Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T18:11:06.368Z Has data issue: false hasContentIssue false

Part VII - Individual Differences

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Akiskal, H. S., Akiskal, K. K., Haykal, R. F., Manning, J. S., & Connor, P. D. (2005). TEMPS-A: progress towards validation of a self-rated clinical version of the Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego Autoquestionnaire. Journal of Affective Disorders, 85, 316.CrossRefGoogle ScholarPubMed
Baas, M., de Dreu, C. K. W., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134, 779806. doi:10.1037/a0012815CrossRefGoogle ScholarPubMed
Baas, M., Nijstad, B. A., Boot, N. C., & de Dreu, C. K. W. (2016). Mad genius revisited: Vulnerability to psychopathology, biobehavioral approach-avoidance, and creativity. Psychological Bulletin, 142, 668692. http://dx.doi.org/10.1037/bul0000049CrossRefGoogle ScholarPubMed
Barron, F. (1953). An ego-strength scale which predicts response to psychotherapy. Journal of Consulting Psychology, 17, 327333.CrossRefGoogle ScholarPubMed
Berry, C. (1981). The Nobel scientists and the origins of scientific achievement. British Journal of Sociology, 32, 381391.CrossRefGoogle Scholar
Bouchard, T. J., Lykken, D. T., Tellegen, A., Blacker, D. M., & Waller, N. G. (1993). Creativity, heritability, familiarity: Which word does not belong? Psychological Inquiry, 4, 235237. DOI:10.1207/s15327965pli0403_18CrossRefGoogle Scholar
Carson, S., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity and factor structure of the Creative Achievement Questionnaire. Creativity Research Journal, 17, 3750.CrossRefGoogle Scholar
Chavez-Eakle, R. A., Ma. del Carmen, L., & Cruz-Fuentes, C. (2006). Personality: A possible bridge between creativity and psychopathology? Creativity Research Journal, 18, 2738.CrossRefGoogle Scholar
Cramond, B., Matthews-Morgan, J., Bandalos, D., & Zuo, L. (2005). A report on the 40-year follow up of the Torrance Tests of Creative Thinking: Alive and well in the new millenium. Gifted Child Quarterly, 49, 283291. doi:10.1177/001698620504900402CrossRefGoogle Scholar
Davis, K. L., Panksepp, J., & Normansell, L. (2003). The affective neuroscience personality scales: Normative data and implications. Neuropsychoanalysis, 5, 5769.CrossRefGoogle Scholar
Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491517. http://dx.doi.org/10.1017/S0140525X99002046CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4, 147178.CrossRefGoogle Scholar
Eysenck, H. J. (1995). Creativity as a product of intelligence and personality. In Saklofske, D. H. & Zeidner, M. (Eds.), International handbook of personality and intelligence (pp. 231247). New York, NY: Plenum Press. doi:10.1007/978-1-4757-5571-8_12CrossRefGoogle Scholar
Eysenck, H. J. (1997). Creativity and personality. In Runco, M. A. (Ed.), The creativity research handbook (pp. 4166). Cresskill, NJ: Hampton Press.Google Scholar
Feist, G. J. (1998). A meta-analysis of the impact of personality on scientific and artistic creativity. Personality and Social Psychological Review, 2, 290309.CrossRefGoogle Scholar
Finke, R. A., Ward, T. B., & Smith, S. M. (1996). Creative cognition: Theory, research and applications. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. The Journal of Comparative Neurology, 493, 147153. http://dx.doi.org/10.1002/cne.20768CrossRefGoogle ScholarPubMed
Flebus, G. (2006). Versione Italiana dei Big Five Markers di Goldberg. Università Milano Bicocca.Google Scholar
Fodor, E. M. (1995). Subclinical manifestations of psychosis-proneness, ego strength and creativity. Personality and Individual Differences, 18, 635642.CrossRefGoogle Scholar
Galton, F. (1869). Hereditary genius. London: Macmillan.CrossRefGoogle Scholar
Goldberg, L. R., Johnson, A. J.,Eber, H. W., Hogan, R., Ashton, M. C., Cloninger, C. R., & Gough, H. G. (2006). The international personality item pool and the future of public-domain personality measures. Journal of Research in Personality, 40, 8496. https://doi.org/10.1016/j.jrp.2005.08.007CrossRefGoogle Scholar
Grigorenko, E. L., LaBude, M. C., & Carter, A. S. (1992). Similarity in general cognitive ability, creativity, and cognitive style in a sample of adolescent Russian twins. Acta Geneticae Medicae et Gemellologicae, 41, 6572.CrossRefGoogle Scholar
Hur, Y.-M., Jeong, H. U., & Piffer, D. (2014). Shared genetic and environmental influences on self-reported creative achievement in art and science. Personality and Individual Differences, 68, 1822.CrossRefGoogle Scholar
Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12, 432442. doi:10.1038/sj.mp.4001950.CrossRefGoogle ScholarPubMed
Kandler, C., Riemann, R., Angleitner, A., Spinath, F. M., Borkenau, P., & Penke, L. (2016). The nature of creativity: The role of genetic factors, personality traits, cognitive abilities and environmental sources. Journal of Personality and Social Psychology, 111, 230249.CrossRefGoogle Scholar
Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four C model of creativity. Review of General Psychology, 13, 112.CrossRefGoogle Scholar
Kendler, K. S., & Gardner, C. O. (2011). A longitudinal etiologic model for symptoms of anxiety and depression in women. Psychological Medicine, 41, 20352045. doi:10.1017/S0033291711000225.CrossRefGoogle ScholarPubMed
Kim, J. (2015). Physical activity benefits creativity: Squeezing a ball for enhancing creativity. Creativity Research Journal, 4, 328333.CrossRefGoogle Scholar
Kinney, D. K., Richards, R., Lowing, P. A., LeBlanc, D., Zimbalist, M. E., & Harlan, P. (2001). Creativity in offspring of schizophrenic and control parents: An adoption study. Creativity Research Journal, 13, 1725.CrossRefGoogle Scholar
Kirby, K. N., & Finch, J. C. (2010). The hierarchical structure of self-reported impulsivity. Personality and Individual Differences, 48, 704713.CrossRefGoogle ScholarPubMed
Krapohl, E., Rimfeld, K., Shakeshafta, N. G., Trzaskowskia, M., McMillan, A., Pingaulta, J.B., … Plomin, R. (2014). The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proceedings of the National Academy of Sciences: USA, 42, 1527315278, doi:10.1073/pnas.1408777111CrossRefGoogle Scholar
