CrossRefGoogle ScholarPubMed
Larson, J. J., Tew, J. M. Jr., Tomsick, T. A. and Loveren, H. R. (1995). Treatment of aneurysms of the internal carotid artery by intravascular balloon occlusion: long-term follow-up of 58 patients. Neurosurgery, 36, 26–30; discussion 30.Google ScholarPubMed
Linskey, M. E., Jungreis, C. A., Yonas, H., et al. (1994). Stroke risk after abrupt internal carotid artery sacrifice: accuracy of preoperative assessment with balloon test occlusion and stable xenon-enhanced Computerized tomography. AJNR. American Journal of Neuroradiology, 15, 829–43.Google Scholar
Lucas, C., Moulin, T., Deplanque, D., Tatu, L. and Chavot, D. (1998). Stroke patterns of internal carotid artery dissection in 40 patients. Stroke, 29, 2646–8.CrossRefGoogle ScholarPubMed
Lythgoe, D., Simmons, A., Pereira, A., et al. (2001). Magnetic resonance markers of ischaemia: their correlation with vasodilatory reserve in patients with carotid artery stenosis and occlusion. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 58–62.CrossRefGoogle ScholarPubMed
Markus, H. and Cullinane, M. (2001). Severely impaired cerebrovascular reactivity predicts stroke and Transient ischemic attack risk in patients with carotid artery stenosis and occlusion. Brain, 124, 457–67.CrossRefGoogle ScholarPubMed
Marshall, R. S., Lazar, R. M., Young, W. L., et al. (2002). Clinical utility of quantitative cerebral blood flow measurements during internal carotid artery test occlusions. Neurosurgery, 50, 996–1004; discussion 1004–5.Google ScholarPubMed
Matas, R. (1911). Testing the efficiency of the collateral circulation as preliminary to the occlusion of the internal carotid artery: experience in 500 cases. Annals of Surgery, 53, 1–43.CrossRefGoogle Scholar
Matsuda, H., Higashi, S., Kinuya, K., et al. (1991). SPEComputerized tomography evaluation of brain perfusion reserve by the acetazolamide test using Tc-99m HMPAO. Clinical Nuclear Medicine, 16, 572–9.CrossRefGoogle ScholarPubMed
McCulloch, T. J., Thompson, C. L. and Dunne, V. (2003). Cerebral hemodynamics immediately following carotid occlusion. Journal of Neurosurgical Anesthesiology, 15, 126–30.CrossRefGoogle ScholarPubMed
Messick, J. M. Jr., Casement, B., Sharbrough, F. W., et al. (1987). Correlation of regional cerebral blood flow (rCBF) with EEG changes during isoflurane anesthesia for carotid endarterectomy: critical rCBF. Anesthesiology, 66, 344–9.CrossRefGoogle ScholarPubMed
Messick, J. M. Jr., Sharbrough, F. and Sundt, T. Jr. (1984). Selective shunting on the basis of EEG and regional CBF monitoring during carotid endarterectomy. International Anesthesiology Clinics, 22, 137–45.CrossRefGoogle ScholarPubMed
Milhaud, D., Freitas, G. R., Melle, G. and Bogousslavsky, J. (2002). Occlusion due to carotid artery dissection: a more severe disease than previously suggested. Archives of Neurology, 59, 557–61.CrossRefGoogle ScholarPubMed
Monsein, L. H., Jeffery, P. J., Heerden, B. B., et al. (1991). Assessing adequacy of collateral circulation during balloon test occlusion of the internal carotid artery with 99mTc-HMPAO SPEComputerized tomography. AJNR. American Journal of Neuroradiology, 12, 1045–51.Google Scholar
Morioka, T., Matsushima, T., Fujii, K., et al. (1989). Balloon test occlusion of the internal carotid artery with monitoring of compressed spectral arrays (CSAs) of electroencephalogram. Acta Neurochirurgica (Wien), 101, 29–34.CrossRefGoogle ScholarPubMed
Morishima, H., Kurata, A., Miyasaka, Y., Fujii, K. and Kan, S. (1998). Efficacy of the stump pressure ratio as a guide to the safety of permanent occlusion of the internal carotid artery. Neurological Research, 20, 732–6.CrossRefGoogle ScholarPubMed
