Skip to main content Accessibility help
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-12T19:59:19.093Z Has data issue: false hasContentIssue false

Part II - Pharmacology and Psychopathology

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
University of New Mexico
Oshin Vartanian
University of Toronto
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Noradrenergic modulation of cognitive flexibility during stress. Journal of Cognitive Neuroscience, 19, 468478.CrossRefGoogle ScholarPubMed
Angwin, A. J., Chenery, H. J., Copland, D. A., Arnott, W. L., Murdoch, B. E., & Silburn, P. A. (2004). Dopamine and semantic activation: An investigation of masked direct and indirect priming. Journal of the International Neuropsychological Society, 10, 1525.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T. (2007). Catecholamine and second messenger influences on prefrontal cortical networks of ‘representational knowledge’: A rational bridge between genetics and the symptoms of mental illness. Cerebral Cortex, 17, i6i15.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T. (2009). Ameliorating prefrontal cortical dysfunction in mental illness: Inhibition of phosphotidyl inositol–protein kinase C signaling. Psychopharmacology, 202, 445455.CrossRefGoogle ScholarPubMed
Arnsten, A. F., & Goldman-Rakic, P. S. (1984). Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Research, 306, 918.CrossRefGoogle Scholar
Arnsten, A. F., & Goldman-Rakic, P. S. (1985). Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged non-human primates. Science, 230, 12731276.CrossRefGoogle Scholar
Arnsten, A. F. T., Cai, J. X., & Goldman-Rakic, P. S. (1988). The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: Evidence for alpha-2 receptor subtypes. Journal of Neuroscience, 8, 42874298.CrossRefGoogle ScholarPubMed
Arnsten, A. F., Cai, J. X., Murphy, B. L., & Goldman-Rakic, P. S. (1994). Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berlin), 116, 143151.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T., & Leslie, F. M. (1991). Behavioral and receptor binding analysis of the alpha-2 adrenergic agonist, 5-bromo-6 [2-imidazoline-2-yl amino] quinoxaline (UK-14304): Evidence for cognitive enhancement at an alpha-2-adrenoreceptor subtype. Neuropharmacology, 30, 12791289.CrossRefGoogle Scholar
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus–norpeinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403450.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46, 13091320.CrossRefGoogle ScholarPubMed
Barnes, C. A., & Pompeiano, M. (1991). Neurobiology of the locus coeruleus. Progress in Brain Research, 88, 307321.Google Scholar
Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. Journal of Neuroscience, 24, 92289231.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Carpenter, A. L., Miller, R. F., Cios, J. S., & Hillier, A. (2008). Effect of propranolol on verbal problem solving in autism spectrum disorder. Neurocase, 14, 378383.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Hughes, J. H., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem solving. NeuroReport, 10, 27632767.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Narayanan, A., Hillier, A., & Hughes, J. D. (2007a). Network model of decreased context utilization in autism spectrum disorder. Journal of Autism and Developmental Disorders, 37, 10401048.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Ratcliffe, N. R., Rhodes, C. H., & Reeves, A. G. (1997). Pure alexia: Clinical–pathologic evidence for a lateralized visual language association cortex. Clinical Neuropathology, 16, 328–31.Google ScholarPubMed
Beversdorf, D. Q., Saklayen, S., Higgins, K. F., Bodner, K. E., Kanne, S. M., & Christ, S. E. (2011). Effect of propranolol on word fluency in autism. Cognitive and Behavioral Neurology, 24, 1117.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Sharma, U. K., Phillips, N. N., Notestine, M. A., Slivka, A. P., Friedman, N. M., … Hillier, A. (2007b). Effect of propranolol on naming in chronic Broca’s aphasia with anomia. Neurocase, 13, 256259.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., White, D. M., Cheever, D. C., Hughes, J. D., & Bornstein, R. A. (2002). Central beta-adrenergic blockers modulation of cognitive flexibility. NeuroReport, 13, 25052507.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35, 634639.CrossRefGoogle ScholarPubMed
Brennan, A. R., & Arnsten, A. F. T. (2008). Neuronal mechanisms underlying attention deficit hyperactivity disorder: The influence of arousal on prefrontal cortical function. Annals of the New York Academy of Science, 1129, 236245.CrossRefGoogle ScholarPubMed
Cahill, L., Prins, B., Weber, M., & McGaugh, J. L. (1994). β-Adrenergic activation and memory for emotional events. Nature, 371, 702704.CrossRefGoogle ScholarPubMed
Cai, D. J., Mednick, S. A., Harrison, E. M., Kanady, J. C., & Mednick, S. C. (2009). REM, not incubation, improves creativity by priming associative networks. Proceedings of the National Academy of Sciences of the USA, 106, 1013010134.CrossRefGoogle Scholar
Campbell, H. L., Tivarus, M. E., Hillier, A., & Beversdorf, D. Q. (2008). Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacology, Biochemistry, and Behavior, 88, 222229.CrossRefGoogle ScholarPubMed
Chamberlain, S. R., Müller, U., Blackwell, , Clark, A. D., Robbins, L., , T. W., & Sahakian, B. (2006). Neurochemical modulation of response inhibition and probabilistic learning in humans. Science, 311, 861863.CrossRefGoogle ScholarPubMed
Chamberlain, S. R., Müller, U., Blackwell, , Robbins, A. D., , T. W., & Sahakian, B. (2006). Noradrenergic modulation of working memory and emotional memory in humans. Psychopharmacology, 188, 397407.CrossRefGoogle ScholarPubMed
Chatterjee, A., Hamilton, R. H., & Amorapanth, P. X. (2006). Art produced by a patient with Parkinson’s disease. Behavioral Neurology, 17, 105108.CrossRefGoogle ScholarPubMed
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociated divergent and convergent thinking. Cognition, 115, 458465.CrossRefGoogle Scholar
Choi, Y., Novak, J., Hillier, A., Votolato, N. A., & Beversdorf, D. Q. (2006). The effect of α-2 adrenergic agonists on memory and cognitive flexibility Cognitive and Behavioral Neurology, 19, 204207.CrossRefGoogle ScholarPubMed
Cios, J. S., Miller, R. F., Hillier, A., Tivarus, M. E., & Beversdorf, D. Q. (2009). Lack of noradrenergic modulation of indirect semantic priming. Behavioral Neurology, 21, 137143.CrossRefGoogle ScholarPubMed
Clarke, H. F., Walker, S. C., Crofts, H. S., Dalley, J. W., Robbins, T. W., & Roberts, A. C. (2005). Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. Journal of Neuroscience, 25, 532538.CrossRefGoogle Scholar
Cohen, J. D., Braver, T. S., & Brown, J. W. (2002). Computational perspectives in dopamine function in prefrontal cortex. Current Opinion in Neurobiology, 12, 223229.CrossRefGoogle ScholarPubMed
Colombo, B., Bartesaghi, N., Simonelli, L., & Antonietti, A. (2015). The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 9, 403. doi:10.3389/fnhum.2015.00403.CrossRefGoogle Scholar
Cools, R. (2006). Dopaminergic modulation of cognitive function – Implications for l-DOPA treatment in Parkinson’s disease. Neuroscience and Biobehavioral Reviews, 30, 123.CrossRefGoogle ScholarPubMed
Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W., & D’Esposito, M. (2008a). Working memory capacity predicts dopamine synthesis capacity in the human striatum. Journal of Neuroscience, 28, 12081212.CrossRefGoogle ScholarPubMed
Cools, R., & Robbins, T. W. (2004). Chemistry of the adaptive mind. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical, and Engineering Sciences, 362, 28712888.CrossRefGoogle ScholarPubMed
Cools, R., Robinson, O. J., & Sahakian, B. (2008b). Acute tryptophan depletion in healthy volunteers enhances punishment prediction but does not affect reward prediction. Neuropsychopharmacology, 33, 22912299.CrossRefGoogle Scholar
Copland, D. A., McMahon, K. L., Silburn, P. A., & de Zubicaray, G. I. (2009). Dopaminergic neruomodulation of semantic priming: A 4T fMRI study with levodopa. Cerebral Cortex, 19, 26512658.CrossRefGoogle ScholarPubMed
Coull, J. T., Frith, C. D., Dolan, R. J., Frackowiak, R. S. J., & Grasby, P. M. (1997). The neural correlates of the noradrenergic modulation of human attention, arousal and learning. European Journal of Neuroscience, 9, 589598.CrossRefGoogle ScholarPubMed
Coull, J. T., Jones, M. E. P., Egan, T. D., Frith, C. D., & Maze, M. (2004). Attentional effects of noradrenaline vary with arousal level: Selective activation of thalamic pulvinar in humans. NeuroImage, 22, 315322.CrossRefGoogle ScholarPubMed
Coull, J. T., Middleton, H. C., Robbins, T. W., & Sahakian, B. J. (1995). Contrasting effects of clonidine and diazepam on tests of working memory and planning. Psychopharmacology, 120, 311321.CrossRefGoogle ScholarPubMed
Curran, L. K., Newschaffer, C. J., Lee, L., Crawford, S. O., Johnston, M. V., & Zimmerman, A. W. (2007). Behaviors associated with fever in children with autism spectrum disorders. Pediatrics, 120, e1386e1392.CrossRefGoogle ScholarPubMed
De Manzano, Ö., Cervenka, S., Karabanov, A., Farde, L., & Ullén, F. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS ONE, 5(5), e10670. doi:10.1371/journal.pone.0010670.CrossRefGoogle ScholarPubMed
De Quervain, D. J. F., Roozendaal, B., Nitsch, R. M., McGaugh, J. L., & Hock, C. (2000). Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nature Neuroscience, 3, 313314.CrossRefGoogle ScholarPubMed
Ding, X., Tang, Y. Y., Tang, R., & Posner, M. I. (2014). Improving creativity performance by short-term meditation. Behavioral Brain Functions, 10, 9. doi: 10.1186/1744-9081-10-9.CrossRefGoogle ScholarPubMed
Dodd, M. L., Klos, K. J., Bower, J. H., Geda, Y. E., Josephs, K. A., & Ahlskog, J. E. (2005). Pathological gambling caused by drugs used to treat Parkinson disease. Archives of Neurology, 62, 13771381.CrossRefGoogle ScholarPubMed
Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia, 33, 261268.CrossRefGoogle ScholarPubMed
Ehlers, A., Hackmann, A., & Michael, T. (2004). Intrusive re-experiencing in post-traumatic stress disorder: Phenomenology, theory, and therapy. Memory, 12, 403415.CrossRefGoogle ScholarPubMed
Ehlers, A., Hackmann, A., Steil, R., Clohessy, S., Wenninger, K., & Winter, H. (2002). The nature of intrusive memories after trauma: The warning signal hypothesis. Behavioral Research and Therapy, 40, 9951002.CrossRefGoogle ScholarPubMed
Eslinger, P. J., & Grattan, L. M. (1993). Frontal lobe and frontal–striatal substrates for different forms of human cognitive flexibility. Neuropsychologia, 31, 1728.CrossRefGoogle ScholarPubMed
Faigel, H. C. (1991). The effect of beta blockade on stress-induced cognitive dysfunction in adolescents. Clinical Pediatrics, 30, 441445.CrossRefGoogle ScholarPubMed
Farah, M. J., Haimm, C., Sankoorikal, G., Smith, M. E., & Chatterjee, A. (2009). When we enhance cognition with Adderall, do we sacrifice creativity? A preliminary study. Psychopharmacology, 202, 541547.CrossRefGoogle ScholarPubMed
Faust-Socher, A., Kennet, Y. N., Cohen, O. S., Hassin-Baer, S., & Inzelberg, R. (2014). Enhanced creative thinking under dopaminergic therapy in Parkinson disease. Annals of Neurology, 75, 935942.CrossRefGoogle ScholarPubMed
Floresco, S. B., Ghods-Sharifi, S., Vexelman, C., & Magyar, O. (2006). Dissociable roles for the nucleus accumbens core and shell in regulating set shifting. Journal of Neuroscience, 26, 24492457.CrossRefGoogle ScholarPubMed
Floresco, S. B., Magyar, O., Ghods-Sharifi, S., Vexelman, C., & Tse, M. T. L. (2005). Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology, 31, 297309.CrossRefGoogle Scholar
Foster, D. J., Good, D. C., Fowlkes, A., & Sawaki, L. (2006). Atomoxetine enhances a short-term model of plasticity in humans. Archives of Physical Medicine and Rehabilitation, 87, 216221.CrossRefGoogle ScholarPubMed
Franowicz, J. S., & Arnsten, A. F. T. (1999). Treatment with the noradrenergic alpha-2 agonist clonidine, but not diazepam, improves spatial working memory in normal rhesus monkeys. Neuropsychopharmacology, 21, 611621.CrossRefGoogle ScholarPubMed