Kyaga, S., Landén, M., Boman, , Hultman, M., Langstrom, C. M., , N., & Lichtenstein, P. (2013). Mental illness, suicide and creativity: 40-year prospective total population study. Journal of Psychiatric Research, 47, 8390.CrossRefGoogle ScholarPubMed
Krapohl, E., Euesden, J., Zabaneh, D., Pingault, J.B., Rimfeld, K., von Stumm, S., … & Plomin, R. (2015). Phenome-wide analysis of genome-wide polygenic scores. Molecular Psychiatry, 16. doi:10.1038/mp.2015.126Google ScholarPubMed
Leung, K. Y. A., & Chiu, C. (2008). Interactive effects of multicultural experiences and openness to experience on creative potential. Creativity Research Journal, 20, 376382.CrossRefGoogle Scholar
Mason, O., & Claridge, G. (2006). The Oxford–Liverpool Inventory of Feelings and Experiences (O-LIFE): Further description and extended norms. Schizophrenia Research, 82, 203211.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of creativity. Psychological Review, 69, 220232. doi:10.1037/h00488CrossRefGoogle Scholar
Mouchiroud, C., & Lubart, T. (2001). Children’s original thinking: An empirical examination of alternative measures derived from divergent thinking tasks. The Journal of Genetic Psychology, 162, 382401.CrossRefGoogle ScholarPubMed
Nettle, D., & Clegg, H. (2006). Schizotypy, creativity and mating success in humans. Proceedings of the Biological Society, 273, 611615.Google ScholarPubMed
Nichols, R. C. (1978). Twin studies of ability, personality and interests. Homo, 29, 158173Google Scholar
Nicolas, S., Andrieu, B., Croizet, J.-C., Sanitioso, R. B., & Burman, J. T. (2013). Sick? Or slow? On the origins of intelligence as a psychological object. Intelligence, 41, 699711. doi:10.1016/j.intell.2013.08.006CrossRefGoogle Scholar
Nusbaum, E. C., & Silva, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645. https://doi.org/10.1016/j.intell.2010.11.002CrossRefGoogle Scholar
Piffer, D. (2012). Can creativity be measured? An attempt to clarify the notion of creativity and general discussions for future research. Thinking Skills and Creativity, 7, 258264. http://dx.doi.org/10.1016/j.tsc.2012.04.009CrossRefGoogle Scholar
Piffer, D. (2014). The personality and cognitive correlates of creative achievement. http://openpsych.net/ODP/2014/04/the-personality-and-cognitive-correlates-of-creative-achievement/CrossRefGoogle Scholar
Piffer, D. (2016). The heritability of creative potential. figshare. https://dx.doi.org/10.6084/m9.figshare.3498107.v1CrossRefGoogle Scholar
Piffer, D., & Hur, Y.-M. (2014). Heritability of creative achievement. Creativity Research Journal, 26, 151157.CrossRefGoogle Scholar
Plomin, R., DeFries, J., McGuffin, P., & McClearn, G. E. (2008). Behavioral Genetics, 5th edition. Worth Publishers.Google Scholar
Post, R. M. (2007). Kindling and sensitization as models for affective episode recurrence, cyclicity, and tolerance phenomena. Neuroscience & Biobehavioral Reviews, 31, 858873. doi:10.1016/j.neubiorev.2007.04.003.CrossRefGoogle ScholarPubMed
Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., … Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953955. doi:10.1038/nn.4040CrossRefGoogle ScholarPubMed
Preti, A. (2010). The Italian version of the validated short TEMPS-A: The Temperament Evaluation of Memphis, Pisa, Paris and San Diego. Journal of Affective Disorders, 120, 207212. doi:10.1016/j.jad.2009.02.025.CrossRefGoogle ScholarPubMed
Reznikoff, M., Domino, G., Bridges, C., & Honeyman, M. (1973). Creative abilities in identical and fraternal twins. Behavior Genetics, 3, 365377.CrossRefGoogle ScholarPubMed
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., … Koellinger, P. D. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340, 14671471. http://dx.doi.org/10.1126/science.123548CrossRefGoogle ScholarPubMed
Roe, A. (1953). The making of a scientist. New York, NY: Dodd, Mead.Google Scholar
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 9296.CrossRefGoogle Scholar
Runco, M. A., Noble, E. P., Reiter-Palmon, R., Acar, S., Ritchie, T., & Yurkovich, J. M. (2011). The genetic basis of creativity and ideational fluency. Creativity Research Journal, 23, 376380.CrossRefGoogle Scholar
Simonton, D. K. (1986). Biographical typicality, eminence, and achievement style. Journal of Creative Behaviour, 20, 1422.CrossRefGoogle Scholar
Simonton, D. K. (1989). Shakespeare’s sonnets: A case of and for single-case historiometry. Journal of Personality, 57, 695721.CrossRefGoogle Scholar
Simonton, D. K. (2010). Creativity in highly eminent individuals. In Kaufman, J. C., & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 174188). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Terman, L. M., & Merrill, M. A. (1937). Measuring intelligence. Boston, MA: Houghton Mifflin.Google Scholar
Torrance, E. P. (1968). Examples and rationales of test tasks for assessing creative abilities. Journal of Creative Behavior, 2, 165178.CrossRefGoogle Scholar
Torrance, E. P. (2008). Torrance Tests of Creative Thinking: Norms-technical manual, verbal forms A and B. Bensenville, IL: Scholastic Testing Service.Google Scholar
Velazquez, J. A., Segal, N. L., & Horwitz, B. N. (2015). Genetic and environmental influences on applied creativity: A reared-apart twin study. Personality and Individual Differences, 75, 141146.CrossRefGoogle ScholarPubMed
Vernon, P. A., Martin, R. A., Schermer, J. A., & Mackie, A. (2008). A behavioral genetic investigation of humor styles and their correlations with the Big-5 personality dimensions. Personality and Individual Differences, 44, 11161125.CrossRefGoogle Scholar

References

Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – The methods. NeuroImage, 11, 805821.CrossRefGoogle ScholarPubMed
Ashby, F. G., & Isen, A. M. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529550.CrossRefGoogle ScholarPubMed
Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system – A technical review. NMR in Biomedicine, 15, 435455.CrossRefGoogle ScholarPubMed