Muraishi, K., Kameyama, M., Sato, K., et al. (1993). Cerebral circulatory and metabolic changes following EC/IC bypass surgery in cerebral occlusive diseases. Neurological Research, 15, 97–103.CrossRefGoogle ScholarPubMed
Murata, Y., Katayama, Y., Sakatani, K., Fukaya, C. and Kano, T. (2003). Evaluation of extracranial-intracranial arterial bypass function by using near-infrared spectroscopy. Journal of Neurosurgery, 99, 304–10.CrossRefGoogle ScholarPubMed
Nasel, C., Azizi, A., Wilfort, A., Mallek, R. and Schindler, E. (2001). Measurement of time-to-peak parameter by use of a new standardization method in patients with stenotic or occlusive disease of the carotid artery. AJNR. American Journal of Neuroradiology, 22, 1056–61.Google ScholarPubMed
Nathan, M. A., Bushnell, D. L., Kahn, D., Simonson, T. M. and Kirchner, , , P. T. (1994). Crossed cerebellar diaschisis associated with balloon test occlusion of the carotid artery. Nuclear Medicine Communications, 15, 448–54.CrossRefGoogle ScholarPubMed
Neff, K. W., Horn, P., Dinter, D., et al. (2004). Extracranial-intracranial arterial bypass surgery improves total brain blood supply in selected symptomatic patients with unilateral internal carotid artery occlusion and insufficient collateralization. Neuroradiology, 46, 730–7.CrossRefGoogle ScholarPubMed
Nemoto, E. M., Yonas, H., Kuwabara, H., et al. (2004). Identification of hemodynamic compromise by cerebrovascular reserve and oxygen extraction fraction in occlusive vascular disease. Journal of Cerebral Blood Flow and Metabolism, 24, 1081–9.CrossRefGoogle ScholarPubMed
Ogasawara, K., Ogawa, A. and Yoshimoto, T. (2002). Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke, 33, 1857–62.CrossRefGoogle ScholarPubMed
Okudaira, Y., Arai, H. and Sato, K. (1996). Cerebral blood flow alteration by acetazolamide during carotid balloon occlusion: parameters reflecting cerebral perfusion pressure in the acetazolamide test. Stroke, 27, 617–21.CrossRefGoogle ScholarPubMed
Origitano, T. C., Al-Mefty, O., Leonetti, J. P., Demonte, F. and Reichman, O. H. (1994). Vascular considerations and complications in cranial base surgery. Neurosurgery, 35, 351–62; discussion 362–3.CrossRefGoogle ScholarPubMed
Pascazio, L., Regina, G., Perilli, F., et al. (1999). Investigation on cerebral hemodynamics in patients with carotid disease receiving carotid endarterectomy. Clinical Hemorheology Microcirculation, 21, 395–403.Google ScholarPubMed
Peterman, S. B., Taylor, A. Jr. and Hoffman, J. C. Jr. (1991). Improved detection of cerebral hypoperfusion with internal carotid balloon test occlusion and 99mTc-HMPAO cerebral perfusion SPEComputerized tomography imaging. AJNR. American Journal of Neuroradiology, 12, 1035–41.Google Scholar
Powers, W. J., Derdeyn, C. P., Fritsch, S. M., et al. (2000). Benign prognosis of never-symptomatic carotid occlusion. Neurology, 54, 878–82.CrossRefGoogle ScholarPubMed
Powers, W. J., Press, G. A., Grubb, R. L. Jr., Gado, M. and Raichle, M. E. (1987). The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Annals of International Medicine, 106, 27–34.CrossRefGoogle ScholarPubMed
Powers, W. J., Tempel, L. W. and Grubb, R. L. Jr. (1989). Influence of cerebral hemodynamics on stroke risk: one-year follow-up of 30 medically treated patients. Annals of Neurology, 25, 325–30.CrossRefGoogle ScholarPubMed
Reilly, P. L. (1995). Tests of tolerance to carotid artery occlusion. In Quantitative Cerebral Blood Flow Measurements Using Stable Xenon/Computerized tomography: Clinical Applications, ed. Tomonaga, M., Tanaka, A. and Yonas, H.. Armonk, NY: Futura publishing company, Inc.