Gallagher, D. A., O’Sullivan, S. S., Evans, A. H., Lees, A. L., & Schrag, A. (2007). Pathological gambling in Parkinson’s disease: Risk factors and differences from dopaminergic dysregulation. An analysis of published case series. Movement Disorders, 22, 17571763.CrossRefGoogle ScholarPubMed
Ghacibeh, G. A., Shenker, J. I., Shenal, B., Uthman, B. M., & Heilman, K. M. (2006). Effect of vagus nerve stimulation on creativity and cognitive flexibility. Epilepsy and Behavior, 8, 720725.CrossRefGoogle ScholarPubMed
Gibbs, S. E., & D’Esposito, M. (2005). Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cognitive and Affective Behavioral Neuroscience, 5, 212221.CrossRefGoogle ScholarPubMed
Gill, T. M., Sarter, M., & Givens, B. (2000). Sustained visual attention performance-associated prefrontal neuronal activity evidence for cholinergic modulation. Journal of Neuroscience, 20, 47454757.CrossRefGoogle ScholarPubMed
Green, A. E., Spiegel, K. A., Giangrande, E. J., Weinberger, A. B., Gallagher, N. M., & Turkeltaub, P. E. (2017). Thinking cap plus thinking zaps: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity and verbal expression. Cerebral Cortex, 27, 26282639.Google Scholar
Groman, S. M., Hames, A. S., Seu, E., Tran, S., Clark, T. A., Harpster, S. N., … Jentsch, J. D. (2014). In the blink of an eye: Relating positive-feedback sensitivity to striatal dopamine D2-line receptors through blink rate. Journal of Neuroscience, 34, 1444314454.CrossRefGoogle Scholar
Hall, H., Sedvall, G., Magnusson, O., Kopp, J., Halldin, C., & Farde, L. (1994). Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology, 11, 245256.CrossRefGoogle ScholarPubMed
Hasselmo, M. E., & Bower, J. M. (1992). Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. Trends in Neuroscience, 67, 12221229.Google Scholar
Hasselmo, M. E., Linster, C., Patil, M., Ma, D., & Cecik, M. (1997). Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. Journal of Neurophysiology, 77, 33263339.CrossRefGoogle ScholarPubMed
Hasselmo, M. E., & Wyble, B. P. (1997). Simulation of the effects of scopolamine on free recall and recognition in a network model of the hippocampus. Behavoural Brain Research, 89, 134.CrossRefGoogle Scholar
Heaton, R. K. (1981). Wisconsin Card Sort Test Manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Hecht, P. M., Will, M. J., Schachtman, T. R., Welby, L. M., & Beversdorf, D. Q. (2014). Beta-adrenergic antagonist effects on a novel cognitive flexibility task in rodents. Behavioral Brain Research, 260, 148154.CrossRefGoogle ScholarPubMed
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. Q. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9, 369379.CrossRefGoogle ScholarPubMed
Heimer, L. (1995). The human brain and spinal cord (2nd ed.). New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Het, S., Ramlow, G., & Wolf, O. T. (2005). A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology, 30, 771784.CrossRefGoogle ScholarPubMed
Jäkälä, P., Riekkinen, , Sirvi, M., Koivisto, J., Kejonen, E., Vanhanen, K., , M., & Riekkinen, P. Jr. (1999). Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology, 20, 460470.CrossRefGoogle ScholarPubMed
Jiang, W., Shang, S., & Su, Y. (2015). Genetic influences on insight problem solving: The role of catechol-O-methyltransferase (COMT) gene polymorphisms. Frontiers in Psychology, 6, 1569. doi:10.3389/fpsyg.2015.01569.CrossRefGoogle ScholarPubMed
Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17, 951961.CrossRefGoogle ScholarPubMed
Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 18111821.CrossRefGoogle ScholarPubMed
Karnath, H. O., & Wallesch, C. W. (1992). Inflexibility of mental planning: A characteristic disorder with prefrontal lobe lesions. Neuropsychologia, 30, 10111016.CrossRefGoogle ScholarPubMed
Kelley, B. J., Yeager, K. R., Pepper, T. H., & Beversdorf, D. Q. (2005). Cognitive impairment in acute cocaine withdrawal. Cognitive and Behavioral Neurology, 18, 108112.CrossRefGoogle ScholarPubMed
Kelley, B. J., Yeager, K. R., Pepper, T. H., Bornstein, R. A., & Beversdorf, D. Q. (2007). The effect of propranolol on cognitive flexibility and memory in acute cocaine withdrawal. Neurocase, 13, 320327.CrossRefGoogle ScholarPubMed
Kim, N., Goel, P. K., Tivarus, M., Hillier, A., & Beversdorf, D. Q. (2010). Independent component analysis of the effect of l-dopa on fMRI of language processing. PLoS -ONE, 5(8), e11933. doi:10.1371/journal.pone.0011933.CrossRefGoogle ScholarPubMed
Kimberg, D. Y., D’Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport, 8, 35813585.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The ‘Trier Social Stress Test’ – A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681.CrossRefGoogle Scholar
Kischka, U., Kammer, T. H., Maier, S., Weisbord, M., Thimm, M., & Spitzer, M. (1996). Dopaminergic modulation of semantic network activation. Neuropsychologia, 34, 11071113.CrossRefGoogle ScholarPubMed
Krantz, G. S., Kasper, S., & Lanzenberger, R. (2010). Reward and the serotonergic system. Neuroscience, 166, 10231035.CrossRefGoogle Scholar
Kroes, M. C., Tona, K. D., den Uden, H. E., Vogel, S., van Wingen, G. A., & Fernández, G. (2015). How administration of the beta-blocker propranolol before extinction can prevent the return of fear. Neuropsychopharmacology, October 14, 2015 doi:10.1038/npp.2015.315. [Epub ahead of print].Google ScholarPubMed
Kulisevsky, J., Pagonabarraga, J., & Martinez-Corral, M. (2009). Changes in artistic style and behaviour in Parkinson’s disease: Dopamine and creativity. Journal of Neurology, 256, 816819.CrossRefGoogle ScholarPubMed
Kvetnansky, R., Pacak, K., Sabban, E. L., Kopin, I. J., & Goldstein, D. S. (1998). Stressor specificity of peripheral catecholaminergic activation. Advances in Pharmacology, 42, 556560.CrossRefGoogle ScholarPubMed
Lader, M. (1988). Beta-adrenergic antagonists in neuropsychiatry: An update. Journal of Clinical Psychiatry, 49, 213223.Google ScholarPubMed
Lapiz, M. D. S., & Morilak, D. A. (2006). Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience, 137, 10391049.CrossRefGoogle ScholarPubMed
Laverdue, B., & Boulenger, J. P. (1991). Medications beta-bloquantes et anxiete. Un interet therapeutique certain. [Beta-blocking drugs and anxiety. A proven therapeutic value.] L’Encephale, 17, 481492.Google Scholar
Li, B. M., Mao, Z. M., Wang, M., & Mei, Z. T. (1999). Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacology, 21, 601610.CrossRefGoogle ScholarPubMed
Li, B.-M., & Mei, Z.-T. (1994). Delayed response deficit induced by local injection of the alpha-2 adrenergic antagonist yohimbine into the dosolateral prefrontal cortex in young adult monkeys. Behavioral and Neural Biology, 62, 134139.CrossRefGoogle Scholar
Lidow, M., Goldman-Rakic, P., Gallager, D., & Rakic, P. (1991). Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using (H3) raclopide, (H3) spiperone and (H3) SCH23390. Neuroscience, 40, 657671.CrossRefGoogle Scholar
Lipnicki, D. M., & Byrne, D. G. (2005). Thinking on your back: Solving anagrams faster when supine than when standing. Cognitive Brain Research, 24, 719722.CrossRefGoogle ScholarPubMed
Malyszko, J., Urano, T., Takada, Y., & Takada, A. (1994). Time-dependent changes in platelet aggregation, fibrinolytic activity, and peripheral serotonergic measures in rats subjected to water immersion restraint stress. Homeostasis, 24, 236242.Google ScholarPubMed
Martchek, M., Thevarkunnel, S., Bauman, M., Blatt, G., & Kemper, T. (2006). Lack of evidence of neuropathology in the locus coeruleus in autism. Acta Neuropathologica, 111, 497499.CrossRefGoogle ScholarPubMed
Martindale, C., & Greenough, J. (1973). The differential effect of increased arousal on creative and intellectual performance. Journal of Genetic Psychology, 123, 329335.CrossRefGoogle ScholarPubMed
Mehler, M. F., & Purpura, D. P. (2009). Autism, fever, epigenetics and the locus coeruleus. Brain Research Reviews, 59, 388392.CrossRefGoogle ScholarPubMed
Mehta, M. A., Manes, F. F., Magnolfi, G., Sahakian, B. J., & Robbins, T. W. (2004). Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D2 receptor antagonist sulpiride in human volunteers. Psychopharmacolgy, 176, 331342.CrossRefGoogle ScholarPubMed
Milano, N., Goldman, A., Woods, A., Williamson, J., Acosta, L., Lamb, D., … Heilman, K. (2016). The influence of right and left frontotemporal stimulation on visuospatial creativity. Neurology, 78(Meeting Abstracts), P4.051.CrossRefGoogle Scholar
Minderaa, R. B., Anderson, G. M., Volkmar, F. R., Akkerhuis, G. W., & Cohen, D. J. (1994). Noradrenergic and adrenergic functioning in autism. Biological Psychiatry, 36, 237241.CrossRefGoogle ScholarPubMed
Nakamura, K., Matsumoto, M., & Hikosaka, O. (2008). Reward-dependent modulation of neural activity in the primate dorsal raphe nucleus. Journal of Neuroscience, 28, 53315343.CrossRefGoogle ScholarPubMed
Narayanan, A., White, C. A., Saklayen, S., Scaduto, M. J., Carpenter, A. L., Abduljalil, A., … Beversdorf, D. Q. (2010). Effect of propranolol on functional connectivity in autism spectrum disorder. Brain Imaging and Behavior, 4, 189197.CrossRefGoogle ScholarPubMed
Newhouse, P. A., Potter, A., Corwin, J., & Lenox, R. (1992). Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacology, 108, 480484.CrossRefGoogle ScholarPubMed
Newhouse, P. A., Potter, A., Corwin, J., & Lenox, R. (1994). Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior. Neuropsychopharmacology, 10, 93107.CrossRefGoogle ScholarPubMed
Newman, L. A., & McGaughy, J. (2008). Cholinergic deafferentation of prefrontal cortex increases sensitivity to cross-modal distractors during a sustained attention task. Journal of Neuroscience, 28, 26422650.CrossRefGoogle ScholarPubMed
Paladini, C. A., & Williams, J. T. (2004). Noradrenergic inhibition of midbrain dopamine neurons. Journal of Neuroscience, 24, 45684575.CrossRefGoogle ScholarPubMed
Pederzolli, A. S., Tivarus, M. E., Agrawal, P., Kostyk, S. K., Thomas, K. M., & Beversdorf, D. Q. (2008). Dopaminergic modulation of semantic priming in Parkinson disease. Cognitive and Behavioral Neurology, 21, 134137.CrossRefGoogle ScholarPubMed
Pessiglione, M., Czernecki, V., Pillon, B., Dubois, B., Schüpback, M., Agid, , , Y., & Tremblay, L. (2005). An effect of dopamine depletion on decision-making: the temporal coupling of deliberation and execution. Journal of Cognitive Neuroscience, 17, 18861896.CrossRefGoogle ScholarPubMed
Pitman, R. K., Sanders, K. M., Zusman, R. M., Healy, A. R., Cheema, F., Lasko, N. B., … Orr, S. P. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological Psychiatry, 51, 189192.CrossRefGoogle ScholarPubMed
Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., … Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953955.CrossRefGoogle ScholarPubMed
Ramos, B. P., Colgan, L. A., Nou, E., & Arnsten, A. F. T. (2008). β2 adrenergic agonist, clenbuterol, enhances working memory performance in aging animals. Neurobiology of Aging, 29, 10601069.CrossRefGoogle ScholarPubMed
Ramos, B. P., Colgan, L., Nou, E., Ovaria, S., Wilson, S. R., & Arnsten, A. F. T. (2005). The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biological Psychiatry, 58, 894900.CrossRefGoogle ScholarPubMed
Ratey, J. J., Bemporad, J., Sorgi, P., Bick, P., Polakoff, S., O’Driscoll, G., & Mikkelsen, E. (1987). Brief report: Open trial effects of beta-blockers on speech and social behaviors in 8 autistic adults. Journal of Autism and Developmental Disorders, 17, 439446.CrossRefGoogle Scholar
Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate gene for creativity: A pilot study. Brain Research, 1069, 190197.CrossRefGoogle ScholarPubMed
Robbins, T. W. (2007). Shifting and stopping: Frontostriatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 362, 917932.CrossRefGoogle ScholarPubMed
Roesch, M. R., Calu, D. J., & Schoenbaum, G. (2007). Dopamine neurons encode the better option in rats between deciding between differently delayed or sized rewards. Nature Neuroscience, 10, 16151624.CrossRefGoogle ScholarPubMed