Betjemann, R. S., Johnson, E. P., Barnard, H., Boada, R., Filley, C. M., Filipek, P. A., … Pennington, B. F. (2010). Genetic covariation between brain volumes and IQ, reading performance, and processing speed. Behavior Genetics, 40, 135145.CrossRefGoogle ScholarPubMed
Bódi, N., Kéri, S., Nagy, H., Moustafa, A., Myers, C. E., Daw, N., … Gluck, M. A. (2009). Reward-learning and the novelty-seeking personality: A between-and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain, 132, 23852395.CrossRefGoogle ScholarPubMed
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews: Neuroscience, 14, 365376.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and social psychology, 85, 499506.CrossRefGoogle ScholarPubMed
Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564583.CrossRefGoogle ScholarPubMed
Chavez-Eakle, R. A., del Carmen Lara, M., & Cruz-Fuentes, C. (2006). Personality: A possible bridge between creativity and psychopathology? Creativity Research Journal, 18, 2738.CrossRefGoogle Scholar
Chen, Q.-L., Xu, T., Yang, W.-J., Li, Y.-D., Sun, J.-Z., Wang, K.-C., … Qiu, J. (2015). Individual differences in verbal creative thinking are reflected in the precuneus. Neuropsychologia, 75, 441449.CrossRefGoogle ScholarPubMed
Cooper, S. H. (1998). Changing notions of defense within psychoanalytic theory. Journal of Personality, 66, 947964.CrossRefGoogle Scholar
Cousijn, J., Koolschijn, P. C. M., Zanolie, K., Kleibeuker, S. W., & Crone, E. A. (2014). The relation between gray matter morphology and divergent thinking in adolescents and young adults. PLoS ONE, 9, e114619.CrossRefGoogle ScholarPubMed
Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491517.CrossRefGoogle ScholarPubMed
Desmurget, M., & Sirigu, A. (2012). Conscious motor intention emerges in the inferior parietal lobule. Current Opinion in Neurobiology, 22, 10041011.CrossRefGoogle ScholarPubMed
Drago, V., Foster, P., Skidmore, F., & Heilman, K. (2009). Creativity in Parkinson’s disease as a function of right versus left hemibody onset. Journal of the Neurological Sciences, 276, 179183.CrossRefGoogle ScholarPubMed
Ellenbroek, B. A., Budde, S., & Cools, A. R. (1996). Prepulse inhibition and latent inhibition: The role of dopamine in the medial prefrontal cortex. Neuroscience, 75, 535542.CrossRefGoogle ScholarPubMed
Ettinger, U., Joober, R., De Guzman, R., & O’Driscoll, G. A. (2006). Schizotypy, attention deficit hyperactivity disorder, and dopamine genes. Psychiatry and Clinical Neurosciences, 60, 764767.CrossRefGoogle ScholarPubMed
Eysenck, H. J., & Furnham, A. (1993). Personality and the Barron–Welsh Art Scale. Perceptual and Motor Skills, 76, 837838.CrossRefGoogle ScholarPubMed
Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., … Weiss, E. M. (2014). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 219, 12631269.CrossRefGoogle ScholarPubMed
Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. The Journal of Comparative Neurology, 493, 147153.CrossRefGoogle ScholarPubMed
Folley, B. S., Doop, M. L., & Park, S. (2003). Psychoses and creativity: Is the missing link a biological mechanism related to phospholipids turnover? Prostaglandins, Leukotrienes & Essential Fatty Acids, 69, 467476.CrossRefGoogle Scholar
Gansler, D. A., Moore, D. W., Susmaras, T. M., Jerram, M. W., Sousa, J., & Heilman, K. M. (2011). Cortical morphology of visual creativity. Neuropsychologia, 49, 25272532.CrossRefGoogle ScholarPubMed
Greenstein, B., & Greenstein, A. (2000). Color atlas of neuroscience: Neuroanatomy and neurophysiology. New York, NY: George Thieme Verlag.Google Scholar
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill Companies.Google Scholar
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9, 369379.CrossRefGoogle ScholarPubMed
James, W. (1890). The principles of psychology. New York, NY: Holt.Google Scholar
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage, 111, 312320.CrossRefGoogle ScholarPubMed
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: Disentangling constructs with diffusion tensor imaging. PLoS ONE, 5, e9818.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135154.CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409.CrossRefGoogle ScholarPubMed
Kaasinen, V., Aalto, S., Någren, K., & Rinne, J. O. (2004). Insular dopamine D2 receptors and novelty seeking personality in Parkinson’s disease. Movement Disorders, 19, 13481351.CrossRefGoogle ScholarPubMed
Kaplan, F., & Oudeyer, P.-Y. (2007). In search of the neural circuits of intrinsic motivation. Frontiers in Neuroscience, 1, 225236.CrossRefGoogle ScholarPubMed
Kim, K. H. (2008). Meta-analyses of the relationship of creative achievement to both IQ and divergent thinking test scores. The Journal of Creative Behavior, 42, 106130.CrossRefGoogle Scholar
King, L. A., Walker, L. M., & Broyles, S. J. (1996). Creativity and the five-factor model. Journal of Research in Personality, 30, 189203.CrossRefGoogle Scholar
Kirrane, R. M., & Siever, L. J. (2000). New perspectives on schizotypal personality disorder. Current Psychiatry Reports, 2, 6266.CrossRefGoogle ScholarPubMed
Kline, P., & Cooper, C. (1986). Psychoticism and creativity. The Journal of Genetic Psychology, 147, 183188.CrossRefGoogle ScholarPubMed
Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., … Reiser, M. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66, 700712.CrossRefGoogle ScholarPubMed
Kühn, S., Ritter, S. M., Müller, B. C., Baaren, , Brass, R. B., , M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity – A structural MRI study. The Journal of Creative Behavior, 48, 152163.CrossRefGoogle Scholar
Kulisevsky, J., Pagonabarraga, J., & Martinez-Corral, M. (2009). Changes in artistic style and behaviour in Parkinson’s disease: dopamine and creativity. Journal of Neurology, 256, 816819.CrossRefGoogle ScholarPubMed
LeBoutillier, N., & Marks, D. F. (2003). Mental imagery and creativity: A meta-analytic review study. British Journal of Psychology, 94, 2944.CrossRefGoogle ScholarPubMed