Rutgers, D. R., Osch, M. J., Kappelle, L. J., Mali, W. P. and Grond, J. (2003). Cerebral hemodynamics and metabolism in patients with symptomatic occlusion of the internal carotid artery. Stroke, 34, 648–52.CrossRefGoogle ScholarPubMed
Sakaguchi, M., Kitagawa, K., Oku, N., et al. (2005). Critical analysis of hemodynamic insufficiency by head-up tilt in patients with carotid occlusive disease. Circulation Journal, 69, 971–5.CrossRefGoogle ScholarPubMed
Sasoh, M., Ogasawara, K., Kuroda, K., et al. (2003). Effects of EC-IC bypass surgery on cognitive impairment in patients with hemodynamic cerebral ischemia. Surgical Neurology, 59, 455–60; discussion 460–3.CrossRefGoogle ScholarPubMed
Schievink, W. I. (2001). Spontaneous dissection of the carotid and vertebral arteries. New England Journal of Medicine, 344, 898–906.CrossRefGoogle ScholarPubMed
Standard, S. C., Ahuja, A., Guterman, L. R., et al. (1995). Balloon test occlusion of the internal carotid artery with hypotensive challenge. AJNR. American Journal of Neuroradiology, 16, 1453–8.Google ScholarPubMed
Steed, D. L., Webster, M. W., Devries, E. J., et al. (1990). Clinical observations on the effect of carotid artery occlusion on cerebral blood flow mapped by xenon computed tomography and its correlation with carotid artery back pressure. Journal of Vascular Surgery, 11, 38–43; discussion 43–4.CrossRefGoogle ScholarPubMed
Steinke, W., Schwartz, A. and Hennerici, M. (1996). Topography of cerebral infarction associated with carotid artery dissection. Journal of Neurology, 243, 323–8.CrossRefGoogle ScholarPubMed
Sundt, T. M. Jr., Sharbrough, F. W., Anderson, R. E. and Michenfelder, J. D. (1974). Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. Journal of Neurosurgery, 41, 310–20.CrossRefGoogle ScholarPubMed
Sundt, T. M. Jr., Sharbrough, F. W., Piepgras, D. G., et al. (1981). Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia. Mayo Clinic Proceedings, 56, 533–43.Google ScholarPubMed
Takeda, N., Fujita, K., Katayama, S. and Tamaki, N. (2000). Cerebral oximetry for the detection of cerebral ischemia during temporary carotid artery occlusion. Neurologia Medico-Chirurgica (Tokyo), 40, 557–62; discussion 562–3.CrossRefGoogle ScholarPubMed
Tan, T. Y., Schminke, U., Lien, L. M., Eicke, B. M. and Tegeler, C. H. (2002). Extracranial internal carotid artery occlusion: the role of common carotid artery volume flow. Journal of Neuroimaging, 12, 144–7.CrossRefGoogle ScholarPubMed
The EC/IC Bypass Study Group (1985). Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. New England Journal of Medicine, 313, 1191–200.CrossRef
Tsuchida, C., Kimura, H., Sadato, N., et al. (2000). Evaluation of brain metabolism in steno-occlusive carotid artery disease by proton Magnetic resonance spectroscopy: a correlative study with oxygen metabolism by PET. Journal of Nuclear Medicine, 41, 1357–62.Google ScholarPubMed
Ueno, M., Nishizawa, S., Toyoda, H., et al. (2001). Assessment of cerebral hemodynamics before and after revascularization in patients with occlusive cerebrovascular disease by means of quantitative IMP-SPEComputerized tomography with double-injection protocol. Annals of Nuclear Medicine, 15, 209–15.CrossRefGoogle ScholarPubMed
Rooij, W. J., Sluzewski, M., Metz, N. H., et al. (2000). Carotid balloon occlusion for large and giant aneurysms: evaluation of a new test occlusion protocol. Neurosurgery, 47, 116–21; discussion 122.Google ScholarPubMed
Vazquez Anon, V., Aymard, A., Gobin, Y. P., et al. (1992). Balloon occlusion of the internal carotid artery in 40 cases of giant intracavernous aneurysm: technical aspects, cerebral monitoring, and results. Neuroradiology, 34, 245–51.CrossRefGoogle ScholarPubMed