Roesch-Ely, D., Weiland, S., Scheffel, H., Schwaninger, M., Hundemer, H.-P., Kolter, T., & Weisbrod, M. (2006). Dopaminergic modulation of semantic priming in healthy volunteers. Biological Psychiatry, 60, 604611.CrossRefGoogle ScholarPubMed
Roozendaal, B., McReynolds, J. R., & McGaugh, J. L. (2004). The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. Journal of Neuroscience, 24, 13851392.CrossRefGoogle ScholarPubMed
Sarter, M., & Bruno, J. P. (1997). Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Research Reviews, 23, 2846.CrossRefGoogle Scholar
Sarter, M., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35, 146160.CrossRefGoogle ScholarPubMed
Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251, 947950.CrossRefGoogle ScholarPubMed
Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259288.CrossRefGoogle ScholarPubMed
Selden, N. R., Gitelman, D. R., Salamon-Murayama, N., Parrish, T. B., & Mesulam, M.-M. (1998). Trajectories of cholinergic pathways within the cerebral hemispheres of the brain. Brain,121, 22492257.CrossRefGoogle Scholar
Shields, G. S., Bonner, C., & Moons, W. G. (2015). Does cortisol influence core executive functions? A meta-analysis of acute cortisol administration effects on working memory, inhibition, and set-shifting. Psychoneuroendocrinology, 58, 91103.CrossRefGoogle ScholarPubMed
Silver, J. A., Hughes, J. D., Bornstein, R. A., &Beversdorf, D. Q. (2004). Effect of anxiolytics on cognitive flexibility in problem solving. Cognitive and Behavioral Neurology, 17, 9397.CrossRefGoogle ScholarPubMed
Smith, A., & Nutt, D. (1996). Noradrenaline and attention lapses. Nature, 380, 291.CrossRefGoogle ScholarPubMed
Smith, R. M., & Beversdorf, D. Q. (2008). Effects of semantic relatedness on recall of stimuli preceding emotional oddballs. Journal of the International Neuropsychological Society, 14, 620628.CrossRefGoogle ScholarPubMed
Smyth, S. F., & Beversdorf, D. Q. (2007). Lack of dopaminergic modulation of cognitive flexibility. Cognitive and Behavioral Neurology, 20, 225229.CrossRefGoogle ScholarPubMed
Smyth, S. F., & Beversdorf, D. Q. (submitted). Muscarinic and nicotinic modulation of memory but not cognitive flexibility.Google Scholar
Stefani, M. R., & Moghaddam, B. (2005). Systemic and prefrontal cortical NMDA receptor blockade differentially affect discrimination learning and set-shift ability in rats. Behavioral Neuroscience, 119, 420428.CrossRefGoogle ScholarPubMed
Stickgold, R., Hobson, J. A., Fosse, R., & Fosse, M. (2001). Sleep, learning, and dreams: Off-line memory reprocessing. Science, 294, 10521057.CrossRefGoogle ScholarPubMed
Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2008). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21, 415432.CrossRefGoogle Scholar
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578585.CrossRefGoogle ScholarPubMed
Tivarus, M. E., Hillier, A., Schmalbrock, P., & Beversdorf, D. Q. (2008). Functional connectivity in an fMRI study of semantic and phonological processes and the effect of L-dopa. Brain and Languge, 104, 4250.CrossRefGoogle Scholar
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999). The role of locus coeruleus in the regulation of cognitive performance. Science, 283, 549554.CrossRefGoogle ScholarPubMed
Vaiva, G., Ducrocq, F., Jezequel, K., Averland, B., Lestavel, P., Brunet, A., & Marmar, C. R. (2003). Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biological Psychaiatry, 54, 947949.CrossRefGoogle ScholarPubMed
van Stegeren, A. H., Everaerd, W., Cahill, L., McGaugh, J. L., & Gooren, L. J. G. (1998). Memory for emotional events: Differential effects of centrally versus peripherally acting β-blocking agents. Psychopharmacology, 138, 305310.CrossRefGoogle ScholarPubMed
Vikki, J. (1992). Cognitive flexibility and mental programming after closed head injuries and anterior and posterior cerebral excisions. Neuropsychologia, 30, 807814.CrossRefGoogle Scholar
Ward, M. M., Metford, I. N., Parker, S. D., Chesney, M. A., Taylor, C. B., Keegan, D. L., & Barchas, J. D. (1983). Epinephrine and norepinephrine responses in continuously collected human plasma to a series of stressors. Psychosomatic Medicine, 45, 471486.CrossRefGoogle ScholarPubMed
Whitehouse, P. J., Price, D. L., Strubble, R. G., Clark, A. W., Coyle, J. T., & DeLong, M. R. (1982). Alzheimer’s disease and senile dementia – Loss of neurons in the basal forebrain. Science, 215, 1237–39.CrossRefGoogle ScholarPubMed
Williams, G., & Goldman-Rakic, P. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376, 549550.CrossRefGoogle ScholarPubMed
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 458482.CrossRefGoogle Scholar
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 7784.CrossRefGoogle ScholarPubMed
Zamzow, R. M., Christ, S. E., Saklayen, S. S., Moffitt, A. J., Bodner, K. E., Higgins, K. F., & Beversdorf, D. Q. (2014). Effect of propranolol on facial scanning in autism spectrum disorder: A preliminary investigation. Journal of Clinical and Experimental Neuropsychology, 36, 431445.CrossRefGoogle ScholarPubMed
Zamzow, R. M., Ferguson, B. J., Stichter, J. P., Porges, E. C., Ragsdale, A. S., Lewis, M. L., & Beversdorf, D. Q. (2016). Effects of propranolol on conversational reciprocity in autism spectrum disorder: A pilot, double-blinded, single-dose psychopharmacological challenge study. Psychopharmacology, 233, 11711178.CrossRefGoogle ScholarPubMed
Zamzow, R. M., Ferguson, B. J., Ragsdale, A. S., Lewis, M. L., & Beversdorf, D. Q. (2017). Effects of acute beta-adrenergic antagonism on verbal problem solving in autism spectrum disorder and exploration of treatment response markers. Journal of Clinical and Experimental Neuropsychology, 39, 596606.CrossRefGoogle ScholarPubMed


Aalto, S., Ihalainen, J., Hirvonen, J., Kajander, J., Scheinin, H., Tanila, H., … Syvälahti, E. (2005). Cortical glutamate–dopamine interaction and ketamine-induced psychotic symptoms in man. Psychopharmacology, 182(3), 375383.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes and dynamic control. Annals of the New York Academy of Sciences, 1316(1), 2952.CrossRefGoogle ScholarPubMed
Basadur, M., Graen, G. B., & Green, S. G. (1982). Training in creative problem solving: Effects on ideation and problem finding and solving in an industrial research organization. Organizational Behavior and Human Performance, 30(1), 4170.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 8795.CrossRefGoogle ScholarPubMed
Bekhtereva, N., Starchenko, M., Klyucharev, V., Vorob’ev, V., Pakhomov, S., & Medvedev, S. (2000). Study of the brain organization of creativity: II. Positron-emission tomography data. Human Physiology, 26(5), 516522.CrossRefGoogle Scholar
Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. Growth Factors, 22(3), 123131.CrossRefGoogle ScholarPubMed
Bloom, H. (1963). The visionary company: A reading of English romantic poetry. Ithaca, NY: Cornell University Press.Google Scholar
Bouso, J. C., Palhano-Fontes, F., Rodríguez-Fornells, A., Ribeiro, S., Sanches, R., Crippa, J. A. S., … Riba, J. (2015). Long-term use of psychedelic drugs is associated with differences in brain structure and personality in humans. European Neuropsychopharmacology, 25(4), 483492.CrossRefGoogle ScholarPubMed
Bowdle, A. T., Radant, A. D., Cowley, D. S., Kharasch, E. D., Strassman, R. J., & Roy-Byrne, P. P. (1998). Psychedelic effects of ketamine in healthy volunteers relationship to steady-state plasma concentrations. The Journal of the American Society of Anesthesiologists, 88(1), 8288.Google ScholarPubMed
Brockmeyer, D., & Kendig, J. (1995). Selective effects of ketamine on amino acid-mediated pathways in neonatal rat spinal cord. British Journal of anaesthesia, 74(1), 7984.CrossRefGoogle ScholarPubMed
Brunoni, A. R., Lopes, M., & Fregni, F. (2008). A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression. International Journal of Neuropsychopharmacology, 11(8), 11691180.CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. doi:10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Burkert, W. (1972). Lore and science in ancient Pythagoreanism. Cambridge, MA: Harvard University Press.Google Scholar
Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., … Murphy, K. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences, 109(6), 21382143.CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., Leech, R., Erritzoe, D., Williams, T. M., Stone, J. M., Evans, J., … Nutt, D. J. (2013). Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophrenia bulletin, 39(6), 13431351.CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., Leech, R., Williams, T., Erritzoe, D., Abbasi, N., Bargiotas, T., … Feilding, A. (2012). Implications for psychedelic-assisted psychotherapy: Functional magnetic resonance imaging study with psilocybin. The British Journal of Psychiatry, 200(3), 238244.CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., … Nutt, D. J. (2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences, 113(17), 48534858. doi:10.1073/pnas.1518377113CrossRefGoogle ScholarPubMed
Christoff, K., Cosmelli, D., Legrand, D., & Thompson, E. (2011). Specifying the self for cognitive neuroscience. Trends in Cognitive Sciences, 15(3), 104112. doi:10.1016/j.tics.2011.01.001CrossRefGoogle ScholarPubMed
de Araujo, D. B., Ribeiro, S., Cecchi, G. A., Carvalho, F. M., Sanchez, T. A., Pinto, J. P., … Santos, A. C. (2012). Seeing with the eyes shut: Neural basis of enhanced imagery following ayahuasca ingestion. Human Brain Mapping, 33(11), 25502560.CrossRefGoogle ScholarPubMed
De Simoni, S., Schwarz, A. J., O’Daly, O. G., Marquand, A. F., Brittain, C., Gonzales, C., … Mehta, M. A. (2013). Test–retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers. NeuroImage, 64, 7590.CrossRefGoogle ScholarPubMed
Deakin, J. W., Lees, J., McKie, S., Hallak, J. E., Williams, S. R., & Dursun, S. M. (2008). Glutamate and the neural basis of the subjective effects of ketamine: A pharmaco–magnetic resonance imaging study. Archives of General Psychiatry, 65(2), 154164.CrossRefGoogle ScholarPubMed
Deliganis, A. V., Pierce, P. A., & Peroutka, S. J. (1991). Differential interactions of dimethyltryptamine (DMT) with 5-HT 1A and 5-HT 2 receptors. Biochemical Pharmacology, 41(11), 17391744.CrossRefGoogle Scholar
Dittrich, A. (1998). The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry, 31(Suppl. 2), 8084.CrossRefGoogle ScholarPubMed
Domhoff, G. W. (2011). The neural substrate for dreaming: Is it a subsystem of the default network? Conscious Cogn, 20(4), 11631174. doi:10.1016/j.concog.2011.03.001CrossRefGoogle Scholar
Domhoff, G. W., & Fox, K. C. R. (2015). Dreaming and the default network: A review, synthesis, and counterintuitive research proposal. Conscious Cognition, 33, 342353.CrossRefGoogle ScholarPubMed
Driesen, N. R., McCarthy, G., Bhagwagar, Z., Bloch, M., Calhoun, V., D’Souza, D. C., … Suckow, R. F. (2013). Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Molecular Psychiatry, 18(11), 11991204.CrossRefGoogle ScholarPubMed
Editorial. (1996). Ketamine: Its mechanism (s) of action and unusual clinical uses. British Journal of Anaesthesia, 77(4), 441444.CrossRefGoogle Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59(2), 17831794. doi:10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Ellamil, M., Fox, K. C., Dixon, M. L., Pritchard, S., Todd, R. M., Thompson, E., & Christoff, K. (2016). Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners. NeuroImage, 136, 186196.CrossRefGoogle ScholarPubMed
Farrow, T. F., Zheng, Y., Wilkinson, I. D., Spence, S. A., Deakin, J. W., Tarrier, N., … Woodruff, P. W. (2001). Investigating the functional anatomy of empathy and forgiveness. Neuroreport, 12(11), 24332438.CrossRefGoogle ScholarPubMed
Fletcher, P. C., Happe, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S., & Frith, C. D. (1995). Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition, 57(2), 109128.CrossRefGoogle Scholar
Fox, K. C. R., Nijeboer, S., Solomonova, E., Domhoff, G. W., & Christoff, K. (2013). Dreaming as mind wandering: Evidence from functional neuroimaging and first-person content reports. Frontiers in Human Neuroscience, 7, 412. doi:10.3389/fnhum.2013.00412CrossRefGoogle ScholarPubMed