Lindvall, O., & Björklund, A. (1979). Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Research, 172, 169173.CrossRefGoogle ScholarPubMed
Macaluso, E., Frith, C. D., & Driver, J. (2000). Modulation of human visual cortex by crossmodal spatial attention. Science, 289, 12061208.CrossRefGoogle ScholarPubMed
May, A., & Gaser, C. (2006). Magnetic resonance-based morphometry: A window into structural plasticity of the brain. Current Opinion in Neurology, 19, 407411.CrossRefGoogle ScholarPubMed
Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., & Shamay-Tsoory, S. G. (2013). The association between creativity and 7R polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in Human Neuroscience, 7, 502.CrossRefGoogle ScholarPubMed
Moore, D. W., Bhadelia, R. A., Billings, R. L., Fulwiler, C., Heilman, K. M., Rood, K. M. J., & Gansler, D. A. (2009). Hemispheric connectivity and the visual–spatial divergent-thinking component of creativity. Brain and Cognition, 70, 267272.CrossRefGoogle ScholarPubMed
O’Reilly, T., Dunbar, R., & Bentall, R. (2001). Schizotypy and creativity: An evolutionary connection? Personality and Individual Differences, 31, 10671078.CrossRefGoogle Scholar
Posthuma, D., Baaré, W. F., Pol, , Hilleke, H., Kahn, E., Boomsma, R. S., , D. I., & De Geus, E. J. (2003). Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed. Twin Research, 6, 131139.CrossRefGoogle ScholarPubMed
Prabhu, V., Sutton, C., & Sauser, W. (2008). Creativity and certain personality traits: Understanding the mediating effect of intrinsic motivation. Creativity Research Journal, 20, 5366.CrossRefGoogle Scholar
Preckel, F., Wermer, C., & Spinath, F. M. (2011). The interrelationship between speeded and unspeeded divergent thinking and reasoning, and the role of mental speed. Intelligence, 39, 378388.CrossRefGoogle Scholar
Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning in the fast lane: New insights into neuroplasticity. Neuron, 73, 11951203.CrossRefGoogle ScholarPubMed
Schinka, J., Letsch, E., & Crawford, F. (2002). DRD4 and novelty seeking: Results of meta-analyses. American Journal of Medical Genetics, 114, 643648.CrossRefGoogle ScholarPubMed
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679.CrossRefGoogle ScholarPubMed
Silver, M., Montana, G., & Nichols, T. E. (2012). False positives in neuroimaging genetics using voxel-based morphometry data. NeuroImage, 54, 9921000.CrossRefGoogle Scholar
Simonton, D. K. (2014). Can creative productivity be both positively and negatively correlated with psychopathology? Yes! Frontiers in psychology, 5, Article 455.CrossRefGoogle ScholarPubMed
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44, 8398.CrossRefGoogle ScholarPubMed
Suhara, T., Yasuno, F., Sudo, Y., Yamamoto, M., Inoue, M., Okubo, Y., & Suzuki, K. (2001). Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. NeuroImage, 13, 891895.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Stephany, N., Wasserman, L. C., Talledo, J., Sharp, R., & Auerbach, P. P. (2003). Dopamine agonists disrupt visual latent inhibition in normal males using a within-subject paradigm. Psychopharmacology, 169, 314320.CrossRefGoogle ScholarPubMed
Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., … Kawashima, R. (2010). Training of Working Memory Impacts Structural Connectivity. Journal of Neuroscience, 30, 32973303.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Hashizume, H., Asano, K., Asano, M., Sassa, Y., … Kawashima, R. (2016). Impact of videogame play on the brain’s microstructural properties: Cross-sectional and longitudinal analyses. Molecular Psychiatry, 21, 17811789.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Kotozaki, Y., Miyauchi, C., … Nakagawa, S. (2014). Regional gray matter density is associated with achievement motivation: Evidence from voxel-based morphometry. Brain Structure and Function, 219, 7183.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Nouchi, R., Yokoyama, R., Kotozaki, Y., Nakagawa, S., … Kawashima, R. (2017). Creative females have larger white matter structures: Evidence from a large sample study. Human Brain Mapping, 38, 414430.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010a). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578585.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010b). White matter structures associated with creativity: Evidence from diffusion tensor imaging. NeuroImage, 51, 1118.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2011). Verbal working memory performance correlates with regional white matter structures in the frontoparietal regions. Neuropsychologia, 49, 34663473CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2014). Regional gray matter volume is associated with empathizing and systemizing in young adults. PLoS ONE, 9, e84782.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Nagase, T., … Kawashima, R. (2013). White matter structures associated with empathizing and systemizing in young adults. NeuroImage, 77, 222236.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sekiguchi, A., Nouchi, R., Kotozaki, Y., Nakagawa, S., … Shinada, T. (2016). Mean diffusivity of basal ganglia and thalamus specifically associated with motivational states among mood states. Brain Structure and Function, Epub ahead of publication.Google ScholarPubMed
Takeuchi, H., Taki, Y., Sekuguchi, A., Hashizume, H., Nouchi, R., Sassa, Y., … Kawashima, R. (2015). Mean diffusivity of globus pallidus associated with verbal creativity measured by divergent thinking and creativity-related temperaments in young healthy adults. Human Brain Mapping, 36, 18081827.CrossRefGoogle ScholarPubMed
Tomer, R., & Aharon-Peretz, J. (2004). Novelty seeking and harm avoidance in Parkinson’s disease: Effects of asymmetric dopamine deficiency. Journal of Neurology, Neurosurgery and Psychiatry, 75, 972975.CrossRefGoogle ScholarPubMed
Wierenga, L. M., Langen, M., Oranje, B., & Durston, S. (2014). Unique developmental trajectories of cortical thickness and surface area. NeuroImage, 87, 120126.CrossRefGoogle ScholarPubMed