Vernieri, F., Pasqualetti, P., Matteis, M., et al. (2001). Effect of collateral blood flow and cerebral vasomotor reactivity on the outcome of carotid artery occlusion. Stroke, 32, 1552–8.CrossRefGoogle ScholarPubMed
Webster, M. W., Makaroun, M. S., Steed, D. L., et al. (1995). Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. Journal of Vascular Surgery, 21, 338–44; discussion 344–5.CrossRefGoogle ScholarPubMed
Weiller, C., Mullges, W., Ringelstein, E. B., Buell, U. and Reiche, W. (1991). Patterns of brain infarctions in internal carotid artery dissections. Neurosurgical Reviews, 14, 111–13.CrossRefGoogle ScholarPubMed
Widder, B., Kleiser, B. and Krapf, H. (1994). Course of cerebrovascular reactivity in patients with carotid artery occlusions. Stroke, 25, 1963–7.CrossRefGoogle ScholarPubMed
Wintermark, M., Sesay, M., Barbier, E., et al. (2005). Comparative overview of brain perfusion imaging techniques. Stroke, 36, e83–99.CrossRefGoogle ScholarPubMed
Witt, J. P., Yonas, H. and Jungreis, C. (1994). Cerebral blood flow response pattern during balloon test occlusion of the internal carotid artery. AJNR. American Journal of Neuroradiology, 15, 847–56.Google ScholarPubMed
Yamamoto, Y., Nishiyama, Y., Toyama, Y., et al. (2002). Preliminary results of Tc-99m ECD SPEComputerized tomography to evaluate cerebral collateral circulation during balloon test occlusion. Clinical Nuclear Medicine, 27, 633–7.CrossRefGoogle ScholarPubMed
Yamashita, T., Nakano, S., Ishihara, H., et al. (1996). Surgical modulation of the natural course of collateral circulation in chronic ischemic patients. Acta Neurologica Scandinavica Supplementum, 166, 74–8.CrossRefGoogle ScholarPubMed
Yamauchi, H., Fukuyama, H., Nagahama, Y., et al. (1996). Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. Journal of Neurology, Neurosurgery, and Psychiatry, 61, 18–25.CrossRefGoogle ScholarPubMed
Yamauchi, H., Fukuyama, H., Nagahama, Y., et al. (1999). Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. Journal of Nuclear Medicine, 40, 1992–8.Google ScholarPubMed
Yamauchi, H., Okazawa, H., Kishibe, Y., et al. (2004). Oxygen extraction fraction and acetazolamide reactivity in symptomatic carotid artery disease. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 33–7.Google ScholarPubMed
Yokota, C., Hasegawa, Y., Minematsu, K. and Yamaguchi, T. (1998). Effect of acetazolamide reactivity on corrected long-term outcome in patients with major cerebral artery occlusive diseases. Stroke, 29, 640–4.CrossRefGoogle ScholarPubMed
Yonas, H., Darby, J. M., Marks, E. C., Durham, S. R. and Maxwell, C. (1991). CBF measured by Xe-Computerized tomography: approach to analysis and normal values. Journal of Cerebral Blood Flow and Metabolism, 11, 716–25.CrossRefGoogle Scholar
Yonas, H., Kromer, H. and Jungreis, C. (1997). Compromised vascular reserves does predict subgroups with carotid occlusion and an increased stroke risk. Journal of Stroke and Cerebrovascular Disease, 6, 458.CrossRefGoogle Scholar
Yonas, H., Pindzola, R. R., Meltzer, C. C. and Sasser, H. (1998). Qualitative versus quantitative assessment of cerebrovascular reserves. Neurosurgery, 42, 1005–10; discussion 1011–12.CrossRefGoogle ScholarPubMed
Yonas, H., Smith, H. A., Durham, S. R., Pentheny, S. L. and Johnson, D. W. (1993). Increased stroke risk predicted by compromised cerebral blood flow reactivity. Journal of Neurosurgery, 79, 483–9.CrossRefGoogle ScholarPubMed
2
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×