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611621.CrossRefGoogle ScholarPubMed
Garcia, L., Comim, C. M., Valvassori, S. S., Réus, G. Z., Barbosa, L. M., Andreazza, A. C., … Kapczinski, F. (2008). Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(1), 140144.CrossRefGoogle ScholarPubMed
Garcia, L., Comim, C. M., Valvassori, S. S., Réus, G. Z., Stertz, L., Kapczinski, F., … Quevedo, J. (2009). Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(3), 450455.CrossRefGoogle ScholarPubMed
Glennon, R. A., Titeler, M., & McKenney, J. (1984). Evidence for 5-HT 2 involvement in the mechanism of action of hallucinogenic agents. Life Sciences, 35(25), 25052511.CrossRefGoogle ScholarPubMed
Gonzalez-Maeso, J., & Sealfon, S. C. (2009). Psychedelics and schizophrenia. Trends in Neurosciences, 32(4), 225232.CrossRefGoogle ScholarPubMed
Griffiths, R. R., Johnson, M. W., Richards, W. A., Richards, B. D., McCann, U., & Jesse, R. (2011). Psilocybin occasioned mystical-type experiences: Immediate and persisting dose-related effects. Psychopharmacology, 218(4), 649665.CrossRefGoogle ScholarPubMed
Griffiths, R. R., Richards, W. A., Johnson, M. W., McCann, U. D., & Jesse, R. (2008). Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. Journal of Psychopharmacology, 22(6), 621632.CrossRefGoogle ScholarPubMed
Griffiths, R. R., Richards, W. A., McCann, U., & Jesse, R. (2006). Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology, 187(3), 268283.CrossRefGoogle ScholarPubMed
Grimm, O., Gass, N., Weber-Fahr, W., Sartorius, A., Schenker, E., Spedding, M., … Zang, Z. (2015). Acute ketamine challenge increases resting state prefrontal–hippocampal connectivity in both humans and rats. Psychopharmacology, 232(21–22), 42314241.CrossRefGoogle ScholarPubMed
Grof, S. (2008). LSD psychotherapy: The healing potential of psychedelic medicine. Ben Lomond, CA: Multidisciplinary Association for Psychedelic Studies.Google Scholar
Harman, W. W., McKim, R. H., Mogar, R. E., Fadiman, J., & Stolaroff, M. J. (1966). Psychedelic agents in creative problem-solving: A pilot study. Psychological Reports, 19(1), 211227.CrossRefGoogle ScholarPubMed
Hofmann, A. (1980). LSD: My problem child. New York, NY: McGraw-Hill.Google Scholar
Holcomb, H. H., Lahti, A. C., Medoff, D. R., Weiler, M., & Tamminga, C. A. (2001). Sequential regional cerebral blood flow brain scans using PET with H215O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology, 25(2), 165172.CrossRefGoogle ScholarPubMed
Hollister, L. E. (1984). Effects of hallucinogens in humans. In Jacobs, B. (Ed.), Hallucinogens: Neurochemical, behavioral and clinical perspectives (pp. 1933). New York, NY: Raven Press.Google Scholar
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging (Vol. 1). Sunderland, MA: Sinauer Associates Sunderland.Google ScholarPubMed
Huxley, A. (1954). The doors of perception. New York, NY: Harper & Row.Google Scholar
James, W. (1985). The varieties of religious experience (Vol. 13). Cambridge, MA: Harvard University Press.Google Scholar
Jansen, K. L., & Sferios, E. (2001). Ketamine: Dreams and realities. Santa Cruz, CA: Multidisciplinary Association for Psychedelic Studies.Google Scholar
Joules, R., Doyle, O., Schwarz, A., O’Daly, O., Brammer, M., Williams, S., & Mehta, M. (2015). Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile. Psychopharmacology, 232(21–22), 42054218.CrossRefGoogle ScholarPubMed
Keiser, M. J., Setola, V., Irwin, J. J., Laggner, C., Abbas, A. I., Hufeisen, S. J., … Tran, T. B. (2009). Predicting new molecular targets for known drugs. Nature, 462(7270), 175181.CrossRefGoogle ScholarPubMed
Khalili-Mahani, N., Niesters, M., van Osch, M. J., Oitzl, M., Veer, I., de Rooij, M., … Rombouts, S. A. (2015). Ketamine interactions with biomarkers of stress: A randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. NeuroImage, 108, 396409.CrossRefGoogle Scholar
Kivy, P. (2001). The possessor and the possessed: Handel, Mozart, Beethoven, and the idea of musical genius. New Haven, CT: Yale University Press.CrossRefGoogle Scholar
Klinger, E. (2008). Daydreaming and fantasizing: Thought flow and motivation. In Markman, K. D., Klein, W. M. P., & Suhr, J. A. (Eds.), Handbook of imagination and mental simulation (pp. 225239). New York, NY: Psychology Press.Google Scholar
Klinger, E., & Cox, W. M. (1987). Dimensions of thought flow in everyday life. Imagination, Cognition and Personality, 7(2), 105128.CrossRefGoogle Scholar
Kohrs, R., & Durieux, M. E. (1998). Ketamine: Teaching an old drug new tricks. Anesthesia & Analgesia, 87(5), 11861193.Google ScholarPubMed
Kosslyn, S. M., Thompson, W. L., & Alpert, N. M. (1997). Neural systems shared by visual imagery and visual perception: A positron emission tomography study. NeuroImage, 6(4), 320334.CrossRefGoogle ScholarPubMed
Krebs, T. S., & Johansen, P.-Ø. (2012). Lysergic acid diethylamide (LSD) for alcoholism: Meta-analysis of randomized controlled trials. Journal of Psychopharmacology, 26(7), 9941002.CrossRefGoogle ScholarPubMed
Krippner, S. (1972). Mescaline psilocybin and creative artists. In Altered States of Consciousness. Hoboken, NJ: John Wiley and Sons.Google Scholar
Kupferschmidt, K. (2014). High hopes. Science, 345(6192), 1823.CrossRefGoogle ScholarPubMed
Langlitz, N. D. (2007). Neuropsychedelia. The revival of hallucinogen research since the decade of the brain. Berkeley, CA: University of California Press.Google Scholar
Långsjö, J. W., Kaisti, K. K., Aalto, S., Hinkka, S., Aantaa, R., Oikonen, V., … Scheinin, H. (2003). Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. The Journal of the American Society of Anesthesiologists, 99(3), 614623.Google ScholarPubMed
Lazar, S. W., Bush, G., Gollub, R. L., Fricchione, G. L., Khalsa, G., & Benson, H. (2000). Functional brain mapping of the relaxation response and meditation. Neuroreport, 11(7), 15811585.CrossRefGoogle ScholarPubMed
Lebedev, A. V., Lövdén, M., Rosenthal, , Feilding, G., Nutt, A., , D. J., & Carhart-Harris, R. L. (2015). Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. Human Brain Mapping, 36(8), 31373153.CrossRefGoogle ScholarPubMed
Lee, M. A., & Shlain, B. (1992). Acid dreams: The complete social history of LSD: The CIA, the sixties, and beyond. New York, NY: Grove Press.Google Scholar
Lilly, J. C. (1972). Programming and metaprogramming in the human biocomputer. Julian P.Google Scholar
Lou, H. C., Kjaer, T. W., Friberg, L., Wildschlodtz, G., Holm, S., & Nowak, M. (1999). A 15O-H20 PET study of meditation and the resting state of normal consciousness. Human Brain Mapping, 7, 98105.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
MacLean, K. A., Johnson, M. W., & Griffiths, R. R. (2011). Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. Journal of Psychopharmacology, 25(11), 14531461.CrossRefGoogle ScholarPubMed
Maquet, P., Péters, J.-M., Aerts, , Delfiore, J., Degueldre, G., Luxen, C., , A., & Franck, G. (1996). Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature, 383(6596), 163166.CrossRefGoogle ScholarPubMed
Marona-Lewicka, D., Thisted, R. A., & Nichols, D. E. (2005). Distinct temporal phases in the behavioral pharmacology of LSD: Dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology, 180(3), 427435.CrossRefGoogle ScholarPubMed
McAllister, W. B. (2000). Drug diplomacy in the twentieth century: An international history. London: Routledge.Google Scholar
McCarthy, G., Blamire, A. M., Rothman, D. L., Gruetter, R., & Shulman, R. G. (1993). Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proceedings of the National Academy of Sciences, 90(11), 49524956.CrossRefGoogle ScholarPubMed
McGlothlin, W. H., & Arnold, D. O. (1971). LSD revisited: A ten-year follow-up of medical LSD use. Archives of General Psychiatry, 24(1), 3549.CrossRefGoogle ScholarPubMed
McGlothlin, W. H., Cohen, S., & McGlothlin, M. S. (1967). Long lasting effects of LSD on normals. Archives of General Psychiatry, 17(5), 521.CrossRefGoogle ScholarPubMed
McKenna, D. J., Towers, G. N., & Abbott, F. (1984). Monoamine oxidase inhibitors in South American hallucinogenic plants: Tryptamine and β-carboline constituents of ayahuasca. Journal of Ethnopharmacology, 10(2), 195223.CrossRefGoogle ScholarPubMed
McMahon, D. (2013). Divine fury: A history of genius. New York, NY: Basic Books.Google Scholar
Monte, A. P., Waldman, S. R., Marona-Lewicka, D., Wainscott, D. B., Nelson, D. L., Sanders-Bush, E., & Nichols, D. E. (1997). Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives. Journal of Medicinal Chemistry, 40(19), 29973008.CrossRefGoogle ScholarPubMed
Mullis, K. (2010). Dancing naked in the mind field. London: Vintage.Google Scholar
Murray, P. (1989). Poetic genius and its classic origins. In Murray, P. (Ed.), Genius: The history of an idea (pp. 931). Oxford: Blackwell.Google Scholar
Murray, P. (1996). Plato on poetry: Ion; Republic 376e-398b9; Republic 595-608b10. Cambridge: Cambridge University Press.Google Scholar
Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., … Singh, K. D. (2013). Broadband cortical desynchronization underlies the human psychedelic state. The Journal of Neuroscience, 33(38), 1517115183.CrossRefGoogle ScholarPubMed
Nichols, D. E. (2004). Hallucinogens. Pharmacology & Therapeutics, 101(2), 131181.CrossRefGoogle ScholarPubMed
Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain – A meta-analysis of imaging studies on the self. NeuroImage, 31(1), 440457.CrossRefGoogle Scholar
Nour, M. M., & Krzanowski, J. (2015). Therapeutic potential of psychedelic agents. The British Journal of Psychiatry, 206(5), 433434.CrossRefGoogle ScholarPubMed
Nutt, D. J. (2014). Mind-altering drugs and research: From presumptive prejudice to a Neuroscientific Enlightenment? EMBO Reports, 15(3), 208211.CrossRefGoogle ScholarPubMed
Nutt, D. J., King, L. A., & Nichols, D. E. (2013). Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nature Reviews Neuroscience, 14(8), 577585.CrossRefGoogle ScholarPubMed
Nutt, D. J., King, L. A., & Phillips, L. D. (2010). Drug harms in the UK: A multicriteria decision analysis. The Lancet, 376(9752), 15581565.CrossRefGoogle Scholar
Nutt, D. J., King, L. A., Saulsbury, W., & Blakemore, C. (2007). Development of a rational scale to assess the harm of drugs of potential misuse. The Lancet, 369(9566), 10471053.CrossRefGoogle ScholarPubMed
Pahnke, W. N. (1967). LSD and religious experience. In LSD, Man & Society. (pp. 6085). Middletown, CT: Wesleyan University Press.Google Scholar
Pahnke, W. N. (1969). Psychedelic drugs and mystical experience. International Psychiatry Clinics, 5(4), 149.Google ScholarPubMed
Pahnke, W. N., Kurland, A. A., Unger, S., Savage, C., & Grof, S. (1970). The experimental use of psychedelic (LSD) psychotherapy. Journal of the American Medical Association, 212(11), 18561863.CrossRefGoogle ScholarPubMed
Pahnke, W. N., & Richards, W. A. (1966). Implications of LSD and experimental mysticism. Journal of Religion and Health, 5(3), 175208.CrossRefGoogle ScholarPubMed
Palhano-Fontes, F., Andrade, K. C., Tofoli, L. F., Santos, A. C., Crippa, J. A. S., Hallak, J. E., … de Araujo, D. B. (2015). The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network. PLoS ONE, 10, e0118143.CrossRefGoogle ScholarPubMed
Passie, T., Seifert, J., Schneider, U., & Emrich, H. M. (2002). The pharmacology of psilocybin. Addiction Biology, 7(4), 357364.CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585589.CrossRefGoogle ScholarPubMed
Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7(5), 695702.CrossRefGoogle ScholarPubMed
Pieper, J. (1964). Enthusiasm and divine madness: On the Platonic dialogue. Sheffield: Phaedrus.Google Scholar
Plato, , Grube, G. M. A., & Plochmann, G. K. (1974). Plato’s republic. JSTOR.Google Scholar
Plotinus, , & Katz, J. (1950). The philosophy of Plotinus. New York, NY: Appleton-Century-Crofts.Google Scholar
Plotinus, , & MacKenna, S. (1969). Plotinus the Enneads. London: Faber & Faber.Google Scholar