Woody, E., & Claridge, G. (1977). Psychoticism and thinking. British Journal of Social and Clinical Psychology, 16, 241248.CrossRefGoogle ScholarPubMed
Yomogida, Y., Sugiura, M., Watanabe, J., Akitsuki, Y., Sassa, Y., Sato, T., … Kawashima, R. (2004). Mental visual synthesis is originated in the frontotemporal network of the left hemisphere. Cerebral Cortex, 14, 13761383.CrossRefGoogle ScholarPubMed
Zhu, F., Zhang, Q., & Qiu, J. (2013). Relating inter-individual differences in verbal creative thinking to cerebral structures: An optimal voxel-based morphometry study. PLoS ONE, 8(11), e79272.CrossRefGoogle ScholarPubMed

References

Adelstein, J. S., Shehzad, Z., Mennes, M., DeYoung, C. G., Zuo, X.-N., Kelly, C., … Milham, M. P. (2011). Personality is reflected in the brain’s intrinsic functional architecture. PloS ONE, 6, e27633.CrossRefGoogle ScholarPubMed
Barron, F., & Harrington, D. M. (1981). Creativity, intelligence, and personality. Annual Review of Psychology, 32, 439476.CrossRefGoogle Scholar
Batey, M., & Furnham, A. (2006). Creativity, intelligence, and personality: A critical review of the scattered literature. Genetic, Social, and General Psychology Monographs, 132, 355429.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, Article 10964.CrossRefGoogle Scholar
Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., Jauk, E., … Silvia, P. J. (2016). Personality and complex brain networks: The role of openness to experience in default network efficiency. Human Brain Mapping, 37, 773779.CrossRefGoogle ScholarPubMed
Bjørnebekk, A., Fjell, , Walhovd, A. M., Grydeland, K. B., Torgersen, H., , S., & Westlye, L. T. (2013). Neuronal correlates of the five factor model (FFM) of human personality: Multimodal imaging in a large healthy sample. NeuroImage, 65, 194208.CrossRefGoogle Scholar
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506.CrossRefGoogle ScholarPubMed
DeYoung, C. G. (2010). Personality neuroscience and the biology of traits. Social and Personality Psychology Compass, 4(12), 11651180.CrossRefGoogle Scholar
DeYoung, C. G., Cicchetti, D., Rogosch, F. A., Gray, J. R., Eastman, M., & Grigorenko, E. L. (2011). Sources of cognitive exploration: Genetic variation in the prefrontal dopamine system predicts Openness/Intellect. Journal of Research in Personality, 45, 364371.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing predictions from personality neuroscience: Brain structure and the Big Five. Psychological Science, 21, 820828.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Peterson, J. B., & Higgins, D. M. (2005). Sources of openness/intellect: Cognitive and neuropsychological correlates of the fifth factor of personality. Journal of Personality, 73, 825858.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets and domains: Ten aspects of the Big Five. Journal of Personality and Social Psychology, 93, 880896.CrossRefGoogle Scholar
DeYoung, C. G., Shamosh, N. A., Green, A. E., Braver, T. S., & Gray, J. R. (2009). Intellect as distinct from openness: Differences revealed by fMRI of working memory. Journal of Personality and Social Psychology, 97, 883892.CrossRefGoogle ScholarPubMed
Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. Annual Review of Psychology, 41, 417440.CrossRefGoogle Scholar
Feist, G. J. (1998). A meta-analysis of the impact of personality on scientific and artistic creativity. Personality and Social Psychology Review, 2, 290309.CrossRefGoogle Scholar
Feist, G. J. (1999). The influence of personality on artistic and scientific creativity. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 273296). Cambridge: Cambridge University Press.Google Scholar
Feist, G. J. (2010). The function of personality in creativity. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 113130). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Feist, G. J., & Barron, F. X. (2003). Predicting creativity from early to late adulthood: Intellect, potential, and personality. Journal of Research in Personality, 37, 6288.CrossRefGoogle Scholar
Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316322.CrossRefGoogle ScholarPubMed
Helson, R. (1999a). Institute of Personality Assessment and Research. In Runco, M. A., & Pritzker, S. R. (Eds.), Encyclopedia of creativity (pp. 7179). San Diego, CA: Academic Press.Google Scholar
Helson, R. (1999b). Personality. In Runco, M. A. & Pritzker, S. R. (Eds.), Encyclopedia of creativity (pp. 361371). San Diego, CA: Academic Press.Google Scholar
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2013). Gray matter correlates of creative potential: A latent-variable voxel-based morphometry study. NeuroImage, 111, 312320.CrossRefGoogle Scholar
John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big Five trait taxonomy. In John, O. P., Robbins, R. W., & Pervin, L. A. (Eds.), Personality handbook: Theory and research (pp. 114158). New York, NY: Guilford.Google Scholar
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: Disentangling constructs with diffusion tensor imaging. PLoS ONE, 5, e9818.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioural and Brain Sciences, 30, 135154.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2013). Creativity and intelligence: Brain networks that link and differentiate the expression of genius. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 233254). Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330.CrossRefGoogle ScholarPubMed
Kapogiannis, D., Sutin, A., Davatzikos, C., Costa, P. Jr., & Resnick, S. (2013). The five factors of personality and regional cortical variability in the Baltimore longitudinal study of aging. Human Brain Mapping, 34, 28292840.CrossRefGoogle ScholarPubMed
Kaufman, J. C. (2009). Creativity 101. New York, NY: Springer.Google Scholar
Kaufman, J. C., & Sternberg, R. J. (Eds.). (2010). The Cambridge handbook of creativity. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jimenez, L., Brown, J. B., & Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116, 321340.CrossRefGoogle ScholarPubMed
Kaufman, S. B., Quilty, L. C., Grazioplene, R. G., Hirsh, J. B., Gray, R. J., Peterson, J. B., & DeYoung, C. G. (2016). Openness to experience and intellect differentially predict creative achievement in the arts and sciences. Journal of Personality, 84, 248258.CrossRefGoogle ScholarPubMed
King, L. A., Walker, L. M., & Broyles, S. J. (1996). Creativity and the five-factor model. Journal of Research in Personality, 30, 189203.CrossRefGoogle Scholar
Li, W., Li, X., Huang, L., Kong, X., Yang, W., Wei, D., … Liu, J. (2015). Brain structure links trait creativity to openness to experience. Social Cognitive and Affective Neuroscience, 10, 191198.CrossRefGoogle ScholarPubMed
Mahoney, C. J., Rohrer, J. D., Omar, R., Rossor, M. N., & Warren, J. D. (2011). Neuroanatomical profiles of personality change in frontotemporal lobar degeneration. British Journal of Psychiatry, 198, 365372.CrossRefGoogle ScholarPubMed
McCrae, R. R. (1987). Creativity, divergent thinking, and openness to experience. Journal of Personality and Social Psychology, 52, 12581263.CrossRefGoogle Scholar
Passamonti, L., Terracciano, A., Riccelli, R., Donzuso, G., Cerasa, A., Vaccaro, M., … Quattrone, A. (2015). Increased functional connectivity within mesocortical networks in open people. NeuroImage, 104, 301309.CrossRefGoogle ScholarPubMed
Sampaio, A., Soares, J. M., Coutinho, J., Sousa, N., & Gonçalves, O. F. (2014). The big five default brain: Functional evidence. Brain Structure & Function, 219, 19131922.CrossRefGoogle ScholarPubMed
Sawyer, R. K. (2012). Explaining creativity: The science of human innovation (2nd ed.). New York, NY: Oxford University Press.Google Scholar
Silvia, P. J., Kaufman, J. C., & Pretz, J. E. (2009). Is creativity domain-specific? Latent class models of creative accomplishments and creative self-descriptions. Psychology of Aesthetics, Creativity, and the Arts, 3, 139148.CrossRefGoogle Scholar
Silvia, P. J., Nusbaum, E. C., Berg, C., Martin, C., & O’Connor, A. (2009). Openness to experience, plasticity, and creativity: Exploring lower-order, higher-order, and interactive effects. Journal of Research in Personality, 43, 10871090.CrossRefGoogle Scholar
Silvia, P. J., Winerstein, B. P., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., … Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2, 6885.CrossRefGoogle Scholar
Sternberg, R. J. (Ed.).(1999). Handbook of creativity. New York, NY: Cambridge University Press.Google Scholar
Sutin, A. R., Beason-Held, L. L., Resnick, S. M., & Costa, P. T. (2009). Sex differences in resting-state neural correlates of openness to experience among older adults. Cerebral Cortex, 19, 27972802.CrossRefGoogle ScholarPubMed
Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.).(2013). Neuroscience of creativity. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Xu, J., & Potenza, M. N. (2012). White matter integrity and five-factor personality measures in healthy adults. NeuroImage, 59, 800807.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Andrews-Hanna, J. (2016). Dynamic network interactions supporting internally-oriented cognition. Current Opinion in Neurobiology, 40, 8693.CrossRefGoogle ScholarPubMed

References

Abra, J. (1989). Changes in creativity with age: Data, explanations, and further predictions. International Journal of Aging & Human Development, 28, 105126.CrossRefGoogle ScholarPubMed
Barrett, A. M., Beversdorf, D. Q., Crucian, G. P., & Heilman, K. M. (1998). Neglect after right hemisphere stroke: A smaller floodlight for distributed attention. Neurology, 51, 972978.CrossRefGoogle ScholarPubMed
Barron, F., & Harrington, D. M. (1981). Creativity, intelligence and personality. Annual Review of Psychology, 32, 439476.CrossRefGoogle Scholar
Benton, A. (1990). Facial recognition. Cortex, 26, 491499.CrossRefGoogle ScholarPubMed
Benton, A., Hannay, H. J., & Varney, N. R. (1975). Visual perception of line direction in patients with unilateral brain disease. Neurology, 10, 907910.CrossRefGoogle Scholar
Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. Journal of General Psychology, 39, 1522.CrossRefGoogle ScholarPubMed
Broca, P. (1863). Localisation des functions cerebrales siege du language articule. Bulletin de la Société d’Anthropologie, 4, 200208.Google Scholar
Bogen, J. E., & Bogen, G. M. (1988). Creativity and the corpus callosum. Psychiatric Clinics of North America, 11, 293301.CrossRefGoogle ScholarPubMed
Bronowski, J. (1972). Science and human values. New York, NY: Harper and Row.Google Scholar
Burgess, P. W., Scott, S. K., & Frith, C. D. (2003). The role of the rostral frontal cortex (area 10) in prospective memory: A lateral versus medial dissociation. Neuropsychologia, 41, 906918.CrossRefGoogle ScholarPubMed
Butters, N., Barton, M., & Brody, B.A. (1970). Role of the right parietal lobe in mediation of cross-modal associations and reversible operations in space. Cortex, 6, 174190.CrossRefGoogle ScholarPubMed
Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity: Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38, 873885.CrossRefGoogle ScholarPubMed
Catell, R. B. (1963). The theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 122.CrossRefGoogle Scholar
Cherrier, M. M., Asthana, S., Plymate, S., Baker, L., Matsumoto, A. M., Peskind, E., … Craft, S. (2001). Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology, 57, 8088.CrossRefGoogle ScholarPubMed
Cole, S. (1979). Age and scientific performance. American Journal of Sociology, 84, 958977.CrossRefGoogle Scholar
Damasio, A. R., & Anderson, S. W. (2003). The frontal lobes. In Heilman, K. M. & Valenstein, E. (Eds.), Clinical neuropsychology (4th ed., pp. 404446). New York, NY: Oxford University Press.CrossRefGoogle Scholar
De Dreu, C. K. W., Baas, M., Roskes, M., Sligte, D. J., Ebstein, R. P., Chew, S. H., … Shamay-Tsoory, S. G. (2014). Oxytonergic circuitry sustains and enables creative cognition in humans. Social Cognitive and Affective Neuroscience, 9, 11591165.CrossRefGoogle ScholarPubMed