Pollak, T., De Simoni, S., Barimani, B., Zelaya, F., Stone, J., & Mehta, M. (2015). Phenomenologically distinct psychotomimetic effects of ketamine are associated with cerebral blood flow changes in functionally relevant cerebral foci: A continuous arterial spin labelling study. Psychopharmacology, 232(24), 45154524.CrossRefGoogle Scholar
Raichle, M. E. (2009). A brief history of human brain mapping. Trends in Neuroscience, 32(2), 118126. doi:10.1016/j.tins.2008.11.001CrossRefGoogle ScholarPubMed
Ray, T. S. (2010). Psychedelics and the human receptorome. PLoS ONE, 5(2), e9019.CrossRefGoogle ScholarPubMed
Riba, J., Romero, S., Grasa, E., Mena, E., Carrió, I., & Barbanoj, M. J. (2006). Increased frontal and paralimbic activation following ayahuasca, the pan-Amazonian inebriant. Psychopharmacology, 186(1), 9398.CrossRefGoogle ScholarPubMed
Roseman, L., Leech, R., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2014). The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers. Frontiers in Human Neuroscience, 8.CrossRefGoogle ScholarPubMed
Roth, B. L., Baner, K., Westkaemper, R., Siebert, D., Rice, K. C., Steinberg, S., … Rothman, R. B. (2002). Salvinorin A: A potent naturally occurring nonnitrogenous κ opioid selective agonist. Proceedings of the National Academy of Sciences, 99(18), 1193411939.CrossRefGoogle ScholarPubMed
Salt, T., Wilson, D., & Prasad, S. (1988). Antagonism of N-methylaspartate and synaptic responses of neurones in the rat ventrobasal thalamus by ketamine and MK-801. British Journal of Pharmacology, 94(2), 443448.CrossRefGoogle ScholarPubMed
Sarma, D. (2011). Classical Indian philosophy: A reader. New York, NY: Columbia University Press.Google Scholar
Savoy, R. L. (2001). History and future directions of human brain mapping and functional neuroimaging. Acta Psychologica, 107(1), 942.CrossRefGoogle ScholarPubMed
Scheidegger, M., Walter, M., Lehmann, M., Metzger, C., Grimm, S., Boeker, H., … Seifritz, E. (2012). Ketamine decreases resting state functional network connectivity in healthy subjects: Implications for antidepressant drug action. PLoS ONE, 7(9), e44799.CrossRefGoogle ScholarPubMed
Schredl, M. (2010). Characteristics and contents of dreams. International Review of Neurobiology, 92, 135154.CrossRefGoogle ScholarPubMed
Schultes, R. E. (1957). The identity of the malpighiaceous narcotics of South America. Botanical Museum Leaflets, Harvard University, 18(1), 156.CrossRefGoogle Scholar
Schultes, R. E., Hofmann, A., & Rätsch, C. (2001). Plants of the gods: Their sacred, healing, and hallucinogenic powers. Rochester, VT: Healing Arts Press.Google Scholar
Sessa, B. (2008). Is it time to revisit the role of psychedelic drugs in enhancing human creativity? Journal of Psychopharmacology, 22(8), 821827.CrossRefGoogle ScholarPubMed
Sessa, B. (2012a). The psychedelic renaissance: Reassessing the role of psychedelic drugs in 21st century psychiatry and society. London: Muswell Hill Press.Google Scholar
Sessa, B. (2012b). Shaping the renaissance of psychedelic research. The Lancet, 380(9838), 200201.CrossRefGoogle ScholarPubMed
Sherwood, J. N., Stolaroff, M. J., & Harman, W. W. (1962). The psychedelic experience – A new concept in psychotherapy. Journal of Neuropsychiatry, 4, 69.Google ScholarPubMed
Shulgin, A., & Shulgin, A. (1997). TiHKAL: The continuation. Berkeley, CA: Transform Press.Google Scholar
Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M., & D’Argembeau, A. (2011). Mind-wandering: Phenomenology and function as assessed with a novel experience sampling method. Acta Psychologica (Amsterdam), 136(3), 370381. doi:10.1016/j.actpsy.2011.01.002CrossRefGoogle ScholarPubMed
Stevens, C. L. (1966). Aminoketones and methods for their production: Google Patents.Google Scholar
Stevens, J. (1987). Storming heaven: LSD and the American dream. New York, NY: Grove Press.Google Scholar
Streatfeild, D. (2008). Brainwash: The secret history of mind control. London: Macmillan.Google Scholar
Studerus, E., Gamma, A., & Vollenweider, F. X. (2010). Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS ONE, 5(8), e12412.CrossRefGoogle ScholarPubMed
Studerus, E., Kometer, M., Hasler, F., & Vollenweider, F. X. (2011). Acute, subacute and long-term subjective effects of psilocybin in healthy humans: A pooled analysis of experimental studies. Journal of Psychopharmacology, 25(11), 14341452.CrossRefGoogle ScholarPubMed
Tupper, K. W. (2008). The globalization of ayahuasca: Harm reduction or benefit maximization? International Journal of Drug Policy, 19(4), 297303.CrossRefGoogle ScholarPubMed
Vollenweider, F., & Kometer, M. (2010). The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. Nature Reviews Neuroscience, 11(9), 642651.CrossRefGoogle ScholarPubMed
Vollenweider, F., Leenders, K., Scharfetter, C., Antonini, A., Maguire, P., Missimer, J., & Angst, J. (1997). Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18 F] fluorodeoxyglucose (FDG). European Neuropsychopharmacology, 7(1), 924.CrossRefGoogle ScholarPubMed
Vollenweider, F., Leenders, K., Scharfetter, C., Maguire, P., Stadelmann, O., & Angst, J. (1997). Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology, 16(5), 357372.CrossRefGoogle ScholarPubMed
Wasson, R. G. (1958). The divine mushroom: Primitive religion and hallucinatory agents. Proceedings of the American Philosophical Society, 102(3), 221223.Google Scholar
Wasson, R. G., Hofmann, A., Ruck, C. A., & Smith, H. (2008). The road to Eleusis: Unveiling the secret of the mysteries. Berkeley, CA: North Atlantic Books.Google Scholar
Windt, J. M. (2010). The immersive spatiotemporal hallucination model of dreaming. Phenomenology and the Cognitive Sciences, 9(2), 295316. doi:10.1007/s11097-010-9163-1CrossRefGoogle Scholar
Windt, J. M. (2015). Dreaming: A conceptual framework for philosophy of mind and empirical research: Cambridge, MA: MIT Press.CrossRefGoogle Scholar


Abraham, A., Windmann, S., McKenna, P., & Gunturkun, O. (2007). Creative thinking in schizophrenia: The role of executive dysfunction and symptom severity. Cognitive Neuropsychiatry, 12, 235258.CrossRefGoogle ScholarPubMed
Adams, F. (2010). The genuine works of Hippocrates. Whitefish, MT: Kessinger Publishing.Google Scholar
Akiskal, H. S., & Akiskal, K. K. (2007). In search of Aristotle: Temperament, human nature, melancholia, creativity and eminence. Journal of Affective Disorders, 100, 16.CrossRefGoogle ScholarPubMed
Amin, F., Davidson, M., & Davis, K. L. (1992). Homovanillic acid measurement in clinical research: A review of methodology. Schizophrenia Bulletin, 18, 123148.CrossRefGoogle ScholarPubMed
Ando, V., Claridge, G., & Clark, K. (2014). Psychotic traits in comedians. British Journal of Psychiatry, 204, 341345.CrossRefGoogle ScholarPubMed
Andreasen, N. C. (1987). Creativity and mental illness: Prevalence rates in writers and their first-degree relatives. American Journal of Psychiatry, 144, 12881292.Google ScholarPubMed
Andreasen, N. C. (2007). DSM and the death of phenomenology in America: An example of unintended consequences. Schizophrenia Bulletin, 33, 108112.CrossRefGoogle ScholarPubMed
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214, 143156.CrossRefGoogle ScholarPubMed
Aristotle, . (1984). The complete works of Aristotle: The revised Oxford translation (J. Barnes, Trans.). Princeton, NJ: Princeton University Press.Google Scholar
Asari, T., Konishi, S., Jimura, K., Chikazoe, J., Nakamura, N., & Miyashita, Y. (2008). Right temporopolar activation associated with unique perception. NeuroImage, 41, 145152.CrossRefGoogle ScholarPubMed
Baas, M., Nijstad, B. A., Boot, N. C., & De Dreu, C. K. (2016). Mad genius revisited: Vulnerability to psychopathology, biobehavioral approach-avoidance, and creativity. Psychological Bulletin, 142, 668692.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Ashwin, E., Ashwin, C., Tavassoli, T., & Chakrabarti, B. (2009). Talent in autism: Hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 13771383.CrossRefGoogle ScholarPubMed
Barrick, M. R., Mount, M. K., & Judge, T. A. (2001). Personality and performance at the beginning of the new millennium: What do we know and where do we go next? International Journal of Selection and Assessment, 9, 930.CrossRefGoogle Scholar
Barron, F., & Harrington, D. M. (1981). Creativity, intelligence, and personality. Annual Review of Psychology, 32, 439476.CrossRefGoogle Scholar
Batukhtina, E. I., Nevidimova, T. I., Vetlugina, T. P., Kokorina, N. P., & Bokhan, N. A. (2014). Neurophysiological patterns of search and creative behavior in patients with psychoactive substance-induced disorders. Bulletin of Experimental Biology and Medicine, 156, 598601.CrossRefGoogle ScholarPubMed
Bechtereva, N. P., Korotkov, A. D., Pakhomov, S. V., Roudas, M. S., Starchenko, M. G., & Medvedev, S. V. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53, 1120.CrossRefGoogle ScholarPubMed
Becker, G. (1978). The mad genius controversy: A study in the sociology of deviance. Beverly Hills, CA: Sage.Google Scholar
Becker, G. (2014). A socio-historical overview of the creativity–pathology connection: From antiquity to contemporary times. In Kaufman, J. C. (Ed.), Creativity and mental illness. Cambridge: Cambridge University Press.Google Scholar
Bousman, C. A., Yung, A. R., Pantelis, C., Ellis, J. A., Chavez, R. A., Nelson, B., … Foley, D. L. (2013). Effects of NRG1 and DAOAgenetic variation on transition to psychosis in individuals at ultra-high risk for psychosis. Translational Psychiatry, 3, e251.CrossRefGoogle ScholarPubMed
Burke, B., Chrisler, J., & Devlin, A. (1989). The creative thinking, environmental frustration, and self-concept of left- and right-handers. Creativity Research Journal, 2, 279285.CrossRefGoogle Scholar
Campbell, B. C., & Wang, S. S. H. (2012). Familial linkage between neuropsychiatric disorders and intellectual interests. PLoS ONE, 7(1), e30405.CrossRefGoogle ScholarPubMed
Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380400.CrossRefGoogle ScholarPubMed
Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38, 873885.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creativity Research Journal, 17, 3750.CrossRefGoogle Scholar
Chapman, J. P., & Chapman, L. J. (1987). Handedness of hypothetically psychosis-prone subjects. Journal of Abnormal Psychology, 96, 8993.CrossRefGoogle ScholarPubMed
Chavez-Eakle, R. A., Graff-Guerrero, A., Garcia-Reyna, J. C., Vaugier, V., & Cruz-Fuentes, C. (2007). Cerebral blood flow associated with creative performance: A comparative study. NeuroImage, 38, 519528.CrossRefGoogle ScholarPubMed
Claridge, G. (2012). Study links creativity and mental illness. Retrieved April 30, 2014, from Scholar
Claridge, G., McCreery, C., Mason, O., Bentall, R., Boyle, G., & Slade, P. (1996). The factor structure of ‘schizotypal’ traits: A large replication study. British Journal of Clinical Psychology, 35, 103115.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1994). Descartes’ error: Emotion, reason, and the human brain. New York, NY: G.P. Putnam.Google Scholar
Damian, R. I., & Simonton, D. K. (2015). Psychopathology, adversity, and creativity: Diversifying experiences in the development of eminent African Americans. Journal of Personality and Social Psychology, 108, 623636.CrossRefGoogle ScholarPubMed
de Manzano, O., Cervenka, S., Karabanov, A., Farde, L., & Ullen, F. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS ONE, 5(5), e10670.CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin and Review, 11, 10111026.CrossRefGoogle ScholarPubMed
Dragovic, M., & Hammond, G. (2005). Handedness in schizophrenia: A quantitative review of evidence. Acta Psychiatrica Scandinavica, 111, 410419.CrossRefGoogle ScholarPubMed
Drake, C., Gumenyuk, V., Roth, T., & Howard, R. (2014). Effects of armodafinil on simulated driving and alertness in shift work disorder. Sleep , 37, 19871994.CrossRefGoogle ScholarPubMed
Dykes, M., & Mcghie, A. (1976). Comparative-study of attentional strategies of schizophrenic and highly creative normal subjects. British Journal of Psychiatry, 128, 5056.CrossRefGoogle ScholarPubMed
Egerton, A., Mehta, M. A., Montgomery, A. J., Lappin, J. M., Howes, O. D., Reeves, S. J., … Grasby, P. M. (2009). The dopaminergic basis of human behaviors: A review of molecular imaging studies. Neuroscience and Biobehavioral Reviews, 33, 11091132.CrossRefGoogle ScholarPubMed
Elsworth, J. D., Leahy, D. J., Roth, R. H., & Redmond, D. E., Jr. (1987). Homovanillic acid concentrations in brain, CSF and plasma as indicators of central dopamine function in primates. Journal of Neural Transmission, 68, 5162.CrossRefGoogle ScholarPubMed
Farah, M. J., Haimm, C., Sankoorikal, G., & Chatterjee, A. (2009). When we enhance cognition with Adderall, do we sacrifice creativity? A preliminary study. Psychopharmacology, 202, 541547.CrossRefGoogle ScholarPubMed
Fayers, P. M., & Machin, D. (2007). Quality of life: The assessment, analysis and interpretation of patient-reported outcomes (2nd ed.). Chichester: John Wiley.CrossRefGoogle Scholar
Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2, 290309.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Human Brain Mapping, 30, 734748.CrossRefGoogle ScholarPubMed
Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. Journal of Comparative Neurology, 493, 147153.CrossRefGoogle ScholarPubMed
Florida, R. L. (2002). The rise of the creative class: And how it’s transforming work, leisure, community and everyday life. New York, NY: Basic Books.Google Scholar
Folley, B. S., & Park, S. (2005). Verbal creativity and schizotypal personality in relation to prefrontal hemispheric laterality: A behavioral and near-infrared optical imaging study. Schizophrenia Research, 80, 271282.CrossRefGoogle ScholarPubMed
Funk, J. B., Chessare, J. B., Weaver, M. T., & Exley, A. R. (1993). Attention deficit hyperactivity disorder, creativity, and the effects of methylphenidate. Pediatrics, 91, 816819.CrossRefGoogle ScholarPubMed
Galton, F. (1869). Hereditary genius: An enquiry into its laws and consequences. London.CrossRefGoogle Scholar
Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2009). Cognitive neuroscience: The biology of the mind (3rd ed.). New York, NY: W.W. Norton.CrossRefGoogle Scholar
Goel, V., & Vartanian, O. (2005). Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cerebral Cortex, 15, 11701177.CrossRefGoogle ScholarPubMed
Gonen-Yaacovi, G., De Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 14, Article 465.Google Scholar
Gray, J. A. (1981). A critique of Eysenck’s theory of personality. In Eysenck, H. J. (Ed.), A model for personality. Berlin: Springer-Verlag.Google Scholar
Guhne, U., Weinmann, S., Arnold, K., Ay, E. S., Becker, T., & Riedel-Heller, S. (2012). [Arts therapies in severe mental illness: are they effective?]. Nervenarzt, 83, 855860.Google ScholarPubMed
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454.CrossRefGoogle ScholarPubMed
Hennessy, B. A. (2010). The creativity–motivation connection. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 342365). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Herbert, P. S., Jr. (1959). Creativity and mental illness: A study of 60 creative patients who needed hospitalization. Psychiatric Quarterly, 33, 534547.CrossRefGoogle ScholarPubMed
Hezel, D. M., & Hooley, J. M. (2014). Creativity, personality, and hoarding behavior. Psychiatry Research, 220, 322327.CrossRefGoogle ScholarPubMed
Higier, R. G., Jimenez, A. M., Hultman, C. M., Borg, J., Roman, C., Kizling, I., … Cannon, T. D. (2014). Enhanced neurocognitive functioning and positive temperament in twins discordant for bipolar disorder. American Journal of Psychiatry , 171, 11911198.CrossRefGoogle ScholarPubMed
Hirschowitz, J., Kolevzon, A., & Garakani, A. (2010). The pharmacological treatment of bipolar disorder: The question of modern advances. Harvard Review of Psychiatry, 18, 266278.CrossRefGoogle ScholarPubMed
Howard-Jones, P. A., Blakemore, S. J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25, 240250.CrossRefGoogle ScholarPubMed
III, H. B. B. (2013). Personality tests in employment selection: Use with caution. Cornell HR review. Retrieved November 3, 2016 from Cornell University, ILR School site: Scholar
Insel, T. (2013). Director’s Blog: Transforming Diagnosis. Retrieved April 14, 2016, from Scholar
Jablensky, A. (2016). Psychiatric classifications: Validity and utility. World Psychiatry, 15, 2631.CrossRefGoogle ScholarPubMed
Jamison, K. R. (1989). Mood disorders and patterns of creativity in British writers and artists. Psychiatry – Interpersonal and Biological Processes, 52, 125134.CrossRefGoogle ScholarPubMed
Johnson, S. L., Edge, M. D., Holmes, M. K., & Carver, C. S. (2012). The behavioral activation system and mania. Annual Review of Clinical Psychology, 8, 243267.CrossRefGoogle ScholarPubMed
Johnson, S. L., & Fulford, D. (2009). Preventing mania: A preliminary examination of the GOALS Program. Behavioral Therapy, 40, 103113.CrossRefGoogle Scholar
Johnson, S. L., Murray, G., Hou, S., Staudenmaier, P. J., Freeman, M. A., Michalak, E. E., & Crest, Bd. (2015). Creativity is linked to ambition across the bipolar spectrum. Journal of Affective Disorders, 178, 160164.CrossRefGoogle ScholarPubMed
Johnson, S. L., Tharp, J. A., & Holmes, M. K. (2015). Understanding creativity in bipolar I disorder. Psychology of Aesthetics Creativity and the Arts, 9, 319327.CrossRefGoogle Scholar
Jones, S., Dodd, A., & Gruber, J. (2014). Development and validation of a new multidimensional measure of inspiration: Associations with risk for bipolar disorder. PLoS ONE, 9(3), e91669.CrossRefGoogle ScholarPubMed
Juckel, G., & Morosini, P. L. (2008). The new approach: Psychosocial functioning as a necessary outcome criterion for therapeutic success in schizophrenia. Current Opinion in Psychiatry, 21, 630639.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2, E97.CrossRefGoogle ScholarPubMed
Jung, R. E., Gasparovic, C., Chavez, R. S., Flores, R. A., Smith, S. M., Caprihan, A., & Yeo, R. A. (2009). Biochemical support for the “threshold” theory of creativity: A magnetic resonance spectroscopy study. Journal of Neuroscience, 29, 53195325.CrossRefGoogle ScholarPubMed
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: Disentangling constructs with diffusion tensor imaging. PLoS ONE, 5(3), e9818.CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2009). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409.CrossRefGoogle Scholar
Karlsson, J. L. (1970). Genetic association of giftedness and creativity with schizophrenia. Hereditas, 66, 177182.CrossRefGoogle Scholar
Kasirer, A., & Mashal, N. (2014). Verbal creativity in autism: Comprehension and generation of metaphoric language in high-functioning autism spectrum disorder and typical development. Frontiers in Human Neuroscience, 11, Article 615.Google Scholar
Kaufman, J. C., & Sternberg, R. J. (2010). The Cambridge handbook of creativity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kayser, M. (2013). Editors’ Pick: Mad and genius in the same gene? Investigative Genetics, 4, 14.CrossRefGoogle ScholarPubMed
Keri, S. (2009). Genes for psychosis and creativity: A promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychological Science, 20, 10701073.CrossRefGoogle ScholarPubMed
Kidner, D. (1976). Creativity and socialization as predictors of abnormality. Psychological Reports, 39, 966966.CrossRefGoogle ScholarPubMed
Kim, D., Raine, A., Triphon, N., & Green, M. F. (1992). Mixed handedness and features of schizotypal personality in a nonclinical sample. Journal of Nervous and Mental Disease, 180, 133135.CrossRefGoogle Scholar
Kinney, D. K., Richards, R., Lowing, P. A., LeBlanc, D., Zimbalist, M. E., & Harlan, P. (2000). Creativity in offspring of schizophrenic and control parents: An adoption study. Creativity Research Journal, 13, 1725.CrossRefGoogle Scholar
Kooij, S. J., Bejerot, S., Blackwell, A., Caci, H., Casas-Brugue, M., Carpentier, P. J., … Asherson, P. (2010). European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD. BMC Psychiatry, 10, 67.CrossRefGoogle ScholarPubMed
Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30, 16781690.CrossRefGoogle ScholarPubMed
Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 2047). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kyaga, S. (2014). Creativity and mental illness: The mad genius in question. London: Palgrave Macmillan.Google Scholar
Kyaga, S., Fogelberg, J., Sellgren, C., & Landén, M. (2014). Cognitive and biological markers for creative achievement. Paper presented at the The Molecular Basis of Brain Disorders, Miami, Florida, USA.Google Scholar
Kyaga, S., Landen, M., Boman, M., Hultman, C. M., Langstrom, N., & Lichtenstein, P. (2013). Mental illness, suicide and creativity: 40-year prospective total population study. Journal of Psychiatric Research, 47, 8390.CrossRefGoogle ScholarPubMed
Kyaga, S., Lichtenstein, P., Boman, M., Hultman, C., Langstrom, N., & Landen, M. (2011). Creativity and mental disorder: Family study of 300 000 people with severe mental disorder. British Journal of Psychiatry, 199, 373379.CrossRefGoogle ScholarPubMed
Lange-Eichbaum, W., & Paul, M. E. (1931). [Das Genie-Problem.] The problem of genius … Translated by Eden and Cedar Paul: pp. xix. 187. London: Kegan Paul & Co.Google Scholar
Lauronen, E., Veijola, J., Isohanni, I., Jones, P. B., Nieminen, P., & Isohanni, M. (2004). Links between creativity and mental disorder. Psychiatry – Interpersonal and Biological Processes, 67, 8198.CrossRefGoogle ScholarPubMed
LeBoutillier, N., Barry, R., & Westley, D. (2014). The role of schizotypy in predicting performance on figural and verbal imagery-based measures of creativity. Creativity Research Journal, 26, 461467.CrossRefGoogle Scholar
Lehman, H. (1947). National differences in creativity. American Journal of Sociology, 52, 475488.CrossRefGoogle ScholarPubMed
Leung, A. K., Liou, S., Qiu, L., Kwan, L. Y., Chiu, C. Y., & Yong, J. C. (2014). The role of instrumental emotion regulation in the emotions–creativity link: How worries render individuals with high neuroticism more creative. Emotion, 14, 846856.CrossRefGoogle ScholarPubMed
Lombroso, C. (1891). The man of genius. Scott.Google Scholar
Ludwig, A. M. (1992). Creative achievement and psychopathology – Comparison among professions. American Journal of Psychotherapy, 46, 330356.CrossRefGoogle ScholarPubMed
Ludwig, A. M. (1995). The price of greatness: Resolving the creativity and madness controversy. New York, NY: Guilford Press.Google Scholar
MacCabe, J. H., Lambe, M. P., Cnattingius, S., Sham, P. C., David, A. S., Reichenberg, A., … Hultman, C. M. (2010). Excellent school performance at age 16 and risk of adult bipolar disorder: National cohort study. British Journal of Psychiatry, 196, 109115.CrossRefGoogle ScholarPubMed
MacCabe, J. H., Larsson, H., Sariaslan, A., Lichtenstein, P., & Kyaga, S. (2015). Studying a creatuve subject at university is associated with increased risk for psychosis: A case control study and discordant sib-pair analysis of 4,454,763 individuals using Swedish population data. Schizophrenia Bulletin, 41, S146S146.Google Scholar
Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain and Language, 100, 115126.CrossRefGoogle ScholarPubMed
Mason, O., & Claridge, G. (2006). The Oxford–Liverpool Inventory of Feelings and Experiences (O-LIFE): Further description and extended norms. Schizophrenia Research, 82, 203211.CrossRefGoogle ScholarPubMed
Maudsley, H. (1908). Heredity, variation and genius. Bale, Sons and Danielsson.Google Scholar
McIntosh, A. M., Munoz Maniega, S., Lymer, G. K., McKirdy, J., Hall, J., Sussmann, J. E., … Lawrie, S. M. (2008). White matter tractography in bipolar disorder and schizophrenia. Biological Psychiatry, 64, 10881092.CrossRefGoogle ScholarPubMed
Minor, K. S., Firmin, R. L., Bonfils, K. A., Chun, C. A., Buckner, J. D., & Cohen, A. S. (2014). Predicting creativity: The role of psychometric schizotypy and cannabis use in divergent thinking. Psychiatry Research, 220, 205210.CrossRefGoogle ScholarPubMed
Motto, A. L., & Clark, J. R. (1992). The paradox of genius and madness: Seneca and his influence. Cuadernos de Filología Clásica. Estudios latinos, 2, 189200.Google Scholar
Mourgues, C. V., Preiss, D. D., & Grigorenko, E. L. (2014). Reading skills, creativity, and insight: Exploring the connections. Spanish Journal of Psychology, 17, E58.CrossRefGoogle ScholarPubMed