Denney, N. W. (1974). Classification abilities in the elderly. Journal of Gerontology, 29, 309314.CrossRefGoogle ScholarPubMed
Denny-Brown, D., & Chambers, R. A. (1958). The parietal lobe and behavior. Research Publications – Associations for Research in Nervous and Mental Disease, 36, 35117.Google ScholarPubMed
Dolcos, F., Rice, H. J., & Cabeza, R. (2002). Hemispheric asymmetry and aging: Right hemisphere decline or asymmetry reduction. Neuroscience Biobehavioral Review, 26(7), 819825.CrossRefGoogle ScholarPubMed
Duara, R., Margolin, R., Robertson-Tchabo, E. A., London, E. D., Schwartz, M., Renfrew, J. W., … Rapoport, S. I. (1983). Cerebral glucose utilization as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years. Brain, 106, 761765.CrossRefGoogle ScholarPubMed
Duffy, F. H., & McAnulty, G. (1988). Electrophysiological studies. In Albert, M. S. & Moss, M. B. (Eds.), Geriatric neuropsychology (pp. 262289). New York, NY: Guilford Press.Google Scholar
Eysenck, H. J. (1995). Genius: The natural history of creativity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fink, G. R., Marshall, J. C., Halligan, P. W., Frith, C. D., Frackowiak, R. S. J., & Dolan, R. J. (1997). Hemispheric specialization for global and local processing: The effect of stimulus category. Proceedings of the Royal Society B: Biological Sciences, 264, 487494.CrossRefGoogle ScholarPubMed
Foundas, A. L., Faulhaber, J. R., Kulynych, J. J., Browning, C. A., & Weinberger, D.R. (1999). Hemispheric and gender differences in Sylvian fissure morphology: A quantitative approach using volumetric MRI. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 12, 110.Google Scholar
Foundas, A. L. Leonard, C. M., Gilmore, R., Fennell, E., & Heilman, K. M. (1994). Planum temporale asymmetry and language dominance. Neuropsychologia, 32, 12251231.CrossRefGoogle ScholarPubMed
Gentner, D., & Bowdle, B. (2008). Metaphor as structure-mapping. In Gibbs, R. W., Jr. (Ed.),The Cambridge handbook of metaphor and thought (pp. 109128). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Geschwind, N., & Levitsky, W. (1968). Left–right asymmetry in temporal speech region. Science, 161, 186187.CrossRefGoogle ScholarPubMed
Glucksberg, S. (2008). How metaphors create categories – quickly. In Gibbs, R. W., Jr. (Ed.), The Cambridge handbook of metaphor and thought (pp. 6783). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Green, J., McDonald, W. M., Vitek, J. L., Evatt, M., Freeman, A., Haber, M., … DeLong, M. R. (2002). Cognitive impairments in advanced PD without dementia. Neurology, 59, 13201324.CrossRefGoogle ScholarPubMed
Guilford, J. P. (1967). Creativity: Yesterday, today and tomorrow. Journal of Creative Behavior, 1, 314.CrossRefGoogle Scholar
Guilford, J. P., & Christensen, P. W. (1973). The one-way relationship between creative potential and IQ. Journal of Creative Behavior, 7, 247252.CrossRefGoogle Scholar
Gur, R. C., Packer, I. K., Hungerbuhler, J. P., Reivich, M., Obrist, W. D., Amarnek, W. S., & Sackeim, H. A. (1980). Differences in the distribution of gray and white matter in human cerebral hemispheres Science, 207, 12261228.CrossRefGoogle ScholarPubMed
Heilman, K. M. (2005). Creativity and the brain. New York, NY: Psychology Press.CrossRefGoogle Scholar
Heilman, K. M., Blonder, L. X., Bowers, D., & Crucian, G.P. (2000). Neurological disorders and emotional dysfunction. In Borod, J. C. (Ed.), The neuropsychology of emotion: Series in affective science (pp. 367412). New York, NY: Oxford University Press.Google Scholar
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9, 369379.CrossRefGoogle ScholarPubMed
Herr, E. L., Moore, G. D., & Hasen, J. S. (1965). Creativity, intelligence and values: A study of relationships. Exceptional Children, 32, 414415.CrossRefGoogle Scholar
Hopper, K. D., Patel, S., Cann, T. S., Wilcox, T., & Schaeffer, J. M. (1994). The relationship of age, gender, handedness, and sidedness to the size of the corpus callosum. Academic Radiology, 1(3), 243248.CrossRefGoogle Scholar
Huffmeijer, R., IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2013). Ageing and oxytocin: A call for extending human oxytocin research to ageing populations – A mini-review. Gerontology, 59, 3259.CrossRefGoogle Scholar
James, W. (1890). The principles of psychology. New York, NY: Holt.Google Scholar
Jausovec, N., & Jausovec, K. (2000). Differences in resting EEG related to ability. Brain Topography, 12, 229240.CrossRefGoogle ScholarPubMed
Kaufman, J. C., & Sternberg, R. J. (2010). The Cambridge handbook of creativity. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Kim, K. H. (2005). Can only intelligent people be creative? A meta-analysis. Journal of Secondary Gifted Education, 16, 5766.CrossRefGoogle Scholar
Koppel, R. H., & Storm, B. C. (2014). Escaping mental fixation: Incubation and inhibition in creative problem solving. Memory, 22, 340348.CrossRefGoogle ScholarPubMed
Kounios, J., Fleck, J. I., Green, D. L., Payne, L., Stevenson, J. L., Bowden, E. M., & Jung-Beeman, M. (2008). The origins of insight in the resting brain. Neuropsychologia, 46, 281291.CrossRefGoogle Scholar
Koss, E., Haxby, J. V., DeCarli, C., Schapiro, M. B., Friedland, R. P., & Rapoport, S. I. (1991). Patterns of performance preservation and loss in healthy aging. Developmental Neuropsychology, 7, 99113.CrossRefGoogle Scholar
Kosslyn, S. M. (1998). Neural systems that encode categorical versus coordinate spatial relations: PET investigations. Psychobiology, 26, 333347.CrossRefGoogle Scholar
Kuhn, T. S. (1996). The structure of scientific revolutions (3rd ed.). Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: A latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306320.CrossRefGoogle Scholar
Lee, C. S., Therriault, D. J., Fischler, I. S., Al Wafai, A., Williamson, J., & Heilman, K. M. (2012). The role of intelligence in creative thinking processes and behavior. Paper presented at the meeting of the American Psychological Association, Orlando, FL.Google Scholar
Lehman, H. C. (1953). Age and achievement. Princeton, NJ: Princeton University Press.Google Scholar