National Institute of Mental Health. Brain stimulation therapies. Retrieved April 5, 2016, from Scholar
National Institute of Mental Health. Psychotherapies. Retrieved April 5, 2016, from Scholar
Owen, G. S., Cutting, J., & David, A. S. (2007). Are people with schizophrenia more logical than healthy volunteers? British Journal of Psychiatry, 191, 453454.CrossRefGoogle ScholarPubMed
Peterson, J. M., & Lansky, L. M. (1974). Left-handedness among architects – Facts and speculation. Perceptual and Motor Skills, 38, 547550.CrossRefGoogle ScholarPubMed
Peterson, J. M., & Lansky, L. M. (1977). Left-handedness among architects – Partial replication and some new data. Perceptual and Motor Skills, 45, 12161218.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2012). Behavioral genetics: A primer (6th ed.). New York, NY: Worth Publishers.Google Scholar
Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., … Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953955.CrossRefGoogle ScholarPubMed
Preti, A., Sardu, C., & Piga, A. (2007). Mixed-handedness is associated with the reporting of psychotic-like beliefs in a non-clinical Italian sample. Schizophrenia Research, 92, 1523.CrossRefGoogle Scholar
Preti, A., & Vellante, M. (2007). Creativity and psychopathology: Higher rates of psychosis proneness and nonright-handedness among creative artists compared to same age and gender peers. Journal of Nervous and Mental Disease, 195, 837845.CrossRefGoogle ScholarPubMed
Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069, 190197.CrossRefGoogle ScholarPubMed
Rhodes, M. (1987). An analysis of creativity. In Isaksen, S. G. (Ed.), Frontiers of creativity research: Beyond the basics (pp. 216222). Buffalo, NY: Bearly Ltd.Google Scholar
Richards, R., Kinney, D. K., Lunde, I., Benet, M., & Merzel, A. P. (1988). Creativity in manic-depressives, cyclothymes, their normal relatives, and control subjects. Journal of Abnormal Psychology, 97, 281288.CrossRefGoogle ScholarPubMed
Roelfsema, M. T., Hoekstra, R. A., Allison, C., Wheelwright, S., Brayne, C., Matthews, F. E., & Baron-Cohen, S. (2011). Are autism spectrum conditions more prevalent in an information-technology region? A school-based study of three regions in the Netherlands. Journal of Autism and Develeopmental Disorders, 42, 734739.CrossRefGoogle Scholar
Rominger, C., Papousek, I., Fink, A., & Weiss, E. M. (2014). Enhancement of figural creativity by motor activation: Effects of unilateral hand contractions on creativity are moderated by positive schizotypy. Laterality, 19, 424438.CrossRefGoogle ScholarPubMed
Rothenberg, A. (1983). Psychopathology and creative cognition. A comparison of hospitalized patients, Nobel laureates, and controls. Archives of General Psychiatry, 40, 937942.CrossRefGoogle ScholarPubMed
Rothenberg, A. (1995). Creativity and affective illness: An objection. Perceptual Motor Skills, 80, 161162.CrossRefGoogle ScholarPubMed
Rothenberg, A. (2001). Bipolar illness, creativity, and treatment. Psychiatric Quarterly, 72, 131147.CrossRefGoogle ScholarPubMed
Ruiter, M., & Johnson, S. L. (2015). Mania risk and creativity: A multi-method study of the role of motivation. Journal of Affective Disorders, 170, 5258.CrossRefGoogle ScholarPubMed
Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657687.CrossRefGoogle ScholarPubMed
Runco, M. A. (2007a). Creativity: Theories and themes: research, development, and practice. Amsterdam: Elsevier Academic Press.Google Scholar
Runco, M. A. (2007b). A hierarchial framwork for for the study of creativity. New Horizons in Education, 55, 19.Google Scholar
Runco, M. A. (2010). Divergent thinking, creativity, and ideation. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 413446). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Runco, M. A. (2014). Creativity: Theories and themes: research, development, and practice (2nd ed.). San Diego, CA: Academic Press.Google Scholar
Ruzich, E., Allison, C., Chakrabarti, B., Smith, P., Musto, H., Ring, H., & Baron-Cohen, S. (2015). Sex and STEM occupation predict autism-spectrum quotient (AQ) scores in half a million people. PLoS ONE, 10(10), e0141229.CrossRefGoogle ScholarPubMed
Santosa, C. M., Strong, C. M., Nowakowska, C., Wang, P. W., Rennicke, C. M., & Ketter, T. A. (2007). Enhanced creativity in bipolar disorder patients: A controlled study. Journal of Affective Disorders, 100, 3139.CrossRefGoogle ScholarPubMed
Sawyer, R. K. (2012a). Creativity and mental Illness: Is there a link? Retrieved April 27, 2014, from Scholar
Sawyer, R. K. (2012b). Explaining creativity: The science of human innovation (2nd ed.). New York, NY: Oxford University Press.Google Scholar
Schatzberg, A. F., & Nemeroff, C. B. (2009). The American Psychiatric Publishing textbook of psychopharmacology (4th ed.). Washington, DC: American Psychiatric Pub.CrossRefGoogle Scholar
Schlesinger, J. (2009). Creative mythconceptions: A closer look at the evidence for the “mad genius” hypothesis. Psychology of Aesthetics Creativity and the Arts, 3, 6272.CrossRefGoogle Scholar
Schlesinger, J. (2012). The insanity hoax: Exposing the myth of the mad genius. Ardsley-on-Hudson, NY: Shrinktunes Media.Google Scholar
Schlesinger, J. (2014). Building connections on sand: The cautionary chapter. In Kaufman, J. C. (Ed.), Creativity and mental illness. Cambridge: Cambridge University Press.Google Scholar
Schou, M. (1979). Artistic productivity and lithium prophylaxis in manic-depressive illness. British Journal of Psychiatry, 135, 97103.CrossRefGoogle ScholarPubMed
Schou, M., Thomsen, K., & Armitage, P. (1971). Prophylactic lithium. The Lancet, 297, 1066.CrossRefGoogle Scholar
Schuldberg, D., French, C., Stone, B. L., & Heberle, J. (1988). Creativity and schizotypal traits. Creativity test scores and perceptual aberration, magical ideation, and impulsive nonconformity. Journal of Nervous and Mental Disease, 176(11), 648657.CrossRefGoogle ScholarPubMed
Shaw, E. D., Mann, J. J., Stokes, P. E., & Manevitz, A. Z. (1986). Effects of lithium carbonate on associative productivity and idiosyncrasy in bipolar outpatients. American Journal of Psychiatry, 143, 11661169.Google ScholarPubMed
Shaw, J., Claridge, G., & Clark, K. (2001). Schizotypy and the shift from dextrality: A study of handedness in a large non-clinical sample. Schizophrenia Research, 50, 181189.CrossRefGoogle Scholar
Silvia, P. J., Winterstein, B. P., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., … Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2, 6885.CrossRefGoogle Scholar
Simeonova, D. I., Chang, K. D., Strong, C., & Ketter, T. A. (2005). Creativity in familial bipolar disorder. Journal of Psychiatric Research, 39, 623631.CrossRefGoogle ScholarPubMed
Simonton, D. K. (1977a). Creative productivity, age, and stress – Biographical time-series analysis of 10 classical composers. Journal of Personality and Social Psychology, 35, 791804.CrossRefGoogle ScholarPubMed
Simonton, D. K. (1977b). Eminence, creativity, and geographic marginality – Recursive structural equation model. Journal of Personality and Social Psychology, 35, 805816.CrossRefGoogle Scholar
Simonton, D. K. (1984). Genius, creativity, and leadership: Historiometric inquiries. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Simonton, D. K. (1985). Quality, quantity, and age – The careers of ten distinguished psychologists. International Journal of Aging & Human Development, 21, 241254.CrossRefGoogle ScholarPubMed
Simonton, D. K. (1988a). Age and outstanding achievement: What do we know after a century of research? Psychological Bulletin, 104, 251267.CrossRefGoogle ScholarPubMed
Simonton, D. K. (1988b). Scientific genius: A psychology of science. Cambridge: Cambridge University Press.Google Scholar
Simonton, D. K. (1991a). Career landmarks in science – Individual-differences and interdisciplinary contrasts. Developmental Psychology, 27, 119130.CrossRefGoogle Scholar
Simonton, D. K. (1991b). Emergence and realization of genius – The lives and works of 120 classical composers. Journal of Personality and Social Psychology, 61, 829840.CrossRefGoogle Scholar
Simonton, D. K. (1997). Creative productivity: A predictive and explanatory model of career trajectories and landmarks. Psychological Review, 104, 6689.CrossRefGoogle Scholar
Simonton, D. K. (1998). Fickle fashion versus immortal fame: Transhistorical assessments of creative products in the opera house. Journal of Personality and Social Psychology, 75, 198210.CrossRefGoogle Scholar
Simonton, D. K. (1999a). Creativity as blind variation and selective retention: Is the creative process Darwinian? Psychological Inquiry, 10, 309328.Google Scholar
Simonton, D. K. (1999b). Origins of genius: Darwinian perspectives on creativity. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Simonton, D. K. (2000). Creative development as acquired expertise: Theoretical issues and an empirical test. Developmental Review, 20, 283318.CrossRefGoogle Scholar
Simonton, D. K. (2003). Scientific creativity as constrained stochastic behavior: The integration of product, person, and process perspectives. Psychological Bulletin, 129, 475494.CrossRefGoogle ScholarPubMed
Son, S., Kubota, M., Miyata, J., Fukuyama, H., Aso, T., Urayama, S., … Takahashi, H. (2015). Creativity and positive symptoms in schizophrenia revisited: Structural connectivity analysis with diffusion tensor imaging. Schizophrenia Research, 164, 221226.CrossRefGoogle ScholarPubMed
Srivastava, S., Childers, M. E., Baek, J. H., Strong, C. M., Hill, S. J., Warsett, K. S., … Ketter, T. A. (2010). Toward interaction of affective and cognitive contributors to creativity in bipolar disorders: A controlled study. Journal of Affective Disorders, 125, 2734.CrossRefGoogle ScholarPubMed
Stahl, S. M. (2013). Stahl’s essential psychopharmacology: Neuroscientific basis and practical application (4th ed.). Cambridge: Cambridge University Press.Google Scholar
Starchenko, M. G., Bekhtereva, N. P., Pakhomov, S. V., & Medvedev, S. V. (2003). Study of the brain organization of creative thinking. Human Physiology, 29, 652653.CrossRefGoogle ScholarPubMed
Strong, C. M., Nowakowska, C., Santosa, C. M., Wang, P. W., Kraemer, H. C., & Ketter, T. A. (2007). Temperament–creativity relationships in mood disorder patients, healthy controls and highly creative individuals. Journal of Affective Disorders, 100, 4148.CrossRefGoogle ScholarPubMed
Synder, A., Mulcahy, E., Taylor, J., Mitchell, D. J., Sachdev, P., & Gandevia, S. C. (2003). Savant-like skills exposed in normal people by suppressing the left frontotemporal lobe. Journal of Integrative Neuroscience, 2, 149158.CrossRefGoogle Scholar
Takeuchi, H., Tomita, H., Taki, Y., Kikuchi, Y., Ono, C., Yu, Z., … Kawashima, R. (2015). Cognitive and neural correlates of the 5-repeat allele of the dopamine D4 receptor gene in a population lacking the 7-repeat allele. NeuroImage, 110, 124135.CrossRefGoogle Scholar
Taylor, K., Fletcher, I., & Lobban, F. (2015). Exploring the links between the phenomenology of creativity and bipolar disorder. Journal of Affective Disorders, 174, 658664.CrossRefGoogle ScholarPubMed
Thys, E., Sabbe, B., & De Hert, M. (2014a). The assessment of creativity in creativity/psychopathology research – A systematic review. Cognitive Neuropsychiatry, 19, 359377.CrossRefGoogle ScholarPubMed
Thys, E., Sabbe, B., & De Hert, M. (2014b). Creativity and psychopathology: A systematic review. Psychopathology, 47, 141147.CrossRefGoogle ScholarPubMed
Torrance, E. P. (1995). Why fly? Norwood, NJ: Ablex.Google Scholar
Turner, M. A. (1999). Generating novel ideas: Fluency performance in high-functioning and learning disabled individuals with autism. Journal of Child Psychology and Psychiatry, 40, 189201.CrossRefGoogle ScholarPubMed
Wallas, G. (1926). Art of thought. New York, NY: Harcourt Brace.Google Scholar
Weinstein, S., & Graves, R. E. (2002). Are creativity and schizotypy products of a right hemisphere bias? Brain and Cognition, 49, 138151.CrossRefGoogle ScholarPubMed
White, H. A., & Shah, P. (2006). Uninhibited imaginations: Creativity in adults with Attention-Deficit/Hyperactivity Disorder. Personality and Individual Differences, 40, 11211131.CrossRefGoogle Scholar