Leon, S. A., Altmann, L. J. P., Abrams, L., Gonzalez-Rothi, L. J., & Heilman, K. M. (2014). Divergent task performance in older adults: Declarative memory or creative potential? Creativity Research Journal, 26, 2129.CrossRefGoogle ScholarPubMed
Lewis, R. T. (1979). Organic signs, creativity, and personality characteristics of patients following cerebral commissurotomy. Clinical Neuropsychology, 1, 2933.Google Scholar
Liepmann, H. (1920). Apraxie [Apraxia]. Ergebnisse der Gesamten Medizin, 1, 516543.Google Scholar
Luria, A. R. (1969). Frontal lobe syndrome. In Vinkin, P. J. & Bruyn, G. W. (Eds.), Handbook of clinical neurology (Vol. 2, p. 725). Amsterdam: North Holland Publishing.Google Scholar
McGlone, J. (1984). Speech comprehension after unilateral injection of sodium amytal. Brain & Language, 22, 150157.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and non-insight problem solving. Memory Cognition, 15, 238246.CrossRefGoogle Scholar
Milner, B. (1984). Behavioural effects of frontal-lobe lesions in man. Trends in Neurosciences, 7, 403407.CrossRefGoogle Scholar
Mittenberg, W., Seidenberg, M., O’Leary, D. S., & DiGiulio, D. V. (1989). Changes in cerebral functioning associated with normal aging. Journal of Clinical and Experimental Neuropsychology, 11, 918932.CrossRefGoogle ScholarPubMed
Pandya, D. N., & Barnes, C. L. (1987). Architecture and connections of the frontal lobe. In Perecman, E. (Ed.), The frontal lobes revisited (pp. 4172). New York, NY: The IRBN Press.Google Scholar
Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M. J., Gundersen, H. J., Nyengaard, J. R., & Regeur, L. (2003). Aging and the human neocortex. Experimental Gerontology, 38, 9599.CrossRefGoogle ScholarPubMed
Petsche, H. (1996). Approaches to verbal, visual and musical creativity by EEG coherence analysis. International Journal of Psychophysiology, 24, 145159.CrossRefGoogle ScholarPubMed
Read, D. E. (1988). Age-related changes in performance on a visual-closure task. Journal of Clinical and Experimental Neuropsychology, 10, 451466.CrossRefGoogle ScholarPubMed
Reuter-Lorenz, P. A., & Stanczak, L. (2000). Differential effects of aging on the functions of the corpus callosum. Developmental Neuropsychology, 18, 113137.CrossRefGoogle ScholarPubMed
Ridderinkhof, K. R., Span, M. M., & van der Molen, M. W. (2002). Perseverative behavior and adaptive control in older adults: Performance monitoring, rule induction, and set shifting. Brain and Cognition, 49, 382401.CrossRefGoogle ScholarPubMed
Robertson, L. C., Lamb, M. R., & Knight, R. T. (1988). Effects of lesions of temporal–parietal junction on perceptual and attentional processing in humans. Journal of Neuroscience, 8, 37573769.CrossRefGoogle ScholarPubMed
Rubens, A. B., Mahowald, M. W., & Hutton, J. T. (1976). Asymmetry of the lateral (sylvian) fissures in man. Neurology, 26, 620624.CrossRefGoogle ScholarPubMed
Ryan, J. J., Sattler, J. M., & Lopez, S. J. (2000). Age effects on Wechsler Adult Intelligence Scale-III subtests. Archives of Clinical Neuropsychology, 15, 311317.CrossRefGoogle ScholarPubMed
Silvia, P. J. (2008). Another look at creativity and intelligence: Exploring higher-order models and probable confounds. Personality and Individual Differences, 44, 10121021.CrossRefGoogle Scholar
Silvia, P. J. (2015). Intelligence and creativity are pretty similar after all. Educational Psychology Review, 27, 599606.CrossRefGoogle Scholar
Simonton, D. K. (1994). Greatness: Who makes history and why? New York, NY: Guilford Press.Google Scholar
Spearman, C. (1931). Creative Mind. London: Macmillan.Google Scholar
Sternberg, R. J., & O’Hara, L. A. (1999). Creativity and intelligence. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 251272). New York, NY: Cambridge University Press.Google Scholar
Storandt, M. (1977). Age, ability level, and method of administering and scoring the WAIS. Journal of Gerontology, 32, 175178.CrossRefGoogle Scholar
Stuss, D. T., & Knight, R. T. (2002). Principle of frontal lobe function. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010a). Regional gray matter volume of dopamine rich system associate with creativity: Evidence from voxel-based morphology. NeuroImage, 51, 578585.CrossRefGoogle Scholar
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010b). White matter structures associated with creativity: Evidence from diffusion tensor imaging. NeuroImage, 51, 1118.CrossRefGoogle ScholarPubMed
Tang, Y., Whitman, G. T., Lopez, I., & Baloh, R. W. (2001). Brain volume changes on longitudinal magnetic resonance imaging in normal older people. Journal of Neuroimaging, 11(4), 393400.CrossRefGoogle ScholarPubMed
Torrance, E. P. (1988). The nature of creativity as manifest in its testing. In Sternberg, R. J. (Ed.), The nature of creativity (pp. 4374). New York, NY: Cambridge University Press.Google Scholar
Torrance, E. P. (1974). The Torrance Test of Creative Thinking. Bensenville, IL: Scholastic Testing Service.Google Scholar
Torrance, E. P. (1975). Creativity research in education: Still alive. In Taylor, I. A., & Getzels, J. W. (Eds.), Perspectives in creativity (pp. 278296). Oxford: Aldine.Google Scholar
Volkow, N. D., Logan, J., Fowler, J. S., Wang, G. J., Gur, R. C., Wong, C., … Pappas, N. (2000). Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. American Journal of Psychiatry, 157(1), 7580.CrossRefGoogle ScholarPubMed
Wallach, M. A., & Kogan, N. (1965). Modes of thinking in young children: A study of the creativity–intelligence distinction. New York, NY: Holt, Rinehart, & Winston.Google Scholar
Wallas, G. (1926). The art of thought. New York, NY: Harcourt Brace.Google Scholar
Weinberger, D. R., Berman, K. F., & Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43, 114124.CrossRefGoogle ScholarPubMed
Weisberg, R. W. (1986). Creativity: Genius and other myths. New York, NY: W.H. Freeman.Google Scholar
Zangwell, O. L. (1966). Psychological deficits associated with frontal lobe lesions. International Journal of Neurology, 5, 395402.Google Scholar