White, H. A., & Shah, P. (2011). Creative style and achievement in adults with attention-deficit/hyperactivity disorder. Personality and Individual Differences, 50, 673677.CrossRefGoogle Scholar
Wittkower, R., & Wittkower, M. (2007). Born under Saturn: The character and conduct of artists: A documented history from antiquity to the French Revolution. New York, NY: New York Review Books.Google Scholar
World Health Organization. (1967). International Classification of Diseases, Eight Revision (ICD-8). Geneva: World Health Organization.Google Scholar
World Health Organization. (1977). International Classification of Diseases, Ninth Revision (ICD-9). Geneva: World Health Organization.Google Scholar
World Health Organization. (2004). International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) (2 ed.). Geneva: World Health Organization.Google Scholar
Wu, T. Q., Miller, Z. A., Adhimoolam, B., Zackey, D. D., Khan, B. K., Ketelle, R., … Miller, B. L. (2015). Verbal creativity in semantic variant primary progressive aphasia. Neurocase, 21, 7378.CrossRefGoogle ScholarPubMed
Zabelina, D. L., Condon, D., & Beeman, M. (2014). Do dimensional psychopathology measures relate to creative achievement or divergent thinking? Frontiers in Psychology, 5, 111.CrossRefGoogle ScholarPubMed


Abraham, A., Windmann, S., Siefen, R., Daum, I., & Güntürkün, O. (2006). Creative thinking in adolescents with attention deficit hyperactivity disorder (ADHD). Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 12(2), 111123.CrossRefGoogle ScholarPubMed
Acar, S., & Sen, S. (2013). A multilevel meta-analysis of the relationship between creativity and schizotypy. Psychology of Aesthetics, Creativity, and the Arts, 7, 214228.CrossRefGoogle Scholar
Agnati, L. D., Guidolin, D., Battistin, L., Pagnoni, A. G., & Fuxe, K. (2013). The neurobiology of imagination: Possible role of interaction-dominant dynamics and default mode network. Frontiers in Psychology, 4, Article 296.CrossRefGoogle ScholarPubMed
Alderson, R. M., Kasper, L. J., Hudec, K. L., & Patros, C. H. G. (2013). Attention-deficit/hyperactivity disorder (ADHD) and working memory in adults: A meta-analytic review. Neuropsychology, 27, 287302.CrossRefGoogle ScholarPubMed
Alloy, L. B., Bender, R. E., Wagner, C A., Whitehouse, W. G., Abramson, L. Y., Hogan, M. E., … Harmon-Jones, E. (2009). Bipolar spectrum–substance use comorbidity: Behavioral Approach System (BAS) sensitivity and impulsiveness as shared vulnerabilities. Journal of Personality and Social Psychology, 97, 549565.CrossRefGoogle Scholar
Andreasen, N. (1987). Creativity and mental illness: Prevalence rates in writers and their first-degree relatives. American Journal of Psychiatry, 144, 12881292.Google ScholarPubMed
Aristophanes, . (424 BC). The knights. Retrieved from Scholar
Aristotle, . (1984). Problems. In Barnes, J. (Ed.), The complete works of Aristotle (vol. 2, pp. 13191527). Princeton, NJ: Princeton University Press.Google Scholar
Ash, I. K., & Wiley, J. (2006). The nature of restructuring in insight: An individual differences approach. Psychonomic Bulletin & Review, 13, 6673.CrossRefGoogle ScholarPubMed
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529550.CrossRefGoogle ScholarPubMed
Baas, M., De Dreu, C. K. W., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood–creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134, 739756.CrossRefGoogle ScholarPubMed
Baas, M., Nijstad, B. A., Boot, N. C., & De Dreu, C. K. W. (2016). Mad genius revisited: Vulnerability to psychopathology, biobehavioral approach-avoidance, and creativity. Psychological Bulletin, 142(6), 668692.CrossRefGoogle ScholarPubMed
Barnett, G. H., Salmond, G. H., Jones, P. B., & Sahakian, B. J. (2006). Cognitive reserve in neuropsychiatry. Psychological Medicine, 36, 10531064.CrossRefGoogle ScholarPubMed
Barron, F. (1955). The disposition toward originality. Journal of Abnormal and Social Psychology, 51, 478485.CrossRefGoogle ScholarPubMed
Barron, F. (1969). Creative person and creative process. New York, NY: Holt, Rinehart, and Winston.Google Scholar
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988a). Differential performance of acute and chronic schizophrenics in a latent inhibition task. Journal of Nervous and Mental Disease, 176, 598606.CrossRefGoogle Scholar
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988b). Latent inhibition and “psychotic proneness” in normal subjects. Personality and Individual Differences, 9, 777783.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., & Neubauer, A. C. (2014). Creativity and the default mode network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298.CrossRefGoogle ScholarPubMed
Becker, G. (2000–2001). The association of creativity and psychopathology: Its cultural–historical origins. Creativity Research Journal, 13, 4553.CrossRefGoogle Scholar
Berenbaum, H., & Fujita, F. (1994). Schizophrenia and personality: Exploring the boundaries and connections between vulnerability and outcome. Journal of Abnormal Psychology, 103, 148158.CrossRefGoogle ScholarPubMed
Berrettini, W. H. (2000). Susceptibility loci for bipolar disorder: Overlap with inherited vulnerability to schizophrenia. Biological Psychiatry, 47, 245251.CrossRefGoogle ScholarPubMed
Brod, J. H. (1987). Creativity and schizotypy. In Claridge, G. (Ed.), Schizotypy: Implications for illness and health (pp. 274298). Oxford: Oxford University Press.Google Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Science, 1124, 138.CrossRefGoogle ScholarPubMed
Burch, G. St. J., Pavelis, C., Hemsley, D. R., & Corr, P. J. (2006). Schizotypy and creativity in visual artists. British Journal of Psychology, 97, 177190.CrossRefGoogle ScholarPubMed
Capusan, A. J., Bendtsen, P., Marteinsdottir, I., Kuja-Halkola, R., & Larsson, H. (2015). Genetic and environmental contributions to the association between attention deficit hyperactivity disorder and alcohol dependence in adulthood: A large population-based twin study. American Journal of Medical Genetics, Part B, 168B, 414422.CrossRefGoogle Scholar
Carson, S. (2014a). The shared vulnerability model of creativity and psychopathology. In Kaufman, J. C. (Ed.), Creativity and mental illness (pp. 253280). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Carson, S. (2014b). Cognitive disinhibition, creativity, and psychopathology. In Simonton, D. K. (Ed.), The Wiley handbook of genius (pp. 198221). Oxford: Wiley.CrossRefGoogle Scholar
Carson, S. (2014c). Leveraging the “mad genius” debate: Why we need a neuroscience of creativity and psychopathology. Frontiers in Human Neuroscience, 8, Article 771.CrossRefGoogle Scholar
Carson, S. H. (2001). Demons and muses: An exploration of cognitive features and vulnerability to psychosis in creative individuals. Retrieved from Dissertations and Theses database. Harvard University (AAT3011334).Google Scholar
Carson, S. H. (2011). Creativity and psychopathology: A genetic shared-vulnerability model. Canadian Journal of Psychiatry, 56, 144153.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506.CrossRefGoogle ScholarPubMed
Černis, E., Vassos, E., Brébion, G., McKenna, , Murray, P. J., David, R. M., , A. S., & MacCabe, J. H. (2015). Schizophrenia patients with high intelligence: A clinically distinct sub-type of schizophrenia? European Psychiatry, 30(5), 628632.CrossRefGoogle ScholarPubMed
Claridge, G. (Ed.).(1997). Schizotypy: Implications for illness and health. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. Archives of General Psychiatry, 44, 573588.CrossRefGoogle ScholarPubMed
Cloninger, C. R., Svrakic, D. M., & Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50, 975990.CrossRefGoogle ScholarPubMed
Cohen, G. D. (2006). Research on creativity and aging: The positive impact of the arts on health and illness. Generations, 30, 715.Google Scholar
Connor, J. P., Young, R. M., Lawford, B. R., Ritchie, T. L., & Noble, E. P. (2002). D2 dopamine receptor (DRD2) polymorphism is associated with severity of alcohol dependence. European Psychiatry, 17, 1723.CrossRefGoogle ScholarPubMed
Cox, A. J., & Leon, J. L. (1999). Negative schizotypal traits in the relation of creativity to psychopathology. Creativity Research Journal, 12, 2536.CrossRefGoogle Scholar
Cramond, B. (1995). The coincidence of attention deficit hyperactivity disorder and creativity. Monograph prepared for The National Research Center on the Gifted and Talented. Scholar
Cramond, B. (1994). The relationship between attention deficit hyperactivity disorder and creativity. Paper presented at the annual meeting of the American Educational Research Association, April 4–8, 1994. New Orleans, LA.Google Scholar
Dardis, T. (1989). The thirsty muse: Alcohol and the American writer. New York, NY: Tichnor & Fields.Google Scholar
de Manzano, O., Cervenka, S., Karbanov, A., Farde, L., & Ullėn, F. (2010). Thinking outside a less intact box: Thalamic dopamine d2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS ONE, 5, e10670.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Flanders, J. L., & Peterson, J. B. (2008). Cognitive abilities involved in insight problem solving: An individual differences model. Creativity Research Journal, 20, 278290.CrossRefGoogle Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Diaz, E., Medellín, J., Sánchez, N., Vargas, J. P., & López, J. C. (2015). Involvement of D1 and D2 dopamine receptor in the retrieval processes in latent inhibition. Psychopharmacology, 232, 43374346.CrossRefGoogle ScholarPubMed
Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness. The transient hypofrontality hypothesis. Consciousness & Cognition, 12, 231256.CrossRefGoogle ScholarPubMed
Dryden, J. (1681). Absalom and Achitophel, Pt 1, lines 163–164. Scholar
Eisenman, R. (1990). Creativity, preference for complexity, and physical and mental illness. Creativity Research Journal, 3(3), 231236.CrossRefGoogle Scholar
Ekelund, J., Lichtermann, D., Jarvelin, M.R., & Peltonen, L. (1999). Association between novelty seeking and the type 4 dopamine receptor gene in a large Finnish cohort sample. American Journal of Psychiatry, 156, 14531455.CrossRefGoogle Scholar
Eschleman, K. J., Madsen, J., Alarcon, G., & Barelka, B. (2014). Benefiting from creative activity: The positive relationships between creative activity, recovery experiences, and performance-related outcomes Journal of Occupational and Organizational Psychology, 87, 579598.CrossRefGoogle Scholar
Falkenberg, I., Chaddock, C., Murray, R. M., McDonald, C., Modinos, G., Bramon, E., … Allan, P. (2015). Failure to deactivate medial prefrontal cortex in people at high risk for psychosis. European Psychiatry, 30, 633640.CrossRefGoogle ScholarPubMed
Fassbender, C., Zhang, H., Buzy, W. M., Cortes, C. R., Mizuiri, D., Beckett, L., & Schweitzer, J. B. (2009). A lack of default network suppression is linked to increased distractibility in ADHD. Brain Research, 1273, 114128.CrossRefGoogle ScholarPubMed
Favre, P., Baciu, M., Pichat, C., Bougerol, T., & Polosan, M. (2014). fMRI evidence for abnormal resting-state functional connectivity in euthymic bipolar patients. Journal of Affective Disorders, 165, 182189.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A.C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734748.CrossRefGoogle ScholarPubMed
Fink, A., Slamar-Halbedl, M., Unterrainer, H. F., & Weiss, E. M. (2012). Creativity: Genius, madness, or a combination of both? Psychology of Aesthetics, Creativity, and the Arts, 6, 1118.CrossRefGoogle Scholar
Fink, A., Weber, B., Koschutnig, K., Benedek, M., Reishofer, G., Ebner, F., … Weiss, E. M. (2014). Creativity and schizotypy from the neuroscience perspective. Cognitive, Affective, and Behavioral Neuroscience, 14, 378387.CrossRefGoogle ScholarPubMed
Folley, B. S., & Park, S. (2005). Verbal creativity and schizotypal personality in relation to prefrontal hemispheric laterality: A behavioral and near-infrared optical imaging study. Schizophrenia Research, 80, 271282.CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (