Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-18T06:50:25.527Z Has data issue: false hasContentIssue false

Part II - Medical Topics

Published online by Cambridge University Press:  05 June 2019

Carrie D. Llewellyn
Affiliation:
University of Sussex
Susan Ayers
Affiliation:
City, University of London
Chris McManus
Affiliation:
University College London
Stanton Newman
Affiliation:
City, University of London
Keith J. Petrie
Affiliation:
University of Auckland
Tracey A. Revenson
Affiliation:
City University of New York
John Weinman
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Antoniou, A., Pharoah, P. D., Narod, S., et al. (2003). Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. American Journal of Human Genetics, 72(5), 11171130.CrossRefGoogle ScholarPubMed
Bleiker, E. M., Esplen, M. J., Meiser, B., et al. (2013). 100 years Lynch syndrome: what have we learned about psychosocial issues? Familial Cancer 2, 325339.CrossRefGoogle Scholar
Burke, W., Daly, M. & Garber, J. (1997). Recommendations for follow-up care of individuals with an inherited predisposition to cancer: II. BRCA1 and BRCA2. Cancer Genetics Study Consortium. Journal of the American Medical Association 277, 9971003.CrossRefGoogle Scholar
Chen, S. & Parmigiani, G.(2007). Meta-analysis of BRCA1 and BRCA2 penetrance. Journal of Clinical Oncology, 25(11), 13291333.Google Scholar
Chompret, A. (2002). The Li-Fraumeni syndrome. Biochemie, 84, 7582.Google Scholar
Chompret, A., Brugieres, L., Ronsin, M., et al. (2000). P53 germline mutations in childhood cancers and cancer risk for carrier individuals. British Journal of Cancer, 82, 19321937.Google ScholarPubMed
Cousens, N., Kaur, R., Meiser, B., et al. (2016). Community attitudes towards a Jewish community BRCA1/2 testing program. Familial Cancer, epublication ahead of print.Google Scholar
Daly, M. B., Pilarski, R., Axilbund, J. E., et al. (2015). Genetic/familial high-risk assessment: breast and ovarian, version 2.2015. Journal of the National Comprehensive Cancer Network 14, 153162.CrossRefGoogle Scholar
Douma, K. F., Bleiker, E. M., Aaronson, N. K., et al. (2010). Long-term compliance with endoscopic surveillance for familial adenomatous polyposis. Colorectal Disease, 12, 11981207.Google Scholar
Elrick, A., Ashida, S., Ivanovich, J., et al. (2017). Psychosocial and clinical factors associated with family communication of cancer genetic test results among women diagnosed with breast cancer at a young age. Journal of Genetic Counseling, 26(1), 173181.Google Scholar
Forman, A. D. & Hall, M. J. (2009). Influence of race/ethnicity on genetic counseling and testing for hereditary breast and ovarian cancer. Breast Journal, 15 (Suppl. 1), S56S62.Google Scholar
Glassey, R., Ives, A., Saunders, C., et al. (2016). Decision making, psychological wellbeing and psychosocial outcomes for high risk women who choose to undergo bilateral prophylactic mastectomy: a review of the literature. Breast, 28, 130135.Google Scholar
Graves, K. D., Vegella, P., Poggi, E. A., et al. (2012). Long-term psychosocial outcomes of BRCA1/BRCA2 testing: differences across affected status and risk-reducing surgery choice. Cancer Epidemiology, Biomarkers & Prevention, 21(3): 445455.Google Scholar
Hirschberg, A. M., Chan-Smutko, G. & Pirl, W. F. (2015). Psychiatric implications of cancer genetic testing. Cancer, 121, 341360.Google Scholar
Howard, A. F., Balneaves, L. G. & Bottorff, J. L. (2009). Women’s decision making about risk-reducing strategies in the context of hereditary breast and ovarian cancer: a systematic review. Journal of Genetic Counseling, 18, 578597CrossRefGoogle ScholarPubMed
Jasperson, K. W., Tuohy, T. M., Neklason, D. W., et al. (2010). Hereditary and familial colon cancer. Gastroenterology, 138, 20442058.CrossRefGoogle ScholarPubMed
Kinney, A. Y., Butler, K. M., Schwartz, M. D., et al. (2014). Expanding access to BRCA1/2 genetic counseling with telephone delivery: a cluster randomized trial. Journal of the National Cancer Institute, 106, dju328.Google Scholar
Lesko, L. J. & Schmidt, S. (2013). Clinical implementation of genetic testing in medicine: a US regulatory science perspective. British Journal of Clinical Pharmacology, 77, 606611.Google Scholar
Lynch, H. T., Lynch, P. M., Lanspa, S. J., et al. (2009). Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clinical Genetics , 76, 118.Google Scholar
Malkin, D., Li, F. P., Strong, L. C., et al. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science, 250, 12331238.CrossRefGoogle Scholar
Malkin, D., Garber, J. E., Strong, L., et al. (2016). The cancer predisposition revolution: how was the inherited basis of cancer foreshadowed? Science, 352, 10521053.Google Scholar
Meiser, B., Quinn, V. F., Gleeson, M., et al. (2016). When knowledge of a heritable gene mutation comes out of the blue: treatment-focused genetic testing in women newly diagnosed with breast cancer. European Journal of Human Genetics, epublication in advance of print.Google Scholar
Monahan, K. J. & Hopkins, L. ( 2016). Diagnosis and management of hereditary gastric cancer. Recent Results in Cancer Research, 205, 4560.Google Scholar
Nichols, K. E., Malkin, D., Garber, J. E., et al. (2001). Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer, Epidemiology, Biomarkers and Prevention, 10, 8387.Google Scholar
Noar, S. M., Althouse, B. M., Ayers, J. W., Francis, D. B. & Ribisl, K. M. (2015). Cancer information seeking in the digital age: effects of Angelina Jolie’s prophylactic mastectomy announcement. Medical Decision Making, 35(1), 1621.Google Scholar
Patenaude, A. F. (2012), Prophylactic Mastectomy: Insights from Women who Chose to Reduce Their Risk. Santa Barbara, CA; Praeger.Google Scholar
Patenaude, A. F. & Schneider, K. A. (2016). Issues arising in psychological consultations to help parents talk to minor and young adult children about their cancer genetic test result: a guide to providers. Journal of Genetic Counseling, 26, 251260.Google Scholar
Ringwald, J., Wochnowski, C., Bosse, K., et al. (2016). Psychological distress, anxiety and depression of cancer-affected BRCA1/2 mutation carriers: a systematic review. Journal of Genetic Counseling, epublished ahead of print.Google Scholar
Robinson, L. S., Hendrix, A., Xie, X. J. et al., (2015). Prediction of cancer prevention: from mammogram screening to identification of BRCA1/2 mutation carriers in underserved populations. EBioMedicine, 21, 18271833.Google Scholar
Rodriguez, V. M., Corona, R., Bodurtha, J. N., et al. (2016). Family ties: the role of family context in family health history communication about cancer. Journal of Health Communication, 21, 346355.Google Scholar
Roussi, P. & Miller, S. M. (2014). Monitoring style of coping with cancer related threats: a review of the literature. Journal of Behavioral Medicine, 37(5), 931954.CrossRefGoogle ScholarPubMed
Stan, D. L., Schuster, L. T. & Wick, M. J. (2013). Challenging and complex decisions in the management of the BRCA mutation carrier. Journal of Women’s Health, 22, 825834.Google Scholar
Syngal, S., Brand, R. E., Church, J. M., et al. (2015). ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. American Journal of Gastroenterology, 110, 223262.Google Scholar
Tercyak, K. P., Mays, D., DeMarco, T. A., et al. (2013). Decisional outcomes of maternal disclosure of BRCA1/2 genetic test results to children. Cancer Epidemiology, Biomarkers & Prevention, 22(7), 12601266.Google Scholar
van Oostrom, I., Meijers-Heijboer, H., Duivenvoorden, H. J., et al. (2006). Experience of parental cancer in childhood is a risk factor for psychological distress during genetic cancer susceptibility testing. Annals of Oncology, 17(7), 10901095.CrossRefGoogle ScholarPubMed
Villani, A., Tabori, U., Schiffman, J., et al. (2011). Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncology, 12, 559567.Google Scholar
Wakefield, C. E., Hanlon, L. V., Tucker, K. M., et al. (2016). The psychological impact of genetic information on children: a systematic review. Genetics in Medicine, 18(8): 755762.Google Scholar

References

Allsup, S. J. & Gosney, M. A. (2002). Anxiety and depression in an older research population and their impact on clinical outcomes in a randomised controlled trial. Postgraduate Medical Journal, 78, 674677.Google Scholar
Burns, V. E., Ring, C., Drayson, M., et al. (2002). Cortisol and cardiovascular reactions to mental stress and antibody status following hepatitis B vaccination: a preliminary study. Psychophysiology, 39, 361368.CrossRefGoogle ScholarPubMed
Burns, V. E., Carroll, D., Ring, C., et al. (2003). Antibody response to vaccination and psychosocial stress in humans: relationships and mechanisms. Vaccine, 21, 25232534.CrossRefGoogle ScholarPubMed
Gallagher, S., Phillips, A. C., Ferraro, A. J., et al. (2008). Social support is positively associated with the immunoglobulin M response to vaccination with pneumococcal polysaccharides. Biology and Psychology, 78, 211215.CrossRefGoogle ScholarPubMed
Gallagher, S., Phillips, A. C., Drayson, M. T., et al. (2009). Caregiving for children with developmental disabilities is associated with a poor antibody response to influenza vaccination. Psychosomatic Medicine, 71, 341344.Google Scholar
Glaser, R., Kiecolt-Glaser, J. K., Bonneau, R. H., et al. (1992). Stress-induced modulation of the immune response to recombinant hepatitis B vaccine. Psychosomatic Medicine, 54, 2229.Google Scholar
Glaser, R., Sheridan, J., Malarkey, W. B., et al. (2000). Chronic stress modulates the immune response to a pneumococcal pneumonia vaccine. Psychosomatic Medicine, 62: 804807.Google Scholar
Hayney, M. S., Love, G. D., Buck, J. M., et al. (2003). The association between psychosocial factors and vaccine-induced cytokine production. Vaccine, 21, 24282432.Google Scholar
Hayney, M. S., Coe, C. L., Muller, D., et al. (2014). Age and psychological influences on immune responses to trivalent inactivated influenza vaccine in the meditation or exercise for preventing acute respiratory infection (MEPARI) trial. Human Vaccines & Immunotherapeutics, 10, 8391.Google Scholar
Irwin, M. R., Olmstead, R. & Oxman, M. N. (2007). Augmenting immune responses to varicella zoster virus in older adults: a randomized, controlled trial of Tai Chi. Journal of the American Geriatric Society, 55, 511517.Google Scholar
Irwin, M. R., Levin, M. J., Carrillo, C., et al. (2011). Major depressive disorder and immunity to varicella-zoster virus in the elderly. Brain, Behavior & Immunity, 25, 759766.Google Scholar
Jabaaij, L., Grosheide, P. M., Heijtink, R. A., et al. (1993). Influence of perceived psychological stress and distress on antibody response to low dose rDNA hepatitis B vaccine. Journal of Psychosomatic Research, 37, 361369.Google Scholar
Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., et al. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proceedings of the National Academy of Sciences USA, 93, 30433047.Google Scholar
Kohut, M. L., Cooper, M. M., Nickolaus, M. S., et al. (2002). Exercise and psychosocial factors modulate immunity to influenza vaccine in elderly individuals. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 57, M557–562.Google Scholar
Kohut, M. L., Lee, W., Martin, A., et al. (2005). The exercise-induced enhancement of influenza immunity is mediated in part by improvements in psychosocial factors in older adults. Brain, Behavior & Immunity, 19, 357366.Google Scholar
Marsland, A. L., Cohen, S., Rabin, B. S., et al. (2001). Associations between stress, trait negative affect, acute immune reactivity, and antibody response to hepatitis B injection in healthy young adults. Health and Psychology, 20, 411.Google Scholar
Marsland, A. L., Cohen, S., Rabin, B. S., et al. (2006). Trait positive affect and antibody response to hepatitis B vaccination. Brain, Behavior & Immunity, 20, 261269.Google Scholar
Miller, G. E., Cohen, S., Pressman, S., et al. (2004). Psychological stress and antibody response to influenza vaccination: when is the critical period for stress, and how does it get inside the body? Psychosomatic Medicine, 66, 215223.CrossRefGoogle ScholarPubMed
Morag, M., Morag, A., Reichenberg, A., et al. (1999). Psychological variables as predictors of rubella antibody titers and fatigue: a prospective, double blind study. Journal of Psychiatric Research, 33, 389395.Google Scholar
Moynihan, J. A., Larson, M. R., Treanor, J., et al. (2004). Psychosocial factors and the response to influenza vaccination in older adults. Psychosomatic Medicine, 66, 950953.CrossRefGoogle ScholarPubMed
O’Connor, T. G., Winter, M. A., Hunn, J., et al. (2013). Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain, Behavior & Immunity, 32, 2128.Google Scholar
Pedersen, A. F., Zachariae, R. & Bovbjerg, D. H. (2009). Psychological stress and antibody response to influenza vaccination: a meta-analysis. Brain, Behavior & Immunity, 23, 427433.Google Scholar
Phillips, A. C., Carroll, D., Burns, V. E., et al. (2005). Neuroticism, cortisol reactivity, and antibody response to vaccination. Psychophysiology, 42, 232238.Google Scholar
Phillips, A. C., Carroll, D., Burns, V. E., et al. (2006). Bereavement and marriage are associated with antibody response to influenza vaccination in the elderly. Brain, Behavior & Immunity, 20, 279289.Google Scholar
Phillips, A. C., Gallagher, S., Carroll, D., et al. (2008). Preliminary evidence that morning vaccination is associated with an enhanced antibody response in men. Psychophysiology, 45, 663666.Google Scholar
Pressman, S. D., Cohen, S., Miller, G. E., et al. (2005). Loneliness, social network size, and immune response to influenza vaccination in college freshmen. Health and Psychology, 24, 297306.CrossRefGoogle ScholarPubMed
Segerstrom, S. C., Schipper, L. J. & Greenberg, R. N. (2008). Caregiving, repetitive thought, and immune response to vaccination in older adults. Brain, Behavior & Immunity, 22, 744752.Google Scholar
Vedhara, K., Cox, N. K., Wilcock, G. K., et al. (1999). Chronic stress in elderly carers of dementia patients and antibody response to influenza vaccination. Lancet, 353, 627631.Google Scholar
Vedhara, K., Bennett, P. D., Clark, S., et al. (2003). Enhancement of antibody responses to influenza vaccination in the elderly following a cognitive-behavioural stress management intervention. Psychotherapy and Psychosomatics, 72, 245252.Google Scholar
Wong, S. Y., Wong, C. K., Chan, F. W., et al. (2013). Chronic psychosocial stress: does it modulate immunity to the influenza vaccine in Hong Kong Chinese elderly caregivers? Age (Dordr) 35: 14791493.CrossRefGoogle Scholar
Yirmiya, R., Pollak, Y., Morag, M., et al. (2000). Illness, cytokines, and depression. Annals of the New York Academy of Sciences, 917, 478487.Google Scholar

References

Andermann, A., Blancquaert, I., Beauchamp, S., et al. (2008). Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bulletin of the World Health Organization, 86 (4), 317319.Google Scholar
Anderson, A. S., Craigie, A. M., Caswell, S., et al. (2014). The impact of a bodyweight and physical activity intervention (BeWEL) initiated through a national colorectal cancer screening programme: randomised controlled trial. BMJ, 348, g1823.Google Scholar
Brodersen, J. & Siersma, V. D. (2013). Long-term psychosocial consequences of false-positive screening mammography. Annals of Family Medicine, 11(2), 106115.Google Scholar
Brouwers, M. C., De, V. C., Bahirathan, L., et al. (2011a). Effective interventions to facilitate the uptake of breast, cervical and colorectal cancer screening: an implementation guideline. Implementation Science, 6, 112.Google Scholar
Brouwers, M. C., De, V. C., Bahirathan, L., et al. (2011b). What implementation interventions increase cancer screening rates? A systematic review. Implementation Science, 6, 111.Google Scholar
Ferroni, E., Camilloni, L., Jimenez, B., et al. (2012). How to increase uptake in oncologic screening: a systematic review of studies comparing population-based screening programs and spontaneous access. Preventive Medicine, 55 (6), 587596.Google Scholar
Hall, S., Bobrow, M. & Marteau, T. M. (2000). Psychological consequences for parents of false negative results on prenatal screening for Down’s syndrome: retrospective interview study. BMJ 320(7232), 407412.Google Scholar
Hall, S., Chitty, L., Dormandy, E., et al. (2007). Undergoing prenatal screening for Down’s syndrome: presentation of choice and information in Europe and Asia. European Journal of Human Genetics, 15 (5), 563569.Google Scholar
Hoffmann, T. C. & Del, M. C. (2015). Patients’ expectations of the benefits and harms of treatments, screening, and tests: a systematic review. JAMA Internal Medicine, 175 (2), 274286.Google Scholar
Jorgensen, K. J., Keen, J. D. & Gotzsche, P. C. (2011). Is mammographic screening justifiable considering its substantial overdiagnosis rate and minor effect on mortality? Radiology, 260 (3), 621627.Google Scholar
Kopans, D. B., Smith, R. A. & Duffy, S. W. (2011). Mammographic screening and ‘overdiagnosis’. Radiology, 260 (3), 616620.Google Scholar
Lazcano-Ponce, E., Palacio-Mejia, L. S., Allen-Leigh, B., et al. (2008). Decreasing cervical cancer mortality in Mexico: effect of Papanicolaou coverage, birthrate, and the importance of diagnostic validity of cytology. Cancer Epidemiology, Biomarkers & Prevention, 17 (10), 28082817.Google Scholar
Lu, M., Moritz, S., Lorenzetti, D., et al. (2012). A systematic review of interventions to increase breast and cervical cancer screening uptake among Asian women. BMC Public Health, 12, 413.Google Scholar
Miles, A., Cockburn, J., Smith, R. A., et al. (2004). A perspective from countries using organized screening programs. Cancer, 101 (Suppl. 5), 12011213.CrossRefGoogle ScholarPubMed
Miles, A., Rainbow, S. & von Wagner, C. (2011). Cancer fatalism and poor self-rated health mediate the association between socioeconomic status and uptake of colorectal cancer screening in England. Cancer Epidemiology, Biomarkers & Prevention, 20 (10), 21322140.Google Scholar
Miles, A., McClements, P. L., Steele, R. J., et al. (2015). The psychological impact of a colorectal cancer diagnosis following a negative fecal occult blood test result. Cancer Epidemiology, Biomarkers & Prevention, 24 (7), 17.Google Scholar
Raffle, A. E. & Gray, J. A. M. (2007). Screening: Evidence and Practice. Oxford: Oxford University Press.Google Scholar
Solmi, F., von Wagner, C., Kobayashi, L. C., et al. (2015). Decomposing socio-economic inequality in colorectal cancer screening uptake in England. Social Science and Medicine, 134, 7686.Google Scholar
Troein, M., Rastam, L. & Selander, S. (2002). Changes in health beliefs after labelling with hypercholesterolaemia. Scandinavian Journal of Public Health, 30 (1), 7679.Google Scholar
van der Aalst, C. M., van Klaveren, R. J. & De Koning, H. J. (2010). Does participation to screening unintentionally influence lifestyle behaviour and thus lifestyle-related morbidity? Best Practice & Research: Clinical Gastroenterology, 24 (4), 465478.Google Scholar
van Rijn, A. F., van Rossum, L. G., Deutekom, M., et al. (2008). Getting adequate information across to colorectal cancer screening subjects can be difficult. Journal of Medical Screening, 15 (3), 149152.Google Scholar
Vlemmix, F., Warendorf, J. K., Rosman, A. N., et al. (2013). Decision aids to improve informed decision-making in pregnancy care: a systematic review. BJOG, 120 (3), 257266.Google Scholar
Wilson, J. M. & Junger, C. T. (1968). Principles and practice of screening for disease. Public Health Paper 34. World Health Organization.Google Scholar

References

Asplin, N., Wessel, H., Marions, L., et al. (2012). Pregnant women’s experiences, needs and preferences regarding information about malformation detected by ultrasound scan. Sexual and Reproductive Healthcare, 3, 7378.CrossRefGoogle ScholarPubMed
Asplin, N., Wessel, H., Marions, L., et al. (2015). Maternal emotional wellbeing over time and attachment to the fetus when a malformation is detected. Sexual and Reproductive Healthcare. 6, 191195.Google Scholar
Biaggi, A., Conroy, S., Pawlby, S., et al. (2016). Identifying the women at risk of antenatal anxiety and depression: a systematic review. Journal of Affective Disorders, 191, 6277.CrossRefGoogle ScholarPubMed
Byatt, N., Moore Simas, T. A., Lundquist, R. S., et al. (2012). Strategies for improving perinatal depression treatment in North American outpatient obstetric settings. Journal of Psychosomatic Obstetrics and Gynecology, 33(4), 143161.Google Scholar
Chew-Graham, C. A., Sharp, D., Chamberlain, E., et al. (2009). Disclosure of symptoms of postnatal depression, the perspectives of health professionals and women: a qualitative study. BMC Family Practice, 10, 7. DOI: 10.1186/1471-2296-10-7.Google Scholar
Dahl, H., Hvidman, L., Jorgensen, F. S., et al. (2011). Knowledge of prenatal screening and psychological management of test decisions. Ultrasound in Obstetrics and Gynecology. 38: 152157.Google Scholar
Dennis, C.-L. & Chung-Lee, L. 2006. Postpartum depression help-seeking barriers and maternal treatment preferences: a qualitative systematic review. Birth, 33(4), 323331Google Scholar
Desgrées-Du-Loû, A., Brou, H., Djohanm, G., et al. (2009). Beneficial effects of offering prenatal HIV counselling and testing on developing a HIV preventive attitude among couples. Aids Behaviour. 13, 348.Google Scholar
El Den, S., O’Reilly, C. L. & Chen, T. F. (2015). A systematic review on the acceptability of perinatal depression screening. Journal of Affective Disorders, 188, 284303.Google Scholar
Field, T. A., Diego, M., Hernandez-Reif, M., et al. (2010). Comorbid depression and anxiety effects on pregnancy and neonatal outcome. Infant Behavior and Development, 33, 2329.Google Scholar
Gavin, N. I., Gaynes, B. N., Lohr, K. N., et al. (2005). Perinatal depression: a systematic review of prevalence and incidence. Obstetrics and Gynecology, 106, 10711083.Google Scholar
Georgsson Ohman, S., Grunewald, C. & Waldenstrom, U. (2009). Perception of risk in relation to ultrasound screening for Down’s syndrome during pregnancy. Midwifery, 25, 264276.Google Scholar
Harris, J. M., Franck, L. & Michie, S. (2012). Assessing the psychological effects of prenatal screening tests for maternal and foetal conditions: a systematic review. Journal of Reproductive and Infant Psychology, 30(3), 222246.Google Scholar
Hewison, J. (2015). Psychological aspects of individualized choice and reproductive autonomy in prenatal screening. Bioethics, 29, 918.Google Scholar
Kaasen, A., Helbig, A., Malt, U. F., et al. (2010). Acute maternal social dysfunction, health perception and psychological distress after ultrasonographic detection of a fetal structural anomaly. BJOG. 117, 11271138.Google Scholar
Kingston, D. E., Biringer, A., McDonald, S. W., et al. (2015a). Preferences for mental health screening among pregnant women: a cross-sectional study. American Journal of Preventive Medicine, 49.Google Scholar
Kingston, D. E., Biringer, A., Toosi, A., et al. (2015b). Disclosure during prenatal mental health screening. Journal of Affective Disorders, 186, 9094.Google Scholar
Lancet (2016, 10 February). Screening for perinatal depression: A missed opportunity [Editorial]. Lancet, 387. http://dx.doi.org/10.1016/S0140-6736(16)00265-8Google Scholar
Lou, S., Mikkelsen, L., Hvidman, L., et al. (2014). Does screening for Down’s syndrome cause anxiety in pregnant women? A systematic review. Acta Obstetricia et Gynecologica Scandinavica, 94(1), 1527.Google Scholar
McCoyd, J. L. (2013). Preparation for prenatal decision-making: a baseline of knowledge and reflection in women participating in prenatal screening. Journal of Psychosomatic Obstetrics and Gynaecology, 34, 38.Google Scholar
Milgrom, J., Gemmill, A. W., Bilszta, J. L., et al. (2008). Antenatal risk factors for postnatal depression: a large prospective study. Journal of Affective Disorders, 108, 147157.Google Scholar
Muller, C. & Cameron, L. D. (2015). It’s complicated: factors predicting decisional conflict in prenatal diagnostic testing. Health Expectations, 19, 338342.Google Scholar
National Institute for Health and Care Excellence. (2014). Antenatal and Postnatal Mental Health: Clinical Management and Service Guidance. Clinical Guideline 192. London: National Institute for Health and Care Excellence.Google Scholar
O’Connor, T. G., Heron, J., Golding, J., et al. (2003). Maternal anxiety and behavioural/emotional problems in children: a test of a programming hypothesis. Journal of Child Psychology and Psychiatry, 44, 10251036Google Scholar
Public Health England. (2015) Evidence review criteria: national screening programmes. www.gov.uk/government/publications/evidence-review-criteria-national-screening-programmes.Google Scholar
van den Berg, M., Timmermans, D. R. M., Knol, D. L., et al. (2008). Understanding pregnant women’s decision making concerning prenatal screening. Health Psychology, 27, 430437.Google Scholar
Viaux-Savelon, S., Dommergues, M., Rosenblum, O., et al. (2012). Prenatal ultrasound screening: false positive soft markers may alter maternal representations and mother-infant interaction. PLOS One. http://dx.doi.org/10.1371/journal.pone.0030935.Google Scholar
World Health Organization (2011). Community genetics services: report of a WHO Consultation on community genetics in low- and middle-income countries. http://apps.who.int/iris/bitstream/10665/44532/1/9789241501149_eng.pdf.Google Scholar
World Health Organization (2016). mhGAP Intervention Guide: Version 2.0 for mental, neurological and substance use disorders in non-specialized health settings. www.who.int/mental_health/mhgap/mhGAP_intervention_guide_02/en.Google Scholar

References

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179211.Google Scholar
Edwards, A. G. K., Naik, G., Ahmed, H., et al. (2013). Personalised risk communication for informed decision making about taking screening tests. Cochrane Database of Systematic Reviews, 2. DOI: 10.1002/14651858.CD001865.pub3.Google Scholar
Hay, J. L., McCaul, K. D. & Magnan, R. E. (2006). Does worry about breast cancer predict screening behaviors? A meta-analysis of the prospective evidence. Preventive Medicine, 42, 401408.Google Scholar
Janz, N. K. & Becker, M. H. (1984). The health belief model: a decade later. Health Education Quarterly, 11, 147.Google Scholar
Kivineimi, M. T., Bennett, A., Zaiter, M. & Marshall, J. R. (2011). Individual-level factors in colorectal cancer screening: a review of the literature on the relation of individual-level health behavior constructs and screening behavior. Psycho-Oncology, 20, 10231033.Google Scholar
Klein, M. P., Bloch, M., Hesse, B. W., McDonald, P. G., Nebeling, L., et al. (2014). Behavioral research in cancer prevention and control: a look to the future. American Journal of Preventive Medicine, 46, 303311.Google Scholar
Leventhal, H., Brisette, I. & Leventhal, E. A. (2003). The common-sense model of self-regulation of health and illness. In Cameron, L. D. & Leventhal, H. (eds), The self-Regulation of Health and Illness Behaviour (pp. 4265). London: Routledge.Google Scholar
Noar, S. M. & Zimmerman, R. S. (2005). Health behavior theory and cumulative knowledge regarding health behaviors: are we moving in the right direction? Health Education Research, 20, 275290.Google Scholar
O’Brien, M. A., Whelan, T. J., Villasis-Keever, M., et al. (2009). Do patient decision aids meet effectiveness criteria of the International Patient Decision Aid Standards Collaboration? A systematic review and meta-analysis. Medical Decision Making, 27, 554574.Google Scholar
O’Connor, A. M., Bennett, C., Stacey, D., et al. (2007). Do patient decision aids meet effectiveness criteria of the international patient decision aid standards collaboration? A systematic review and meta-analysis. Medical Decision Making, 27, 554574.Google Scholar
Prochaska, J. O. & DiClemente, C. C. (1983). Stages and processes of self-change in smoking: toward an integrative model of change. Journal of Consulting and Clinical Psychology, 5, 390395.Google Scholar
Rogers, R. W. (1983). Cognitive and physiological processes in fear appeals and attitude change: a revised theory of protection motivation. In Cacioppo, J. & Petty, R. (eds), Social Psychophysiology. New York: Guilford Press.Google Scholar
Rothman, A. J. (2000). Toward a theory-based analysis of behavioral maintenance. Health Psychology, 19, 6469.Google Scholar
Rutter, D. R. (2000). Attendance and reattendance for breast cancer screening: a prospective 3-year test of the Theory of Planned Behavior. British Journal of Health Psychology, 5, 113.Google Scholar
Smith, R. A., Andrews, K., Brooks, D., et al. (2016). Cancer screening in the United States, 2016: a review of current American Cancer Society guidelines and current issues in cancer screening. CA: A Cancer Journal for Clinicians, 66, 95114.Google Scholar
Sohl, S. J. & Moyer, A. (2007). Tailored interventions to promote mammography screening: a meta-analytic review. Preventive Medicine, 45, 252261.Google Scholar
Spencer, L. S., Pagell, F. & Adams, T. (2005). Applying the transtheoretical model to cancer screening behavior. American Journal of Health Behavior, 29, 3656.Google Scholar
Wardle, J., Robb, K., Vernon, S. & Waller, J. (2015). Screening for prevention and early diagnosis of cancer. American Psychologist, 70, 119133.Google Scholar
Weinstein, N. D. (1988). The precaution adoption process. Health Psychology, 7, 355386.Google Scholar

References

Asif, I. M., Price, D., Fisher, L. A., et al. (2015a). Stages of psychological impact after diagnosis with serious or potentially lethal cardiac disease in young competitive athletes: a new model. Journal of Electrocardiology, 48(3), 289310.Google Scholar
Asif, I. M., Price, D., Harmon, K. G., et al. (2015b). The psychological impact of cardiovascular screening in young athletes: perspectives across age, race and gender. Clinical Journal of Sports Medicine, 25(6), 464471.Google Scholar
Borjesson, M., Urhausen, A., Kouidi, E., et al. (2011). Cardiovascular evaluation of middle-aged/senior individuals engaged in leisure-time sport activities: position stand from the sections of exercise physiology and sports cardiology of the European Association of Cardiovascular Prevention and Rehabilitation. The European Journal of Cardiovascular Prevention and Rehabilitation , 18, 446458.Google Scholar
Bowles-Biesecker, B., Schwartz, M. D., Marteau, T. M. (2013) Enhancing informed choice to undergo health screening: a systematic review. American Journal of Health Behaviour, 37(3), 351359. DOI: 10.5993/AJHB.37.3.8.Google Scholar
Christensen, B., Engberg, M. & Lauritzen, T. (2004). No long-term psychological reaction to information about increased risk of coronary heart disease in general practice. European Journal of Cardiovascular Prevention and Rehabilitation, 11, 239243.Google Scholar
Connelly, J., Cooper, J., Mann, A. et al. (1998). The psychological impact of screening for risk of coronary heart disease in primary care settings. Journal of Cardiovascular Risk, 5, 185191.Google Scholar
Corrado, D., Pelliccia, A., Bjørnstad, H., et al. (2005). Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. European Heart Journal, 26: 516524.Google Scholar
Department of Health. (2000). Preventing coronary heart disease in high risk patients. In National Service Framework for Coronary Heart Disease. London: Stationery Office.Google Scholar
Ebrahim, S., Tayor, F., Ward, K., et al. (2011). Multiple risk factor interventions for primary prevention of coronary heart disease. Cochrane Database of Systematic Reviews. DOI: 10.1002/14651858.cd001561.pub3.Google Scholar
Goldberg, D. & Williams, P. (1988) A User’s Guide to the General Health Questionnaire. Windsor: NFER Nelson.Google Scholar
Haynes, R. B., Sackett, D. L., Taylor, W., et al. (1978). Increased absenteeism from work after detection and labeling of hypertensive patients. New England Journal of Medicine, 299, 741744.Google Scholar
Kaltman, J. R., Thompson, P. D., Lantos, J., et al. (2011). Screening for sudden cardiac death in the young: report from a National Heart, Lung, and Blood Institute working group. Circulation, 123, 19111918.Google Scholar
Ljungqvist, A., Jenoure, P. J., Engebretsen, L., et al. (2009). The International Olympic Committee (IOC) statement on periodic health evaluation of elite athletes, March 2009. Clinical Journal of Sports Medicine, 19, 347365.Google Scholar
Marteau, T. M. & Kinmonth, A. L. (2002). Screening for cardiovascular risk: public health imperative or matter for individual informed choice? British Medical Journal, 325, 7880.Google Scholar
Marteau, T. M., Kinmonth, A. L., Pyke, S., et al. (1995). Readiness for lifestyle advice: self-assessment of coronary risk prior to screening in the British family heart study. British Journal of General Practice, 45, 58.Google Scholar
Marteau, T. M., Kinmonth, A. L., Thompson, S., et al. (1996). The psychological impact of cardiovascular screening and intervention in primary care: a problem of false reassurance? British Journal of General Practice, 46, 577582.Google Scholar
National Institute for Health and Care Excellence (NICE). (2014). Cardiovascular disease risk assessment and management. https://cks.nice.org.uk/cvd-risk-managment.Google Scholar
Shaw, C., Abrams, K. & Marteau, T. M. (1999). Psychological impact of predicting individuals’ risks of illness: a systematic review. Social Science and Medicine, 49, 15711598.Google Scholar
Stampfer, M. J., Hu, F. B., Manson, J. E., et al. (2000). Primary prevention of coronary heart disease in women through diet and lifestyle. New England Journal of Medicine, 343, 1622.Google Scholar
Tymstra, T. & Bieleman, B. (1987). The psychosocial impact of mass screening for cardiovascular risk factors. Family Practice, 4, 287290.Google Scholar
World Health Organization (WHO). (2016). Fact Sheet: Cardiovascular Diseases (CVDs) Updated June 2016. Geneva: WHO.Google Scholar

References

Adler, N. E., David, H. P., Major, B. N., et al. (1990). Psychological responses after abortion. Science, 248, 4144.Google Scholar
Beutel, M., Deckardt, R., von Rad, M., et al. (1995). Grief and depression after miscarriage: their separation, antecedents and course. Psychosomatic Medicine, 57, 517526.Google Scholar
Bradshaw, Z. & Slade, P. (2003). The effects of induced abortion on emotional experiences and relationships: a critical review of the literature. Clinical Psychology Review, 23, 929958.Google Scholar
Broen, A. M., Moum, T., Brodtker, A. S. & Ekeberg, O. (2005). Reasons for induced abortions and their relation to women’s emotional distress: a prospective two year follow up study. General Hospital Psychiatry, 27, 3643.Google Scholar
Geller, P. A., Kerns, D. & Klier, M. C. (2004). Anxiety following miscarriage and the subsequent pregnancy: a review of the literature and furture directions. Journal of Psychosomatic Research, 56, 3545.Google Scholar
Gilchrist, A. C., Hannaford, P. S., Frank, P. & Kay, C. R. (1995). Termination of pregnancy and psychiatric morbidity. British Journal of Psychiatry, 167, 243248.CrossRefGoogle ScholarPubMed
Grimes, D. A. & Stuart, G. (2010). Abortion jabberwocky: the need for better terminology. Contraception, 81, 9396.Google Scholar
Lazarus, R. & Folkman, S. (1984). Stress, Appraisal, and Coping. New York: Springer Verlag.Google Scholar
Lee, C. & Rowlands, I. J. (2015). When mixed methods produce mixed results: integrating disparate findings about miscarriage and women’s well-being. British Journal of Health Psychology, 20, 3644.Google Scholar
Lok, I. H. & Neugebauer, R. (2007). Psychological morbidity following miscarriage. Best Practice & Research Clinical Obstetrics & Gynaecology, 21, 229247.Google Scholar
Madden, M. E. (1994). The variety of emotional reactions to miscarriage. Women and Health, 12, 85104.CrossRefGoogle Scholar
Maker, C. & Ogden, J. (2003). The miscarriage experience: More then just a trigger to psychological morbidity? Psychology & Health, 18, 403415.CrossRefGoogle Scholar
Miller, W. B., Pasta, D. J., & Dean, C. L. (1998). Testing the model of the psychological consequences of abortion. In Beckman, L. J. & Harvey, S. M. (eds), The New Civil War (pp. 235267). Washington, DC: American Psychological Association.Google Scholar
Munk-Olsen, T., Munk Laursen, T., Pedersen, C. B., Lidegaard, O. & Mortensen, P. B. (2011). Induced first-trimester abortion and risk of mental disorder. New England Journal of Medicine, 364, 332339.Google Scholar
Murphy, F. A., Lipp, A. & Powles, D. L. (2012). Follow-up for improving psychological well being for women after a miscarriage. Cochrane Database of Systematic Reviews, 3, CD008679Google Scholar
National Collaborating Centre for Mental Health (NCCMH) (2011). Academy of Medical Royal Colleges Induced Abortion and Mental Health, 2011: A Systematic Review of the Mental Health Outcomes of Induced Abortions, Including Their Prevalence and Associated factors. London: NCCMHGoogle Scholar
Nikčević, A. V., Tunkel, S. A. & Nicolaides, K. H. (1998). Psychological outcomes following missed abortions and provision of follow-up care. Ultrasound in Obstetrics & Gynaecology, 11, 123128.Google Scholar
Raymond, E. G. & Grimes, D. A. (2012). The comparative safety of legal induced abortion and childbirth in the United States. Obstetrics & Gynecology, 119, 215219.Google Scholar
RCOG (2006). Management of Early Pregnancy Loss. London: Royal College of Obstetricians and Gynaecologists.Google Scholar
Sedgh, G., Bearak, J., Singh, S., et al. (2016). Abortion incidence between 1990 and 2014: global, regional, and subregional levels and trends. Lancet, 388, 258267.Google Scholar
Wells, N. (1992). Reducing distress during abortion: a test of sensory information. Journal of Advanced Nursing, 17, 10501056.Google Scholar
World Health Organization (2011). Unsafe Abortion: Global and Regional Estimates of the Incidence of Unsafe Abortion and Associated Mortality in 2008 (6th edn). Geneva: World Health Organization.Google Scholar

References

Altshuler, L. L., Kupka, R. W., Hellemann, G., et al. (2010). Gender and depressive symptoms in 711 patients with bipolar disorder evaluated prospectively in the Stanley Foundation bipolar treatment outcome network. American Journal of Psychiatry, 167(6), 708715.Google Scholar
American Psychiatric Association (APA) (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn.) (DSM-V). Washington, DC; American Psychiatric Association Press.Google Scholar
Anderson, N. B. (2003). Emotional Longevity: What Really Determines How Long You Live. New York: Viking.Google Scholar
Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893897.Google Scholar
Beck, A. T., Steer, R. A. & Brown, G. K. (1996). Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Cipriani, A., Hawton, K., Stockton, S. & Geddes, J. R. (2013). Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. BMJ, 346. https://doi.org/10.1136/bmj.f3646Google Scholar
Dell’Aglio, J. C. Jr., Basso, L. A., Argimon, I. I. & Arteche, A. (2013). Systematic review of the prevalence of bipolar disorder and bipolar spectrum disorders in population based studies. Trends in Psychiatry and Psychotherapy, 35(2), 99105.Google Scholar
Depue, R., Krauss, S., Spoont, M. R. & Arbisi, P. (1989). General behavior inventory identification of unipolar and bipolar affective conditions in a nonclinical university population. Journal of Abnormal Psychology, 98(2), 117126.Google Scholar
DeRubeis, R. J., Siegle, G. J. & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9, 788796.Google Scholar
Fiedorowicz, J. G., Palagummi, N. M., Forman-Hoffman, V. L., Miller, D. D. & Haynes, W. G. (2008). Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Annals of Clinical Psychiatry, 20(3), 131137.Google Scholar
Goldstein, B. I., Fagiolini, A., Houck, P. & Kupfer, D. J. (2009). Cardiovascular disease and hypertension among adults with bipolar I disorder in the United States. Bipolar Disorders, 11(6), 657662.Google Scholar
Goodwin, G. M., Haddad, P. M., Ferrier, I. N., et al. (2016) Evidence-based guidelines for treating bipolar disorder: revised third edition recommendations from the British Association for Psychopharmacology. Journal of Psychopharmacology, 30(6), 495553.Google Scholar
Gurpegui, M., Martínez-Ortega, J. M., Gutiérrez-Rojas, L., et al. (2012). Overweight and obesity in patients with bipolar disorder or schizophrenia compared with a non-psychiatric sample. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 37(1), 169175.Google Scholar
Hamilton, M. C. (1960). Hamilton Depression Rating Scale (HAM-D). Redloc, 23, 5662.Google Scholar
Hirschfeld, R. M. (2014). Differential diagnosis of bipolar disorder and major depressive disorder. Journal of Affective Disorders, 169, S12S16.Google Scholar
Hirschfeld, R. M., Williams, J. B., Spitzer, R. L., et al. (2000). Development and validation of a screening instrument for bipolar spectrum disorder: the Mood Disorder Questionnaire. American Journal of Psychiatry, 157(11), 18731875.Google Scholar
Key, B. L., Campbell, T. S., Bacon, S. L. & Gerin, W. (2008). The influence of trait and state rumination on cardiovascular recovery from a negative emotional stressor. Journal of Behavioral Medicine, 31, 237248.Google Scholar
Kroenke, K., Spitzer, R. L. & Williams, J. B. W. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613.Google Scholar
Kubzansky, L. D. & Kawachi, I. (2000). Going to the heart of the matter: do negative emotions cause coronary heart disease? Manual of Psychosomatic Research, 48, 323337.Google Scholar
Nanayakkara, S., Misch, D., Chang, L. & Henry, D. (2013). Depression and exposure to suicide predict suicide attempt. Depression and Anxiety, 30(10), 991996.Google Scholar
National Institute of Mental Health (NIMH) (2016a). Major depression among adults. www.nimh.nih.gov/health/statistics/prevalence/major-depression-among-adults.shtml.Google Scholar
National Institute of Mental Health (NIMH) (2016b). Anxiety disorders. www.nimh.nih.gov/health/topics/anxiety-disorders/index.shtml.Google Scholar
National Institute of Mental Health (NIMH) (2016c). Any anxiety disorder among adults. www.nimh.nih.gov/health/statistics/prevalence/any-anxiety-disorder-among-adults.shtml.Google Scholar
Paterniti, M., Zureik, M., Ducimetiere, P., Feve, J. M. & Alperovitch, A. (2001). Sustained anxiety and 4-year progression of carotid atherosclerosis. Atherosclerosis, Thrombosis and Vascular Biology, 21, 136141.Google Scholar
Pennix, B. W. J. H., Guralnik, J. M., Pahor, M., et al. (1998). Chronically depressed mood and cancer risk in older persons. Journal of the National Cancer Institute, 90, 18881893.Google Scholar
Peters, A., Sylvia, L. G., da Silva Magalhães, P. V., et al. (2014). Age at onset, course of illness and response to psychotherapy in bipolar disorder: results from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Psychological Medicine, 44, 34553467.Google Scholar
Phillips, M. L. & Kupfer, D. J. (2013). Bipolar disorder diagnosis: challenges and future directions. Lancet, 381(9878), 16631671.Google Scholar
Rhebergen, D., Graham, R., Hadzi-Pavlovic, D., et al. (2012). The categorisation of dysthymic disorder: can its constituents be meaningfully apportioned? Journal of Affective Disorders, 143(1–3), 179186.Google Scholar
Spielberger, C. D. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Swartz, H. & Fagiolini, A. (2012) Cardiovascular diseases and bipolar disorder: risk and clinical implications. Journal of Clinical Psychology, 73(12), 15631565.Google Scholar
Sylvia, L. G., Nierenberg, A. A., Stange, J. P., Peckham, A. D. & Deckersbach, T. (2011). Development of an integrated psychosocial treatment to address the medical burden associated with bipolar disorder. Journal of Psychiatric Practice, 17(3), 224232.Google Scholar
Wu, E., Chien, I. & Lin, C. (2014). Increased risk of hypertension in patients with anxiety disorders: a population-based study. Journal of Psychosomatic Research, 77(6), 522527.Google Scholar

References

Antolín‑Amérigo, D., Manso, L., Caminati, M., et al. (2016). Quality of life in patients with food allergy. Clinical & Mollecular Allergy, 14, 4.Google Scholar
Cheng, T. S., Chen, H., Lee, T., et al. (2015). An independent association of prenatal depression with wheezing and anxiety with rhinitis in infancy. Paediatric Allergy & Immunology, 26, 765771.CrossRefGoogle ScholarPubMed
Chida, Y., Hamer, M. & Steptoe, A. (2008). A bidirectional relationship between psychosocial factors and atopic disorders: a systematic review and meta-analysis. Psychosomatic Medicine, 70, 102116.Google Scholar
El-Turki, A., Smith, H. E., Llewellyn, C. D. & Jones, C. J. (2017). A systematic review of patients’, parents’ and health professionals’ adrenaline auto-injector administration technique. Emergency Medicine Journal. 34, 403416.Google Scholar
Garg, N. & Silverberg, J. I. (2014). Association between childhood allergic disease, psychological comorbidity, and injury requiring medical attention. Annals of Allergy, Asthma & Immunology, 116, 525532.Google Scholar
Jones, C. J., Smith, H. E., Frew, A. J., et al. (2014). Explaining adherence to self-care behaviours amongst adolescents with food allergy: a comparison of the health belief model and the common sense self-regulation model. British Journal of Health Psychology, 19, 6582.Google Scholar
Jones, C. J., Smith, H. E., Frew, A. J., et al. (2015). Factors associated with good adherence to self-care behaviours amongst adolescents with food allergy. Paediatric Allergy & Immunology, 26, 111118.Google Scholar
Kemp, S. F., Lockey, R. F. & Simons, F. E. R. (2008). Epinephrine: the drug of choice for anaphylaxis – a statement of the World Allergy Organization. World Allergy Organization Journal, 1, s18s26.Google Scholar
King, R. M., Knibb, R. C. & Hourihane, J. O. (2009). Impact of peanut allergy on quality of life, stress and anxiety in the family. Allergy, 64, 461468.Google Scholar
Knibb, R. C. (2015). Effectiveness of cognitive behaviour therapy for mothers of children with food allergy: a case series. Healthcare, 3, 11941211.Google Scholar
Lind, N., Nordin, M., Palmquist, E., et al. (2015). Coping and social support in asthma and allergy: the Västerbotten Environmental Health Study. Journal of Asthma, 52, 622629.Google Scholar
McConnell, T. H. (2007). The Nature of Disease Pathology for the Health Professions. Baltimore, MD: Lippincott Williams & Wilkins.Google Scholar
Meltzer, E. O. (2001). Quality of life in adults and children with allergic rhinitis. Journal of Allergy & Clinical Immunology, 108, S45S53.Google Scholar
Montoro, J., Mullol, J., Jáuregui, I., et al. (2009). Stress and allergy. Journal of Investigational Allergology and Clinical Immunology, 19, 4047.Google Scholar
Pawankar, R. (2014). Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organization Journal, 7, 12.Google Scholar
Pawankar, R., Canonica, G. W., Holgate, S. T., Lockey, R. F. & Blaiss, M. S. (2013). The WAO White Book on Allergy: Update 2013. World Allergy Organization. www.worldallergy.org/UserFiles/file/WhiteBook2-2013-v8.pdf (accessed 12 July 2017).Google Scholar
Polloni, L. (2014). Psychological care of food-allergic children and their families: an exploratory analysis. Pediatric Allergy & Immunology, 26, 8092.Google Scholar
Polloni, L., Ferruzza, E., Ronconi, L., et al. (2015). Perinatal stress and food allergy: a preliminary study on maternal reports. Psychology, Health & Medicine, 20, 732741.Google Scholar
Rusznak, C. & Davies, R. J. (1998). Diagnosing allergies. British Medical Journal, 28, 686689.Google Scholar
Schreier, H. M. C. & Wright, R. J. (2014). Stress and food allergy: mechanistic considerations. Annals of Allergy, Asthma & Immunology, 112, 296301.Google Scholar
Smith, H. E. & Jones, C. J. (2015). Illness perception, mood and coping in patients with rhinitis. In Akdis, C., Hellings, P. & Agache, I. (eds), Global Atlas of Allergic Rhinitis and Chronic Rhinosinusitis (pp. 276278). Zurich: European Academy of Allergy and Clinical Immunology,Google Scholar
Spergel, J. M. (2010). From atopic dermatitis to asthma: the atopic march. Annals of Asthma, Allergy & Immunology, 105, 99106.Google Scholar
Timonen, M., Jokelainen, J., Hakko, H., et al. (2003). Atopy and depression: results from the Northern Finland 1966 Birth Cohort Study. Molecular Psychiatry, 8, 738744.Google Scholar
Wamboldt, M., Hewitt, J. K., Schmitz, S., et al. (2000). Familial association between allergic disorders and depression in adult Finnish twins. American Journal of Medical Genetics, 96, 146153.Google Scholar

References

Bauer, P. J. (2014). The development of forgetting: childhood amnesia. In Bauer, P.J. & Fivush, R. (eds), The Wiley-Blackwell Handbook on the Development of Children’s Memory (pp. 519544). Chichester: Wiley-Blackwell.Google Scholar
Bauer, P. J. (2015). A complementary processes account of the development of childhood amnesia and a personal past. Psychological Review, 2, 204231.Google Scholar
Bauer, P. J. & Larkina, M. (2014a). Childhood amnesia in the making: different distributions of autobiographical memories in children and adults. Journal of Experimental Psychology: General, 143(2), 597611.Google Scholar
Bauer, P. J. & Larkina, M. (2014b). The onset of childhood amnesia in childhood: a prospective investigation of the course and determinants of forgetting of early-life events. Memory, 22, 907924.Google Scholar
Cooper, J. M., Vargha-Khadem, F., Gadian, D. G. & Maguire, E. A. (2011). The effect of hippocampal damage in children on recalling the past and imagining new experiences. Neuropsychologia, 49, 18431850.Google Scholar
Corkin, S. (1984). Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Seminars in Neurology, 4, 249259.Google Scholar
Corkin, S. (2002). What’s new with the amnesic patient H.M.? Nature Reviews, 3, 153160.Google Scholar
Fivush, R. (2011). The development of autobiographical memory. Annual Review of Psychology, 62, 559582.Google Scholar
Freud, S. (1905/1953). Childhood and concealing memories. In Brill, A. A. (ed.), The Basic Writings of Sigmund Freud. New York: The Modern Library.Google Scholar
Manns, J. R. & Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus, 16, 795808.Google Scholar
Miles, C. (1893). A study of individual psychology. American Journal of Psychology, 6, 534558.Google Scholar
Milner, B. M., Corkin, S. & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year followup study of H.M. Neuropsychologia, 6, 215234.Google Scholar
Mullally, S. L., Vargha-Khadem, F. & Maguire, E. A. (2014). Scene construction in developmental amnesia: an fMRI study. Neuropsychologia, 52, 110.Google Scholar
Reed, J. M. & Squire, L. R. (1998). Retrograde amnesia for facts and events: findings from four new cases. Journal of Neuroscience, 18, 39433954.Google Scholar
Rubin, D. (2006). The basic-systems model of episodic memory. Perspectives on Psychological Science, 1, 277311.Google Scholar
Squire, L. R. (1987). Memory and Brain. New York: Oxford University Press.Google Scholar
Squire, L. R. & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Opinion in Neurobiology, 5, 169177.Google Scholar
Usher, J. & Neisser, U. (1993). Childhood amnesia and the beginnings of memory for four early life events. Journal of Experimental Psychology: General, 122, 155165.Google Scholar
Wang, Q., Conway, M. & Hou, Y. (2004). Infantile amnesia: a crosscultural investigation. Cognitive Sciences, 1, 123135.Google Scholar
West, T. W. & Bauer, P. J. (1999). Assumptions of infantile amnesia: are there differences between early and later memories? Memory, 7, 257278.Google Scholar

References

Basso, A. (1992). Prognostic factors in aphasia. Aphasiology, 6, 337348.Google Scholar
Berthier, M. (2014). Cognitive enhancing drugs in aphasia: a vote for hope. Aphasiology, 28, 128132.Google Scholar
Bhogal, S. K., Teasell, R. & Speechley, M. (2003). Intensity of aphasia therapy, impact on recovery. Stroke, 34, 987993.Google Scholar
Brumfitt, S. (1985). The use of repertory grids with aphasic people. In: Beail, N. (ed.), Repertory Grid Techniques and Personal Constructs. London: Croom Helm.Google Scholar
Cherney, L. R., Patterson, J. P. & Raymer, A. M. (2011). Intensity of aphasia therapy: evidence and efficacy. Current Neurology and Neuroscience Reports, 11, 560569.Google Scholar
Code, C. (1994). The role of the right hemisphere in the treatment of aphasia. In Chapey, R. (ed.), Language Intervention Strategies in Adult Aphasia. (3rd edn) Baltimore, MD: Williams & Wilkins.Google Scholar
Code, C. (2001). Multifactorial processes in recovery from aphasia: developing the foundations for a multilevelled framework. Brain and Language, 77, 2544.Google Scholar
Code, C. & Herrmann, M. (2003). The relevance of emotional and psychosocial factors in aphasia to rehabilitation. Neuropsychological Rehabilitation, 13, 109132.Google Scholar
Code, C. & Muller, D. J. (eds), (1995). The Treatment of Aphasia: From Theory to Practice. London: Whurr.Google Scholar
de Riesthal, M. & Wertz, R. T. (2004). Prognosis for aphasia: relationship between selected biographical and behavioural variables and outcome and improvement. Aphasiology, 18, 899915.Google Scholar
Duchan, J.F & Byng, S. (eds), (2004). Challenging Aphasia Therapies: Broadening the Discourse and Extending the Boundaries. Hove: Psychology Press.Google Scholar
El Hachioui, H., Lingsma, H. F.L, van de Sandt-Koenderman, M. W. M. E., et al. (2013). Long-term prognosis of aphasia after stroke. Journal of Neurology and Neurosurgy andPsychiatry, 84, 310315.Google Scholar
Helm-Estabrooks, N. & Albert, M. L. (1991). Manual of Aphasia Therapy. Austin, TX.: Pro-Ed.Google Scholar
Hemsley, G. & Code, C. (1996). Interactions between recovery in aphasia, emotional and psychosocial factors in subjects with aphasia, their significant others and speech pathologists. Disability & Rehabilitation, 18, 567584.Google Scholar
Herrmann, M. & Wallesch, C-W. (1989). Psychosocial changes and adjustment with chronic and severe nonfluent aphasia. Aphasiology, 3, 513526.Google Scholar
Herrmann, M., Bartells, C. & Wallesch, C.-W. (1993). Depression in acute and chronic aphasia: symptoms, pathoanatomical-clinical correlations and functional implications. Journal of Neurology, Neurosurgery, and Psychiatry, 56, 672678.Google Scholar
Holland, R. & Crinion, J. (2012). Can tDCS enhance treatment of aphasia after stroke? Aphasiology, 26, 11691191.Google Scholar
Howard, D., Webster, J. & Whitworth, A. (2013). A Cognitive Neuropsychological Approach to Assessment and Intervention in Aphasia (2nd edn). Hove: Psychology Press.Google Scholar
Kagan, A., Black, S., Duchan, J., et al., (2001). Training volunteers as conversational partners using ‘Supported Conversation with Adults with Aphasia’ (SCA): a controlled trial. Journal of Speech, Language, and Hearing Research, 44, 624638.Google Scholar
Kay, J., Lesser, R. & Coltheart, M. (1992). Psycholinguistic Assessments of Language Processing in Aphasia. Hove: Lawrence Erlbaum Associates.Google Scholar
Lam, J. M. C. & Wodchis, W. P. (2010). The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents. Medical Care, 48, 380387.Google Scholar
Lanyon, J., Rose, M. & Worrall, L. (2013). The efficacy of outpatient and community-based aphasia group interventions: a systematic review. International Journal of Speech-Language Pathology, 15, 359374.Google Scholar
Leff, A. P. & Howard, D. (2012). Has speech and language therapy been shown not to work? Nature Reviews Neurology, 8, 600601.Google Scholar
Luria, A., Naydyn, V. L., Tsvetkova, L. S., et al. (1969). Restoration of higher cortical function following local brain damage. In: Vinken, P. J. & Bruyn, G. W. (eds), Handbook of Clinical Neurology (pp. 368433). Amsterdam: North-Holland Publishing Company.Google Scholar
Pulvermüller, F. & Berthier, M. L. (2008). Aphasia therapy on a neuroscience basis. Aphasiology, 22, 563599Google Scholar
Pulvermüller, F., Neininger, B., Elbert, T., et al. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke, 32, 16211626.Google Scholar
Robinson, R. G., Lipsey, J. R., Rao, K. & Price, T. R. (1986). A two-year longitudinal study of poststroke mood disorders: comparison of acute-onset with delayed-onset depression. American Journal of Psychiatry, 143, 12381244.Google Scholar
Rose, M., Raymer, A., Lanyon, L. & Attard, M. C. (2013). A systematic review of gesture treatments for post-stroke aphasia. Aphasiology, 27,Google Scholar
Starkstein, S. E. & Robinson, R. G. (1988). Aphasia and depression. Aphasiology, 2, 120.Google Scholar
Stern, R. A. & Bachman, D. L. (1991). Depressive symptoms following stroke. American Journal of Psychiatry, 148, 351356.Google Scholar
Tanner, D. C. & Gerstenberger, D. L. (1988). The grief response in neuropathologies of speech and language. Aphasiology, 2, 7984.Google Scholar
van der Meulen, I., van de Sandt-Koenderman, M. E. & Ribbers, G. M. (2012). Melodic intonation therapy: present controversies and future opportunities. Archives of Physical Medicine and Rehabilitation, 93, (1 Suppl. 1), 4652.Google Scholar

References

Barlow, J., Wright, C., Sheasby, J., Turner, A. & Hainsworth, J. (2002). Self-management approaches for people with chronic conditions: a review. Patient Education and Counseling, 48, 177187.Google Scholar
Creer, T. L. (1979). Asthma Therapy: A Behavioral Health Care System for Respiratory Disorders. New York: Springer.Google Scholar
Denford, S., Taylor, R. S., Campbell, J. L. & Greaves, C. J. (2014). Effective behavior change techniques in asthma self-care interventions: systematic review and meta-regression. Health Psychology, 33, 577587.Google Scholar
Gross, N. J. (1980). What is this thing called love? Or, defining asthma. American Review of Respiratory Disease, 121, 203204.Google Scholar
Hahn, E. A., Mora, P. & Leventhal, H. (2006). No symptoms, no asthma: the acute episodic disease belief is associated with poor self-management among inner-city adults with persistent asthma. Chest, 129, 573580.Google Scholar
Kaptein, A. A., Klok, T., Moss-Morris, R. & Brand, P. L. P. (2010). Illness perceptions: impact on self-management and control in asthma. Current Opinion in Allergy and Clinical Immunology, 10, 194199.Google Scholar
Kaptein, A. A., Meulenberg, F. & Smyth, J. M. (2015). A breath of fresh air: images of respiratory illness in novels, poems, films, music, and paintings. Journal of Health Psychology, 20, 246258.Google Scholar
Kinsman, R. A., Dahlem, N. W., Spector, S. & Staudenmayer, H. K. (1977). Observations on subjective symptomatology, coping behavior, and medical decisions in asthma. Psychosomatic Medicine, 39, 102119.Google Scholar
Lee, A. & Wright, R. J. (2016). Prenatal stress and childhood asthma risk: taking a broader view. European Respiratory Journal, 47, 406409.Google Scholar
Levy, B. D., Noel, P. J., Freemer, M. M., et al. (2015). Future research directions in asthma. American Journal of Respiratory and Critical Care Medicine, 192, 13661372.Google Scholar
Petrie, K. J., Perry, K., Broadbent, E. & Weinman, J. (2011). A text message programme designed to modify patients’ illness and treatment beliefs improves self-reported adherence to asthma preventer medication. British Journal of Health Psychology, 17, 7484.Google Scholar
Peytremann-Brideveaux, I., Arditi, C., Gex, G., et al. (2015). Chronic disease management programmes for adults with asthma. Cochrane Database of Systematic Reviews, 5, CD007988.Google Scholar
Queneau, R. (1987). The Skin of Dreams. London: Atlas Press.Google Scholar
Ritz, T., Meuret, A. E., Trueba, A. F., Fritsche, A. & von Leupoldt, A. (2013). Psychosocial factors and behavioral medicine interventions in asthma. Journal of Consulting and Clinical Psychology, 81, 231250.Google Scholar
Smyth, J. M., Stone, A. A., Hurewitz, A. & Kaell, A. (1999). Effects of writing about stressful experiences on symptom reduction in patients with asthma or rheumatoid arthritis: a randomized trial. JAMA, 281, 13041309.Google Scholar

References

Akerblom, S., Perrin, S., Rivano Fischer, M. & McCracken, L. (2015). The mediating role of acceptance in multidisciplinary cognitive-behavioral therapy for chronic pain. Journal of Pain, 16(7), 606615.Google Scholar
Alexanders, J., Anderson, A. & Henderson, S. (2015). Musculoskeletal physiotherapists’ use of psychological interventions: a systematic review of therapists’ perceptions and practice. Physiotherapy, 101(2), 95102.Google Scholar
Artus, M., van der Windt, D. A., Jordan, K. P., et al. (2010). Low back pain symptoms show a similar pattern of improvement following a wide range of primary care treatments: a systematic review of randomized clinical trials. Rheumatology, 49(12), 23462356.Google Scholar
Balague, F., Mannion, A. F., Pellise, F. & Cedraschi, C. (2012). Non-specific low back pain. Lancet, 379(9814), 482491.Google Scholar
Barker, E. & McCracken, L.M. (2014). From traditional cognitive-behavioural therapy to acceptance and commitment therapy for chronic pain: a mixed-methods study of staff experiences of change. British Journal of Pain, 8(3), 98106.Google Scholar
Brunner, E., De Herdt, A., Minguet, P., Baldew, S. S. & Probst, M. (2013). Can cognitive behavioural therapy based strategies be integrated into physiotherapy for the prevention of chronic low back pain? A systematic review. Disability and Rehabilitation, 35(1), 110.Google Scholar
Campbell, C. & Guy, A. (2007). Why can’t they do anything for a simple back problem? A qualitative examination of expectations for low back pain treatment and outcome. Journal of Health Psychology, 12(4), 641652.Google Scholar
Dionne, C. E., Dunn, K. M., Croft, P. R., et al. (2008). A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine, 33(1), 95103.Google Scholar
Downie, A., Williams, C. M., Henschke, N., et al. (2013). Red flags to screen for malignancy and fracture in patients with low back pain: systematic review. BMJ, 347. https://doi.org/10.1136/bmj.f7095.Google Scholar
Ferreira, M. L., Machado, G., Latimer, J., et al. (2010). Factors defining care‐seeking in low back pain: a meta‐analysis of population based surveys. European Journal of Pain, 14, 747.e741747.e747.Google Scholar
Freburger, J. K., Holmes, G. M., Agans, R. P., et al. (2009). The rising prevalence of chronic low back pain. Archives of Internal Medicine, 169(3), 251258. DOI:10.1001/archinternmed.2008.543.Google Scholar
Godfrey, E., Galea Holmes, M., Wileman, V., et al. (2016). Physiotherapy informed by Acceptance and Commitment Therapy (PACT): protocol for a randomised controlled trial of PACT versus usual physiotherapy care for adults with chronic low back pain. BMJ Open, 6, e011548. DOI:10.1136/bmjopen-2016- 011548.Google Scholar
Gore, M., Sadosky, A., Stacey, B. R., Tai, K. S. & Leslie, D. (2012). The burden of chronic low back pain: clinical comorbidities, treatment patterns, and health care costs in usual care settings. Spine, 37(11), 668677.Google Scholar
Hall, A., Richmond, H., Copsey, B., et al. (2016). Physiotherapist delivered cognitive-behavioural interventions are effective for low back pain, but can they be replicated in clinical practice? A systematic review. Disability and Rehabilitation. DOI:10.1080/09638288.2016.1236155.Google Scholar
Hayes, S. C., Strosahl, K. & Wilson, K.G.(1999). Acceptance and Commitment Therapy: An Experimental Approach to Behaviour Change. New York: Guilford Press.Google Scholar
Hill, J. C., Whitehurst, D. G., Lewis, M., et al. (2011). Comparison of stratified primary care management for low back pain with current best practice (STarT Back): a randomised controlled trial. Lancet, 378, 15601571.Google Scholar
Hong, J., Reed, C., Novick, D. & Happich, M. (2013). Costs associated with treatment of chronic low back pain: an analysis of the UK General Practice Research Database. Spine, 38(1), 7582.Google Scholar
Hoy, D., Bain, C., Williams, G., et al. (2012). A systematic review of the global prevalence of low back pain. Arthritis and Rheumatism, 64(6), 20282037.Google Scholar
Hoy, D. G., Smith, E., Cross, M., et al. (2014). Reflecting on the global burden of musculoskeletal conditions: lessons learnt from the Global Burden of Disease 2010 Study and the next steps forward. Annals of Rheumtic Disease, 73(6), 982989.Google Scholar
Itz, C., Geurts, J., Kleef, M. V. & Nelemans, P. (2013). Clinical course of non‐specific low back pain: a systematic review of prospective cohort studies set in primary care. European Journal of Pain, 17(1), 515.Google Scholar
Koes, B. W., van Tulder, M., Lin, C.-W. C., et al. (2010). An updated overview of clinical guidelines for the management of non-specific low back pain in primary care. European Spine Journal, 19(12), 20752094.Google Scholar
Lamb, S. E., Lall, R. S., Hansen, Z., et al. (2010). A multicentred randomised controlled trial of a primary care-based cognitive behavioural programme for low back pain: the back skills training (BeST) trial. Health Technology Assessment, 14(41), 1281.Google Scholar
McCracken, L. M. & Morley, S. (2014). The psychological flexibility model: a basis for integration and progress in psychological approaches to chronic pain management. Journal of Pain, 15, 221234.Google Scholar
Mehra, M., Hill, K., Nicholl, D. & Schadrack, J. (2012). The burden of chronic low back pain with and without a neuropathic component: a healthcare resource use and cost analysis. Journal of Medical Economics, 15(2), 245252.Google Scholar
Meucci, R. D., Fassa, A. G. & Faria, N. M. X. (2015). Prevalence of chronic low back pain: systematic review. Revista de Saúde Pública, 49. DOI:10.1590/S0034-8910.2015049005874.Google Scholar
Murray, C. J., Vos, T., Lozano, R., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380,21972223.Google Scholar
NICE (2016). Low Back Pain and Sciatica in Over 16s: Assessment and Management. NICE guideline 59. London: NICE. www.nice.org.uk/guidance/ng59 (accessed 1 December 2016).Google Scholar
Nicholas, M., Linton, S., Watson, P. & Main, C. (2011). Early identification and management of psychological risk factors (‘yellow flags’) in patients with low back pain: a reappraisal. Physical Therapy, 91, 737753.Google Scholar
Öst, L.-G. (2014). The efficacy of Acceptance and Commitment Therapy: an updated systematic review and meta-analysis. Behaviour Research and Therapy, 61, 105121.Google Scholar
Pincus, T. & McCracken, L. M. (2013). Psychological factors and treatment opportunities in low back pain. Best Practice & Research Clinical Rheumatology, 27(5), 625635.Google Scholar
Pincus, T., Burton, A. K., Vogel, S. & Field, A. P. (2002). A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine, 27, E109E120.Google Scholar
Pincus, T., Anwar, S., McCracken, L., et al. (2015). Delivering an optimised behavioural intervention (obi) to people with low back pain with high psychological risk: results and lessons learnt from a feasibility randomized controlled trial of contextual cognitive behavioural therapy (CCBT) vs. physiotherapy. BMC Musculoskeletal Disorders, 16, 147.Google Scholar
Richmond, H., Hall, A. M., Copsey, B., et al. (2015). the effectiveness of cognitive behavioural treatment for non-specific low back pain: a systematic review and meta-analysis. PLoS ONE, 10(8): e0134192. DOI:10.1371/journal.pone.0134192.Google Scholar
Straube, S., Harden, M., Schroder, H., et al. (2016). Back schools for the treatment of chronic low back pain: possibility of benefit but no convincing evidence after 47 years of research: systematic review and meta-analysis. Pain. 157(10), 21602172.Google Scholar
van Middelkoop, M., Rubinstein, S. M., Kuijpers, T., et al. (2010). A systematic review on the effectiveness of physical and rehabilitation interventions for chronic non-specific low back pain. European Spine Journal, 20, 1939.Google Scholar
Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R. et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 21632196.Google Scholar
Vowles, K. E., McCracken, L. M. & O’Brien, J. Z. (2011). Acceptance and values-based action in chronic pain: a three-year follow-up analysis of treatment effectiveness and process. Behaviour Research and Therapy, 49(11), 748755.Google Scholar
Waddell, G. (1987). A new clinical model for the treatment of low back pain. Spine, 12, 622634.Google Scholar
Williams, A., Eccleston, C. & Morley, S. (2012). Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database of Systematic Reviews, 11, CD007407.Google Scholar

References

Bliss (2016). Statistics. www.bliss.org.uk/pages/category/statistics (accessed 15 August 2016).Google Scholar
Cacciatore, J., Radestad, I. & Froen, F. J. (2008). Effects of contact with stillborn babies on maternal anxiety and depression. Birth, 35, 313320.Google Scholar
Cacciatore, J., Schnebly, S. & Froen, J. F. (2009). The effects of social support on maternal anxiety and depression after stillbirth. Health and Social Care in the Community, 17, 167176.Google Scholar
Carroll, M., Daly, D. & Begley, C. M. (2016). The prevalence of women’s emotional and physical health problems following a postpartum haemorrhage: a systematic review. BMC Pregnancy and Childbirth, 16, 261.Google Scholar
Carson, C., Redshaw, M., Gray, R. & Quigley, M. (2015). Risk of psychological distress in parents of preterm children in the first year: evidence from the UK Millennium Cohort Study. BMJ Open, 5, e007942.Google Scholar
Delahaije, D., Dirksen, D., Peeters, L. & Smits, L. (2014). Anxiety and depression following preeclampsia or hemolysis, elevated liver enzymes, and low platelets syndrome: a systematic review. Acta Obstetricia et Gynecologica Scandinavica, 92, 746761Google Scholar
Eckerdal, P., Kollia, N., Loffblad, J., et al. (2016). Delineating the association between heavy postpartum haemorrhage and postpartum depression. PLoS ONE, 11(1), e0144274.Google Scholar
Elmir, R. & Schmied, V. (2016). A meta-ethnographic synthesis of fathers’ experiences of complicated births that are potentially traumatic. Midwifery, 32, 6674.Google Scholar
Eutrope, J., Thierry, A., Lemp, F., et al. (2014). Emotional reactions of mothers facing premature births: study of 100 mother-infant dyads 32 gestational weeks. PLoS One, 9, e104093.Google Scholar
Froen, J. F., Cacciatore, J., McClure, E. M., et al. (2011). Stillbirths: why they matter. Lancet, 377, 13531366.Google Scholar
Furuta, M., Sandall, J. & Bick, D. (2014). Women’s perceptions and experiences of severe maternal morbidity: a synthesis of qualitative studies using a meta-ethnographic approach. Midwifery, 30, 158169.Google Scholar
Grekin, R. & O’Hara, M. W. (2014). Prevalence and risk factors of postpartum posttraumatic stress disorder: a meta-analysis. Clinical Psychology Review, 34, 389401.Google Scholar
Heazell, A., Siassakos, D., Blencowe, H., et al. (2016). Stillbirths: economic and psychosocial consequences. Lancet, 387, 604616.Google Scholar
Hennegan, J. M., Henderson, J. & Redshaw, M. (2015). Contact with the baby following stillbirth and parental mental health and well-being: a systematic review. BMJ Open, 5.Google Scholar
Hoedjes, M., Berks, D., Vogel, I., et al. (2011). Symptoms of posttraumatic stress disorder after preeclampsia. Journal of Psychosomatic Obstetrics & Gynaecology, 32, 126134.Google Scholar
Knight, M., Tuffnell, D., Kenyon, S., et al. (eds) (2015). Saving Lives, Improving Mothers’ Care: Surveillance of Maternal Deaths in the UK 2011–13 and Lessons Learned to Inform Maternity Care from the UK and Ireland Confidential Enquiries Into Maternal Deaths and Morbidity 2009–13. Oxford: National Perinatal Epidemiology Unit, University of Oxford.Google Scholar
Redshaw, M., Hennegan, J. M. & Henderson, J. (2016). Impact of holding the baby following stillbirth on maternal mental health and well-being: findings from a national survey. BMJ Open, 6, e010996.Google Scholar
Sentilhes, L., Gromez, A., Clavier, E., et al. (2011). Long-term psychological impact of severe postpartum haemorrhage. Acta Obstetrica Gynecologica Scandinavica, 90, 615620.Google Scholar
Snowdon, C., Elbourne, D., Forsey, M. & Alfirevic, Z. (2012). Information-hungry and disempowered: a qualitative study of women and their partners’ experiences of severe postpartum haemorrhage. Midwifery, 28, 791799.Google Scholar
Stramrood, C., Wessel, I., Doornbos, B., et al. (2011). Posttraumatic stress disorder following preeclampsia and PPROM: a prospective study with 15 months follow-up. Reproductive Sciences, 18, 645653.Google Scholar
Thombre, M. K., Talge, N. M. & Holzman, C. (2015). Association between pre-pregnancy depression/anxiety symptoms and hypertensive disorders of pregnancy. Journal of Women’s Health, 24, 228236.Google Scholar
Vigod, S. N., Villegas, L. & Dennis, C. L. (2010). Prevalence and risk factors for postpartum depression among women with preterm and low-birth-weight infants: a systematic review. BJOG, 117, 540550.Google Scholar
World Health Organization (2016). Stillbirths. www.who.int/maternal_child_adolescent/epidemiology/stillbirth/en/ (accessed 27 November 2016).Google Scholar

References

Altier, N., Malenfant, A., Forget, R., et al. (2002). Long-term adjustment in burn victims: a matched-control study. Psychological Medicine, 32, 677685.Google Scholar
Anderson, N. J., Bonauto, D. K. & Adams, D. (2011). Psychiatric diagnoses after hospitalization with work-related burn injuries in Washington State. Journal of Burn Care & Research, 32, 369378.Google Scholar
Bakker, A., Van der Heijden, P. G. M. & Van Son, M. J. M. (2013). Course of traumatic stress reactions in couples after a burn event to their young child. Health and Psychology, 32, 10761083.Google Scholar
Blakeney, P., Portman, S. & Rutan, R. (1990). Familial values as factors influencing long-term psychological adjustment of children after severe burn-injury. Journal of Burn Care and Rehabilitation, 11, 472475.Google Scholar
Bonanno, G. A. (2004). Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events? American Psychologist, 59, 2028.Google Scholar
Bradbury, E. (1996). Counselling People with Disfigurement. Leicester: BPS Books.Google Scholar
Cobb, S. (1976). Social support as a moderator of life stress. Psychosomatic Medicine, 38, 300314.Google Scholar
Esselman, P. C., Thombs, B. D., Magyar-Russell, G., et al. (2006). Burn rehabilitation: state of science. American Journal of Physical Medicine & Rehabilitation, 85, 383413.Google Scholar
Gupta, M. & Kumar, A. (2015). Study of dry thermal fatal burn prevalence with occupational work in Varanasi area; India. International Journal of Science and Research, 4, 13621365.Google Scholar
Heath, J, Williamson, H, Williams, L & Harcourt, D. (2018). Parent-perceived isolation and barriers to psychosocial support: a qualitative study to investigate how peer support might help parents of burn-injured children. Scars, Burns & Healing, 4. DOI: 10.1177/2059513118763801.Google Scholar
Malic, C. C., Karoo, R. O. S., Austin, O., et al. (2007). Burns inflicted by self or by others: an 11 year snapshot. Burns, 33, 9297.Google Scholar
Muangman, P., Sullivan, S. R., Wiechman, S., et al. (2005). Social support correlates with survival in patients with massive burn-injury. Journal of Burn Care & Rehabilitation, 26, 352356.Google Scholar
National Burn Care Review. (2001). Standards and strategy for burn care: a review of burn care in the British Isles. www.ibidb.org/downloads/cat_view/14-general-reports (accessed 25 April 2016).Google Scholar
Oaie, E, Piepenstock, E & Williams, L. (2018). Risk factors for peri-traumatic distress and appearance concerns in burn-injured inpatients identified by screening tool. Scars, Burns & Healing, 4. DOI: 10.1177/2059513118765294.Google Scholar
Palmu, R., Partonen, T., Suominen, K., et al. (2016). Functioning, disability, and social adaptation six months after burn injury. Journal of Burn Care & Research, 37, e234–243.Google Scholar
Phillips, C. & Rumsey, N. (2008). Considerations for the provision of psychosocial services for families following paediatric burn injury: a quantitative study. Burns, 34, 5662.Google Scholar
Phillips, C., Fussell, A. & Rumsey, N. (2007). Considerations for psychosocial support following burn injury: a family perspective. Burns, 33, 986994.Google Scholar
Potokar, T. & Price, P. (2012). Challenges in healthcare provision in resource-poor countries. In Rumsey, N. & Harcourt, D. (eds), The Oxford Handbook of the Psychology of Appearance (pp. 7178). Oxford: Oxford University Press.Google Scholar
Rimmer, R. B., Bay, R. C., Alam, N. B., et al. (2015). Measuring the burden of pediatric burn injury for parents and caregivers: informed burn center staff can help to lighten the load. Journal of Burn Care & Research, 36, 421427.Google Scholar
Rizzone, L. P., Stoddard, F. J., Murphy, J. M., et al. (1994). Posttraumatic stress disorder in mothers of children and adolescents with burns. Journal of Burn Care & Rehabilitation, 15, 158163.Google Scholar
Thombs, B., Bresnick, M. & Magyar-Russell, G. (2006). Depression in survivors of burn-injury: a systematic review. General Hospital Psychiatry, 28, 494502.Google Scholar
Wiechman, S. & Patterson, D. (2004). Psychosocial aspects of burn injuries. British Medical Journal, 329, 391393.Google Scholar
Young, A. E. (2004). The management of severe burns in children. Current Pediatric Reviews, 14, 202207.Google Scholar

References

American Cancer Society. (2016). Cancer Facts and Figures. Atlanta, GA: American Cancer Society.Google Scholar
Bluethmann, S., Mariotto, A. & Rowland, J. (2016). Anticipating the ‘Silver Tsunami’: prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiology, Biomarkers & Prevention, 25, 10291036.Google Scholar
Demark-Wahnefried, W., Aziz, N. M., Rowland, J. H. & Pinto, B. M. (2005). Riding the crest of the teachable moment: promoting long-term health after the diagnosis of cancer. Journal of Clinical Oncology, 23(24), 58145830.Google Scholar
Demark-Wahnefried, W., Pinto, B. & Gritz, E. (2006). Promoting health and physical function among cancer survivors: potential for prevention and questions that remain. Journal of Clinical Oncology, 24, 51255131.Google Scholar
Earle, C. C. (2006). Failing to plan is planning to fail: improving the quality of care with survivorship care plans. Journal of Clinical Oncology, 24(32), 51125116.Google Scholar
Faguet, G. (2005). The War on Cancer: An Anatomy of Failure. Dordrecht: Springer.Google Scholar
Kolata, G. (2009). Forty years’ war: advances elusive in the drive to cure cancer. New York Times.Google Scholar
Mukherjee, S. (2010). The Emperor of all Maladies: A Biography of Cancer. New York: Simon and Schuster.Google Scholar
Stacey, F. G., James, E. L., Chapman, K., Courneya, K. S. & Lubans, D. R. (2015). A systematic review and meta-analysis of social cognitive theory-based physical activity and/or nutrition behavior change interventions for cancer survivors. Journal of Cancer Survivorship, 9(2), 305338.Google Scholar
Stewart, B. & Wild, C. (eds). (2014). World Cancer Report 2014. https://inovelthng.files.wordpress.com/2016/11/world-cancer-report.pdf (accessed 14 December 2016).Google Scholar
Weinstein, J. N., Collisson, E. A., Mills, G. B., et al. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. [Commentary]. Nature Genetics, 45(10), 11131120. DOI: 10.1038/ng.2764.Google Scholar
Wilson, K., Senay, I., Durantini, M., et al. (2015). When it comes to lifestyle recommendations, more is sometimes less: a meta-analysis of theoretical assumptions underlying the effectiveness of interventions promoting multiple behavior domain change. Psychological Bulletin, 141(2), 474.Google Scholar
Yabroff, K., Lawrence, W., Clauser, S., Davis, W. & Brown, M. (2004). Burden of illness in cancer survivors: findings from a population-based national sample. Journal of the National Cancer Institute, 96(17), 1322.Google Scholar

References

American Cancer Society. (2016). Cancer facts and figures. www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/index (accessed 23 July 2016).Google Scholar
Bish, A., Ramirez, A., Burgess, C., et al. (2005). Understanding why women delay in seeking help for breast cancer symptoms. Journal of Psychosomatic Research, 58, 321326.Google Scholar
Brown, L. F. & Kroenke, K. (2009). Cancer-related fatigue and its associations with depression and anxiety: a systematic review. Psychosomatics, 50, 440447.Google Scholar
Christensen, S., Zachariae, R., Jensen, A. B., et al. (2009). Prevalence and risk of depressive symptoms 3–4 months post-surgery in a nationwide cohort study of Danish women treated for early stage breast-cancer. Breast Cancer Research and Treatment, 113, 339355.Google Scholar
de Boer, A. M., Taskila, T., Ojajärvi, A., et al. (2009). Cancer survivors and unemployment: a meta-analysis and meta-regression. JAMA, 301, 753762.Google Scholar
De Sanctis, V. L., Agolli, L., Visco, V., et al. (2014). Cytokines, fatigue, and cutaneous erythema in early stage breast cancer patients receiving adjuvant radiation therapy. BioMed Research International, 2014, 523568.Google Scholar
Duijts, S. F. A., Faber, M. M., Oldenburg, H. S. A., et al. (2011). Effectiveness of behavioral techniques and physical exercise on psychosocial functioning and health-related quality of life in breast cancer patients and survivors: a meta-analysis. Psycho-Oncology, 20, 115126.Google Scholar
Galway, K., Black, A., Cantwell, M., et al. (2012). Psychosocial interventions to improve quality of life and emotional wellbeing for recently diagnosed cancer patients. Cochrane Database of Systematic Reviews. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007064.pub2/abstract (accessed 23 July 2016).Google Scholar
Hafslund, B. & Nortvedt, M. W. (2009). Mammography screening from the perspective of quality of life: a review of the literature. Scandinavian Journal of Caring Sciences, 23, 539548.Google Scholar
Henselmans, I., Helgeson, V. S., Seltman, H., et al. (2010). Identification and prediction of distress trajectories in the first year after a breast cancer diagnosis. Health and Psychology, 29, 160168.Google Scholar
Hulett, J. M., Armer, J. M., Stewart, B. R., et al. (2015). Perspectives of the breast cancer survivorship continuum: diagnosis through 30 months post-treatment. Journal of Personal Medicine, 5, 174190.Google Scholar
Hutchinson, A. D., Hosking, J. R., Kichenadasse, G., et al. (2012). Objective and subjective cognitive impairment following chemotherapy for cancer: a systematic review. Cancer Treatment Reviews, 38(7), 926934.Google Scholar
Independent UK Panel of Breast Cancer Screening. (2012). The benefits and harms of breast cancer screening: an independent review. Lancet, 380, 17781786.Google Scholar
Jacobsen, P. B. & Andrykowski, M. A. (2015). Tertiary prevention in cancer care: understanding and addressing the psychological dimensions of cancer during the active treatment period. American Psychologist, 70, 134145.Google Scholar
Jassim, G. A., Whitford, D. L., Hickey, A., et al. (2015). Psychological interventions for women with non-metastatic breast cancer. Cochrane Database of Systematic Reviews. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD008729.pub2/full (accessed 23 July 2016).Google Scholar
Koch, L., Bertram, H., Eberle, A., et al. (2014). Fear of recurrence in long-term breast cancer survivors: still an issue. Results on prevalence, determinants, and the association with quality of life and depression from the Cancer Survivorship – a multi-regional population-based study. Psycho-Oncology, 23, 547554.Google Scholar
Macleod, U., Mitchell, E. D., Burgess, C., et al. (2009). Risk factors for delayed presentation and referral of symptomatic cancer: evidence for common cancers. British Journal of Cancer, 101(S2), S92S101.Google Scholar
McNeely, M. L., Campbell, K., Ospina, M., et al. (2010). Exercise interventions for upper-limb dysfunction due to breast cancer treatment Cochrane Database of Systematic Reviews. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD005211.pub2/full (accessed 23 July 2016).Google Scholar
McPherson, K., Steel, C., & Dixon, J. M. (2000). Breast cancer: epidemiology, risk factors, and genetics. BMJ, 321(7261), 624628.Google Scholar
Mitchell, A. J., Chan, M., Bhatti, H., et al. (2011). Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies. Lancet Oncology, 12, 160174.Google Scholar
Nelson, H. D., Tyne, K., Naik, A., et al. (2009). Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 151, 727737.Google Scholar
Parkin, D. M., Boyd, L., & Walker, L. C. (2011). The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. British Journal of Cancer, 105(S2), S77S81.Google Scholar
Peate, M., Meiser, B., Hickey, M., et al. (2009). The fertility-related concerns, needs and preferences of younger women with breast cancer: a systematic review. Breast Cancer Research and Treatment, 116, 215223.Google Scholar
Rayan, A. & Dadoul, A. (2015). Decrease the length of hospital stay in depressed cancer patients: nurses should be involved. American Journal of Nursing Research, 3, 47.Google Scholar
Sanjida, S., Janda, M., Kissane, D., et al. (2016). A systematic review and meta-analysis of prescribing practices of antidepressants in cancer patients. Psycho-Oncology. http://onlinelibrary.wiley.com/doi/10.1002/pon.4048/abstract (accessed 23 July 2016).Google Scholar
Stein, K. D., Syrjala, K. L. & Andrykowski, M. A. (2008). Physical and psychological long-term and late effects of cancer. Cancer, 112(S11), 25772592.Google Scholar
Torre, L. A., Bray, F., Siegel, R. L., et al. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87108.Google Scholar
Trask, P. C. (2004). Assessment of depression in cancer patients. Journal of the National Cancer Institute: Monographs, 2004, 8092.Google Scholar
Turnbull, C. & Hodgson, S. (2005). Genetic predisposition to cancer. Clinical Medicine, 5, 491498.Google Scholar
Wardle, J., Robb, K., Vernon, S., et al. (2015). Screening for prevention and early diagnosis of cancer. American Psychologist, 70, 119133.Google Scholar
Wasteson, E., Brenne, E., Higginson, I. J., et al. (2009). Depression assessment and classification in palliative cancer patients: a systematic literature review. Palliative Medicine, 23, 739753Google Scholar
WHO (2014). WHO position paper on mammography screening. www.who.int/cancer/publications/mammography_screening/en/ (accessed 23 July 2016).Google Scholar

References

Alberg, A. J., Brock, M. V., Ford, J. G., Samet, J. M. & Spivack, S. D. (2013). Epidemiology of lung cancer. Chest, 143(5 Suppl.), e1Se29S.Google Scholar
Arrieta, O., Angulo, L. P., Núñez-Valencia, C., et al. (2013). Smoking cessation interventions within the context of low-dose computed tomography lung cancer screening: a systematic review. Lung Cancer, 98, 9198.Google Scholar
Chen, S.-C.,. Chiou, S.-C., Yu, C.-J., et al. (2016). The unmet supportive care needs: what advanced lung cancer patients’ caregivers need and related factors. Supportive Care in Cancer, 24, 29993009.Google Scholar
Choi, S. U. & Ryu, E. (2016). Effects of symptom clusters and depression on the quality of life in patients with advanced lung cancer. European Journal of Cancer Care. DOI: 10.1111/ecc.12508.Google Scholar
Dougall, A. L., Swanson, J. N., Kyutoku, Y., Belani, C. P. & Baum, A. (2017). Posttraumatic symptoms, quality of life, and survival among lung cancer patients. Journal of Applied Biobehavioral Research, 22, e12065. DOI: 10.1111/jabr.12065.Google Scholar
Ferlay, J., Soerjomataram, I., Ervik, M., et al. (2013). GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11. Lyon: International Agency for Research on Cancer. http://globocan.iarc.fr (accessed 8 August 2016).Google Scholar
Graves, K. D., Arnold, S. M., Love, C. L., et al. (2007). Distress screening in a multidisciplinary lung cancer clinic: prevalence and predictors of clinically significant distress. Lung Cancer, 55, 215224.Google Scholar
Katki, H. A., Kovalchik, S. A., Berg, C. D., Cheung, L. C. & Chaturvedi, A. K. (2016). Development and validation of risk models to select ever-smokers for CT lung cancer screening. Journal of the American Medical Association, 315, 23002311.Google Scholar
Kenzik, K. M., Ganz, P. A., Martin, M. Y., et al. (2015). How much do cancer-related symptoms contribute to health-related quality of life in lung and colorectal cancer patients? A report from the Cancer Care Outcomes Research and Surveillance (CanCORS) Consortium. Cancer, 121, 28312839.Google Scholar
King, J. D., Eickhoff, J., Traynor, A. & Campbell, T. C. (2016). Integrated onco-palliative care associated with prolonged survival compared to standard care for patients with advanced lung cancer: a retrospective review. Journal of Pain and Symptom Management, 51, 10271032.Google Scholar
Linden, W., Vodermaier, A., Mackenzie, R. & Greig, D. (2012). Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. Journal of Affective Disorders, 141, 343351.Google Scholar
Lo, C., Zimmermann, C., Rydall, A., et al. (2010). Longitudinal study of depressive symptoms in patients with metastatic gastrointestinal and lung cancer. Journal of Clinical Oncology, 28, 30843089.Google Scholar
National Lung Screening Trial Research Team, Aberle, D. R., Adams, , et al. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medicine, 365, 395409.Google Scholar
Nipp, R. D., El-Jawahri, A., Fishbein, J. N., et al. (2016). The relationship between coping strategies, quality of life, and mood in patients with incurable cancer. Cancer, 122, 21102116.Google Scholar
Ost, D. E., Yeung, S.-C. J., Tanoue, L. T. & Gould, M. K. (2013). Clinical and organizational factors in the initial evaluation of patients with lung cancer diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 143(5 Suppl.), e121Se141S.Google Scholar
Piñeiro, B., Simmons, V. N., Palmer, A. M., Correa, J. B. & Brandon, T. H. (2016). Smoking cessation interventions within the context of low-dose computed tomography lung cancer screening: a systematic review. Lung Cancer, 98, 9198.Google Scholar
Polanski, J., Jankowska-Polanska, B., Rosinczuk, J., Chabowski, M. & Szymanska-Chabowska, A. (2016). Quality of life of patients with lung cancer. OncoTargets and Therapy, 9, 10231028.Google Scholar
Porter, L. S., Keefe, F. J., Garst, J., et al. (2011). Caregiver-assisted coping skills training for lung cancer: results of a randomized clinical trial. Journal of Pain and Symptom Management, 41, 113.Google Scholar
Simoff, M. J., Lally, B., Slade, M. G., et al. (2013). Symptom management in patients with lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 143(5 Suppl.), e455Se497S.Google Scholar
Thornton, A. A., Owen, J. E., Kernstine, K., et al. (2012). Predictors of finding benefit after lung cancer diagnosis. Psycho-Oncology, 21, 365373.Google Scholar
United States Department of Health and Human Services (USDHHS). (2004). The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.Google Scholar
Yun, Y. H., Kim, Y. A., Sim, J. A., et al. (2016). Prognostic value of quality of life score in disease-free survivors of surgically-treated lung cancer. BMC Cancer, 16, 505. DOI: 10.1186/s12885-016-2504-x.Google Scholar

References

Adsul, P., Wray, R., Spradling, K., et al. (2015). Systematic review of decision aids for newly diagnosed patients with prostate cancer making treatment decisions. Journal of Urology, 194(5), 12471252.Google Scholar
American Cancer Society (2016). Cancer Facts and Figures 2016. Atlanta, GA: American Cancer Society, Inc.Google Scholar
Chambers, S. K., Pinnock, C., Lepore, S. J., Hughes, S., & O’Connell, D. L. (2011). A systematic review of psychosocial interventions for men with prostate cancer and their partners. Patient Education and Counseling, 85(2), e75–88.Google Scholar
Ferlay, J., Soerjomataram, I., Dikshit, R., et al. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–386.Google Scholar
Fizazi, K., Scher, H. I., Miller, K., et al. (2014). Effect of enzalutamide on time to first skeletal-related event, pain, and quality of life in men with castration-resistant prostate cancer: results from the randomised, phase 3 AFFIRM trial. Lancet Oncology, 15(10), 11471156.Google Scholar
Han, P. K., Kobrin, S., Breen, N., et al. (2013). National evidence on the use of shared decision making in prostate-specific antigen screening. Annals of Family Medicine, 11(4), 306314.Google Scholar
Heidenreich, A., Bellmunt, J., Bolla, M., et al. (2011). EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. European Urology, 59(1), 6171.Google Scholar
Kim, S. P., Gross, C. P., Nguyen, P. L., et al. (2014). Perceptions of active surveillance and treatment recommendations for low-risk prostate cancer: results from a national survey of radiation oncologists and urologists. Medical Care, 52(7), 579585.Google Scholar
Lepore, S. J., Helgeson, V. S., Eton, D. T. & Schulz, R. (2003). Improving quality of life in men with prostate cancer: a randomized controlled trial of group education interventions. Health and Psychology, 22(5), 443452.Google Scholar
Lepore, S. J., Nair, R. G., Davis, S. N., et al. (2016). Patient and physician factors associated with undisclosed prostate cancer screening in a sample of predominantly immigrant black men. Journal of Immigrant and Minority Health. Epub ahead of print.Google Scholar
Marcus, A. C., Diefenbach, M. A., Stanton, A. L., et al. (2013). Cancer patient and survivor research from the cancer information service research consortium: a preview of three large randomized trials and initial lessons learned. Journal of Health Communications, 18(5), 543562.Google Scholar
Parahoo, K., McDonough, S., McCaughan, E., et al. (2015). Psychosocial interventions for men with prostate cancer: a Cochrane systematic review. BJU International, 116(2), 174183.Google Scholar
Resnick, M. J. & Penson, D. F. (2012). Quality of life with advanced metastatic prostate cancer. Urologic Clinics of North America, 39(4), 505515.Google Scholar
Sidana, A., Hernandez, D. J., Feng, Z., et al. (2012). Treatment decision-making for localized prostate cancer: what younger men choose and why. Prostate, 72(1), 5864.Google Scholar
Steginga, S. K., Ferguson, M., Clutton, S., Gardiner, R. A. & Nicol, D. (2008). Early decision and psychosocial support intervention for men with localised prostate cancer: an integrated approach. Supportive Care in Cancer, 16(7), 821829.Google Scholar
Volk, R. J., Hawley, S. T., Kneuper, S., et al. (2007). Trials of decision aids for prostate cancer screening: a systematic review. American Journal of Preventive Medicine, 33(5), 428434.Google Scholar

References

Andersen, P. A., Buller, D. B., Walkosz, B. J. et al. (2016). Environmental variables associated with vacationers’ sun protection at warm weather resorts in North America. Environmental Research, 146, 200206.Google Scholar
Australian Institute of Health and Welfare (2016). Skin Cancer in Australia. Canberra: AIHW.Google Scholar
Autier, P., Boniol, M. & Doré, J.F. (2007). Sunscreen use and increased duration of intentional sun exposure: still a burning issue. International Journal of Cancer, 121(1), 15.Google Scholar
Chang, C., Murzaku, E. C., Penn, L. et al. (2014). More skin, more sun, more tan, more melanoma. American Journal of Public Health, 104(11), e92–99.Google Scholar
Cust, A. E., Jenkins, M. A., Goumas, C. et al. (2011). Early-life sun exposure and risk of melanoma before age 40 years. Cancer Causes and Control, 22(6), 885897.Google Scholar
Dixon, H. G., Warne, C. D., Scully, M. L. et al. (2011). Does the portrayal of tanning in Australian women’s magazines relate to real women’s tanning beliefs and behavior? Health Education & Behavior, 38(2), 132142.Google Scholar
Dobbinson, S. J., Jamsen, K., Dixon, H. G., et al. (2014). Assessing population-wide behaviour change: concordance of 10-year trends in self-reported and observed sun protection. International Journal of Public Health, 59(1), 157166.Google Scholar
Dobbinson, S. J., White, V., Wakefield, M. A., et al. (2009). Adolescents’ use of purpose built shade in secondary schools: cluster randomised controlled trial. BMJ, 338, b95.Google Scholar
Dobbinson, S., Wakefield, M., Hill, D. et al. (2008). Prevalence and determinants of Australian adolescents’ and adults’ weekend sun protection and sunburn, summer 2003–2004. Journal of the American Academy of Dermatology, 59(4), 602614.Google Scholar
Fransen, M., Karahalios, A., Sharma, N., et al. (2012). Non-melanoma skin cancer in Australia. Medical Journal of Australia, 197(10), 565568.Google Scholar
Friedman, B., English, J. C. & Ferris, L.K. (2015). Indoor tanning, skin cancer and the young female patient: a review of the literature. Journal of Pediatric & Adolescent Gynecology, 28(4), 275283.Google Scholar
Gies, P., Roy, C. & Udelhofen, P. (2004). Solar and ultraviolet radiation. In Hill, D., Elwood, J. M. & English, D. R. (eds), Prevention of Skin Cancer (pp. 2154). Dordrecht: Kluwer Academic Publishers.Google Scholar
Glanz, K., Buller, D. B. & Saraiya, M. (2007). Reducing ultraviolet radiation exposure among outdoor workers: state of the evidence and recommendations. Environmental Health, 6 ,22.Google Scholar
Glanz, K., Yaroch, A. L., Dancel, M. et al. (2008.). Measures of sun exposure and sun protection practices for behavioral and epidemiologic research. Archives of Dermatology, 144(2), 217222.Google Scholar
Global Burden of Disease Cancer Collaboration, Fitzmaurice, C., Dicker, D., et al. (2015). The global burden of cancer 2013. JAMA Oncology 1(4), 505527Google Scholar
Gordon, L., Youl, P. H., Elwood, M., et al. (2007). Diagnosis and management costs of suspicious skin lesions from a population-based melanoma screening programme. Journal of Medical Screening, 14(2), 98102.Google Scholar
Guy, G. P. & Ekwueme, D. U. (2011). Years of potential life lost and indirect costs of melanoma and non-melanoma skin cancer: a systematic review of the literature. Pharmacoeconomics, 29(10), 863874.Google Scholar
Haque, T., Rahman, K. M., Thurston, D. E., et al. (2015). Topical therapies for skin cancer and actinic keratosis. European Journal of Pharmaceutical Sciences, 77, 279289.Google Scholar
Hill, D. J., Dobbinson, S. J. & Makin, J. (2009). Interventions to lower ultraviolet radiation exposure: education, legislation and public policy. In: ASCO 2009 Education Book. Arlington, VA: ASCO.Google Scholar
Hill, D. & Boulter, J. (1996). Sun protection behaviour: determinants and trends. Cancer Forum, 20, 204211.Google Scholar
Hill, D., Rassaby, J. & Gardner, G. (1984). Determinants of intentions to take precautions against skin cancer. Community Health Studiesiesies, 8(1), 3344.Google Scholar
Jackson, K. M. & Aiken, L. S. (2000). A psychosocial model of sun protection and sunbathing in young women: the impact of health beliefs, attitudes, norms, and self-efficacy for sun protection. Health and Psychology, 19(5), 469478.Google Scholar
Joel Hillhouse, G. C., Thompson, J. K., Jacobsen, P. B. et al. (2009). Investigating the role of appearance-based factors in predicting sunbathing and tanning salon use. Journal of Behavioral Medicine, 32(6), 532544.Google Scholar
Lorenc, T., Jamal, F. & Cooper, C. (2013). Resource provision and environmental change for the prevention of skin cancer: systematic review of qualitative evidence from high-income countries. Health Promotion International, 28(3), 345356.Google Scholar
Mayer, J. A., Woodruff, S. I., Slymen, D. J., et al. (2011). Adolescents’ use of indoor tanning: a large-scale evaluation of psychosocial, environmental, and policy-level correlates. American Journal of Public Health, 101(5), 930938.Google Scholar
Noar, S. M., Myrick, J. G., Zeitany, A., et al. (2015). Testing a social cognitive theory-based model of indoor tanning: implications for skin cancer prevention messages. Health Communications, 30(2), 164174.Google Scholar
Norval, M., Lucas, R. M., Cullen, A. P., et al. (2011). The human health effects of ozone depletion and interactions with climate change. Photochemical & Photobiological Sciences, 10(2), 199225.Google Scholar
Olsen, C. M., Wilson, L. F., Green, A. C., et al. (2015). Cancers in Australia attributable to exposure to solar ultraviolet radiation and prevented by regular sunscreen use. Australian and New Zealand Journal of Public Health, 39(5), 471476.Google Scholar
Potente, S., Coppa, K., Williams, A., et al. (2011). Legally brown: using ethnographic methods to understand sun protection attitudes and behaviours among young Australians ‘I didn’t mean to get burnt – it just happened!’. Health Education Research, 26(1), 3952.Google Scholar
Radiotis, G., Roberts, N., Czajkowska, A., Khanna, M. & Korner, A. (2014). Nonmelanoma skin cancer: disease-specific quality-of-life concerns and distress. Oncology Nursing Forum, 41(1), 5765.Google Scholar
Sandhu, P. K., Elder, R., Patel, M., et al. (2016). Community-wide interventions to prevent skin cancer: two community guide systematic reviews. American Journal of Preventive Medicine, 51(4), 531539.Google Scholar
Saraiya, M., Glanz, K., Briss, P. A., et al. (2004). Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. American Journal of Preventive Medicine, 27(5), 422466.Google Scholar
Shoveller, J. A. & Lovato, C. Y. (2001). Measuring self-reported sunburn: challenges and recommendations. Chronic Diseases in Canada, 22(3–4), 8398.Google Scholar
Sinclair, C., Makin, J., Tang, A., et al. (2014). The role of public health advocacy in achieving an outright ban on commercial tanning beds in Australia. American Journal of Public Health, 104(2), e7–9.Google Scholar
Sneyd, M. J. & Cox, B. (2013). A comparison of trends in melanoma mortality in New Zealand and Australia: the two countries with the highest melanoma incidence and mortality in the world. BMC Cancer, 13, 372.Google Scholar
Starfelt Sutton, L. C. & White, K.M. (2016). Predicting sun-protective intentions and behaviours using the theory of planned behaviour: a systematic review and meta-analysis. Psychology and Health, 31(11), 12721292.Google Scholar
Street, T. D. & Thomas, D. L. (2015). Employee factors associated with interest in improving sun protection in an Australian mining workforce. Health Promotion Journal of Australia, 26(1), 3338.Google Scholar
Tripp, M. K., Watson, M., Balk, S. J. et al. (2016). State of the science on prevention and screening to reduce melanoma incidence and mortality: the time is now. CA: A Cancer Journal for Clinicians. DOI: 10.3322/caac.21352.Google Scholar
Ugurel, S., Röhmel, J., Ascierto, P. A., et al. (2016). Survival of patients with advanced metastatic melanoma: the impact of novel therapies. European Journal of Cancer, 53, 125134.Google Scholar
Vuong, K., Armstrong, B. K., Weiderpass, E., et al. (2016). Development and external validation of a melanoma risk prediction model based on self-assessed risk factors. JAMA Dermatology, 152(8), 889896.Google Scholar
Wallingford, S. C., Iannacone, M. R., Youlden, D. R., et al. (2015). Comparison of melanoma incidence and trends among youth under 25 years in Australia and England, 1990–2010. International Journal of Cancer, 137(9), 22272233.Google Scholar
Watts, C. G., Cust, A. E., Menzies, S. W., et al. (2015). Specialized surveillance for individuals at high risk for melanoma: a cost analysis of a high-risk clinic. JAMA Dermatology, 151(2), 178186.Google Scholar
Wernli, K. J., Henrikson, N. B., Morrison, C. C., et al. (2016). Screening for skin cancer in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 316(4), 436447.Google Scholar
World Health Organization (2016). Ultraviolet radiation and the Intersun programme: UV Index. www.who.int/uv/intersunprogramme/activities/uv_index/en/ (accessed 3 September 2016).Google Scholar

References

Anderson, L. & Taylor, R. S. (2014). Cardiac rehabilitation for people with heart disease: an overview of Cochrane systematic reviews. Cochrane Database of Systematic Reviews, 12, CD011273.Google Scholar
Ayerbe, L., Ayis, S., Wolfe, C. D. & Rudd, A. G. (2013). Natural history, predictors and outcomes of depression after stroke: systematic review and meta-analysis. British Journal of Psychiatry, 202(1), 1421.Google Scholar
BACPR. (2012). BACPR standards and core components for cardiovascular disease prevention and rehabilitation. www.bacpr.com/resources/46C_BACPR_Standards_and_Core_Components_2012.pdf.Google Scholar
Boehm, J. K. & Kubzansky, L. D. (2012). The heart’s content: the association between positive psychological well-being and cardiovascular health. Psychological Bulletin, 138(4), 655691.Google Scholar
Byrne, M., Doherty, S., Fridlund, B. G., et al. (2016). Sexual counselling for sexual problems in patients with cardiovascular disease. Cochrane Database of Systematic Reviews, 2, CD010988.Google Scholar
Chida, Y. & Steptoe, A. (2008). Positive psychological well-being and mortality: a quantitative review of prospective observational studies. Psychosomatic Medicine, 70(7), 741756.Google Scholar
Cunningham, M. A., Swanson, V., O’Carroll, R. E. & Holdsworth, R. J. (2012). Randomized clinical trial of a brief psychological intervention to increase walking in patients with intermittent claudication. British Journal of Surgery, 99(1), 4956.Google Scholar
Dalal, H. M., Doherty, P. & Taylor, R. S. (2015). Cardiac rehabilitation. BMJ, 351. https://doi.org/10.1136/bmj.h5000.Google Scholar
DuBois, C. M., Lopez, O. V., Beale, E. E., et al. (2015). Relationships between positive psychological constructs and health outcomes in patients with cardiovascular disease: a systematic review. International Journal of Cardiology, 195, 265280.Google Scholar
Edmondson, D., Richardson, S., Falzon, L., et al. (2012). Posttraumatic stress disorder prevalence and risk of recurrence in acute coronary syndrome patients: a meta-analytic review. PLoS One, 7(6), e38915.Google Scholar
Everson-Rose, S. A. & Lewis, T. T. (2005). Psychosocial factors and cardiovascular diseases. Annual Review of Public Health, 26, 469500.Google Scholar
Fransson, E. I., Nyberg, S. T., Heikkila, K., et al. (2015). Job strain and the risk of stroke: an individual-participant data meta-analysis. Stroke, 46(2), 557559.Google Scholar
Hackett, M. L. & Pickles, K. (2014). Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies. International Journal of Stroke, 9(8), 10171025.Google Scholar
Holt-Lunstad, J., Smith, T. B. & Layton, J. B. (2010). Social relationships and mortality risk: a meta-analytic review. PLoS Medicine, 7(7), e1000316.Google Scholar
Jiang, W. (2015). Emotional triggering of cardiac dysfunction: the present and future. Current Cardiology Reports, 17(10), 91.Google Scholar
Johnston, M., Bonetti, D., Joice, S., et al. (2007). Recovery from disability after stroke as a target for a behavioural intervention: results of a randomized controlled trial. Disability and Rehabilitation, 29(14), 11171127.Google Scholar
Kalra, L., Evans, A., Perez, I., et al. (2004). Training carers of stroke patients: randomised controlled trial. BMJ, 328(7448), 1099.Google Scholar
Kaplan, G. A. & Keil, J. E. (1993). Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation, 88(4 Pt 1), 19731998.Google Scholar
Kivimaki, M., Nyberg, S. T., Batty, G. D., et al. (2012). Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data. Lancet, 380(9852), 14911497.Google Scholar
Kronish, I. M. & Ye, S. (2013). Adherence to cardiovascular medications: lessons learned and future directions. Progress in Cardiovascular Diseases, 55(6), 590600.Google Scholar
Lee, S., Colditz, G. A., Berkman, L. F. & Kawachi, I. (2003). Caregiving and risk of coronary heart disease in U.S. women: a prospective study. American Journal of Preventive Medicine, 24(2), 113119.Google Scholar
Molloy, G. J., Johnston, D. W. & Witham, M. D. (2005). Family caregiving and congestive heart failure: review and analysis. European Journal of Heart Failure, 7(4), 592603.Google Scholar
Molloy, G. J., Stamatakis, E., Randall, G. & Hamer, M. (2009). Marital status, gender and cardiovascular mortality: behavioural, psychological distress and metabolic explanations. Social Science and Medicine, 69(2), 223228.Google Scholar
Naderi, S. H., Bestwick, J. P. & Wald, D. S. (2012). Adherence to drugs that prevent cardiovascular disease: meta-analysis on 376,162 patients. American Journal of Medicine, 125(9), 882887.Google Scholar
Nicholson, A., Kuper, H. & Hemingway, H. (2006). Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. European Heart Journal, 27(23), 27632774.Google Scholar
Nieuwlaat, R., Wilczynski, N., Navarro, T., et al. (2014). Interventions for enhancing medication adherence. Cochrane Database of Systematic Reviews, 11, CD000011.Google Scholar
O’Neil, A., Sanderson, K. & Oldenburg, B. (2010). Depression as a predictor of work resumption following myocardial infarction (MI): a review of recent research evidence. Health and Quality of Life Outcomes, 8, 95.Google Scholar
O’Reilly, D., Rosato, M. & Maguire, A. (2015). Caregiving reduces mortality risk for most caregivers: a census-based record linkage study. International Journal of Epidemiology, 44(6), 19591969.Google Scholar
Pittman, D. G., Chen, W., Bowlin, S. J. & Foody, J. M. (2011). Adherence to statins, subsequent healthcare costs, and cardiovascular hospitalizations. American Journal of Cardiology, 107(11), 16621666.Google Scholar
Randall, G., Molloy, G. J. & Steptoe, A. (2009). The impact of an acute cardiac event on the partners of patients: a systematic review. Health Psychology Review, 3(1), 184.Google Scholar
Robles, T. F., Slatcher, R. B., Trombello, J. M. & McGinn, M. M. (2014). Marital quality and health: a meta-analytic review. Psychological Bulletin, 140(1), 140187.CrossRefGoogle Scholar
Roger, V. L. (2013). Epidemiology of heart failure. Circulation Research, 113(6), 646659.Google Scholar
Rozanski, A. (2014). Behavioral cardiology: current advances and future directions. Journal of the American College of Cardiology, 64(1), 100110.Google Scholar
Rutledge, T., Reis, V. A., Linke, S. E., Greenberg, B. H. & Mills, P. J. (2006). Depression in heart failure: a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. Journal of the American College of Cardiology, 48(8), 15271537.Google Scholar
Sin, N. L. (2016). The protective role of positive well-being in cardiovascular disease: review of current evidence, mechanisms, and clinical implications. Current Cardiology Reports, 18(11), 106.Google Scholar
Sin, N. L., Moskowitz, J. T. & Whooley, M. A. (2015). Positive affect and health behaviors across 5 years in patients with coronary heart disease: the heart and soul study. Psychosomatic Medicine, 77(9), 10581066.Google Scholar
Smyth, A., O’Donnell, M., Lamelas, P., et al. (2016). Physical activity and anger or emotional upset as triggers of acute myocardial infarction: the INTERHEART Study. Circulation, 134(15), 10591067.Google Scholar
Steinke, E. E., Jaarsma, T., Barnason, S. A., et al. (2013). Sexual counselling for individuals with cardiovascular disease and their partners: a consensus document from the American Heart Association and the ESC Council on Cardiovascular Nursing and Allied Professions (CCNAP). European Heart Journal, 34(41), 32173235.Google Scholar
Steptoe, A. & Molloy, G. J. (2007). Personality and heart disease. Heart, 93(7), 783784.Google Scholar
Suls, J. & Bunde, J. (2005). Anger, anxiety, and depression as risk factors for cardiovascular disease: the problems and implications of overlapping affective dispositions. Psychological Bulletin, 131(2), 260300.Google Scholar
Thombs, B. D., Bass, E. B., Ford, D. E., et al. (2006). Prevalence of depression in survivors of acute myocardial infarction. Journal of General Internal Medicine, 21(1), 3038.Google Scholar
Treger, I., Shames, J., Giaquinto, S. & Ring, H. (2007). Return to work in stroke patients. Disability and Rehabilitation, 29(17), 13971403.Google Scholar
Valtorta, N. K., Kanaan, M., Gilbody, S., Ronzi, S. & Hanratty, B. (2016). Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart, 102(13), 10091016.Google Scholar
Vrijens, B., Vincze, G., Kristanto, P., Urquhart, J. & Burnier, M. (2008). Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. BMJ, 336(7653), 11141117.Google Scholar
Whalley, B., Rees, K., Davies, P., et al. (2011). Psychological interventions for coronary heart disease. Cochrane Database of Systematic Reviews, 8, CD002902.Google Scholar
WHO. (2016). Cardiovascular diseases (CVDs). World Health Organization Fact Sheet. www.who.int/mediacentre/factsheets/fs317/en/Google Scholar

References

Afari, N. & Buchwald, D. (2003). Chronic fatigue syndrome: a review. The American Journal of Psychiatry, 160, 221236.Google Scholar
Cairns, R. & Hotopf, M. (2005). Review article: the prognosis of chronic fatigue syndrome. Occupational Medicine, 55, 2031.Google Scholar
Castell, B., Kazantzis, N. & Moss-Morris, R. (2011). Cognitive behavioural therapy and graded exercise for chronic fatigue syndrome: a meta-analysis. Clinical Psychology: Science and Practice, 18, 311324.Google Scholar
Chalder, T., Goldsmith, K., White, P., Sharpe, M. & Pickles, A. (2015). Rehabilitative therapies for chronic fatigue syndrome: a secondary mediation analysis of the PACE trial. Lancet Psychiatry, 2, (2), 141152.Google Scholar
Cleare, A. J. & Wessely, S. C. (1996). Chronic fatigue syndrome: a stress disorder? British Journal of Hospital Medicine, 55, 571574.Google Scholar
Deale, A. & Wessely, S. (2001). Patients’ perceptions of medical care in chronic fatigue syndrome. Social Science and Medicine, 52, 18591864.Google Scholar
Fukuda, K., Straus, S., Hickie, I., et al. (1994). The chronic fatigue syndrome: a comprehensive approach to its definition and study. Annals of Internal Medicine, 121, 953959.Google Scholar
Hatcher, S. & House, A. (2003). Life events, difficulties and dilemmas in the onset of chronic fatigue syndrome: a case-control study. Psychological Medicine, 33, 11851192.CrossRefGoogle ScholarPubMed
Larun, L., Brurberg, K. G., Odgaard-Jensen, J. & Price, J.R. (2016). Exercise therapy for chronic fatigue syndrome. Cochrane Database of Systematic Reviews, 6, CD003200. DOI: 10.1002/14651858.CD003200.pub5.Google Scholar
Petrie, K., Moss-Morris, R. & Weinman, J. (1995). Catastophic beliefs and their implications in chronic fatigue syndrome. Journal of Psychosomatic Research, 39, 3137.Google Scholar
Price, J., Mitchell, E., Tidy, E. & Hunot, V. (2008). Cognitive behaviour therapy for chronic fatigue syndrome in adults. Cochrane Database of Systematic Reviews, 3. CD001027. DOI: 10.1002/14651858.CD001027.pub2.Google Scholar
Prins, J. B., van der Meer, J. W. & Bleijenberg, G. (2006). Chronic fatigue syndrome. Lancet, 367, 346355.Google Scholar
Reid, S., Chalder, T., Cleare, A., Hotopf, M. & Wessely, S. (2004). Chronic fatigue syndrome. Clinical Evidence, 11, 13.Google Scholar
Rimes, K. A. & Chalder, T. (2005). Treatments for chronic fatigue syndrome. Occupational Medicine, 55, 3239.Google Scholar
Sharpe, M., Arcard, L. C., Banatvala, J. E., et al. (1991). A report: chronic fatigue syndrome – guidelines for research. Journal of the Royal Society of Medicine, 84, 118121.Google Scholar
Stahl, D., Rimes, K. & Chalder, T. (2014). Mechanisms of change underlying the efficacy of cognitive behaviour therapy for chronic fatigue syndrome in a specialist clinic: a mediation analysis. Psychological Medicine, 44, 13311344.Google Scholar
Van Houdenhove, B., Neerinckx, E., Onghena, P. et al. (2002). Daily hassles reported by chronic fatigue syndrome and fibromyalgia patients in tertiary care: a controlled quantitative and qualitative study. Psychotherapy and Psychosomatics, 71, 207213.Google Scholar
Wessely, S. (1995). The epidemiology of chronic fatigue syndrome. Epidemiologic Reviews, 17, 139151.Google Scholar
Wessely, S., David, A., Butler, S. & Chalder, T. (1991). The cognitive behavioural management of the postviral fatigue syndrome. In Jenkins, R. & Mowbray, J. (eds), The Postviral Syndrome (ME) (pp. 297334). Chichester: Wiley.Google Scholar
Wessely, S., Hotopf, M. & Sharpe, M. (1998). Chronic Fatigue and its Syndromes. New York: Oxford University Press.Google Scholar
White, P., Goldsmith, K., Johnson, A., et al. (2011). Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial. Lancet, 377, 823836.CrossRefGoogle Scholar
White, P., Goldsmith, K., Johnson, A., Chalder, T. & Sharpe, M. (2013). Recovery from chronic fatigue syndrome after treatments given in the PACE trial. Psychological Medicine, 43(10), 22272235.Google Scholar
Wilson, A., Hickie, I., Lloyd, A., et al. (1994). Longitudinal study of outcome of chronic fatigue syndrome. British Medical Journal, 308, 756759.Google Scholar

References

Agle, D. P., Baum, G. L., Chester, E. H. & Wendt, M. (1973). Multidiscipline treatment of chronic pulmonary insufficiency: 1. Psychologic aspects of rehabilitation. Psychosomatic Medicine, 35, 4149.Google Scholar
Atkins, C. J., Kaplan, R. M., Timms, R. M., Reinsch, S. & Lofback, K. (1984). Behavioral exercise programs in the management of chronic obstructive pulmonary disease. Journal of Consulting and Clinical Psychology, 52, 591603.Google Scholar
Bartlett, Y. K., Sheeran, P. & Hawley, M. S. (2014). Effective behaviour change techniques in smoking cessation interventions for people with chronic obstructive pulmonary disease: a meta-analysis. British Journal of Health Psychology, 19, 181203.Google Scholar
Cleutjens, F. A. H. M., Franssen, F. M. E., Spruit, M. A., et al. (2017). Domain-specific cognitive impairment in patients with COPD and control subjects. International Journal of COPD, 12, 111.Google Scholar
GOLD (Global initiative for chronic Obstructive Lung Disease) (2017). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Bethesda, MD: NIH,.Google Scholar
Guyatt, G. H., Berman, L. B., Townsend, M., et al. (1987). A measure of quality of life for clinical trials in chronic lung disease. Thorax, 42, 773778.CrossRefGoogle ScholarPubMed
Hill, K., Vogiatzis, I. & Burtin, C. (2013). The importance of pulmonary rehabilitation, other than exercise training, in COPD. European Respiratory Review, 22, 405413.Google Scholar
Jones, P. W., Quirk, F. H., Baveystock, C. M. & Littlejohns, P. A. (1992). Self-complete measure of health status for chronic airflow limitation. American Review of Respiratory Disease, 145, 13211327.Google Scholar
Jonkman, N. H., Schuurmans, M. J., Groenwold, R. H. H., Hoes, A. W. & Trappenburg, J. C. A. (2016). Identifying components of self-management interventions that improve health-related quality of life in chronically ill patients: systematic review and meta-regression analysis. Patient Education and Counseling, 99, 10781098.Google Scholar
Kaptein, A. A., Scharloo, M., Fischer, M. J., et al. (2009). 50 years of psychological research on patients with COPD: road to ruin or highway to heaven? Respiratory Medicine, 103, 311.Google Scholar
Kaptein, A. A., Scharloo, M., Fischer, M. J., et al. (2008). Illness perceptions and COPD: an emerging field for COPD patient management. Journal of Asthma, 45, 625629.Google Scholar
Kaptein, A. A., Fischer, M. J. & Scharloo, M. (2014). Self-management in patients with COPD: theoretical context, content, outcomes, and integration into clinical care. International Journal of COPD, 9, 907917.Google Scholar
Kaptein, A. A., Meulenberg, F. & Smyth, J. M. (2015). A breath of fresh air: images of respiratory illness in novels, poems, films, music and paintings. Journal of Health Psychology, 20, 246258.Google Scholar
Kinsman, R. A., Yaroush, R. A., Fernandez, E., et al. (1983). Symptoms and experiences in chronic bronchitis and emphysema. Chest, 83, 755761.Google Scholar
Levinson, A. H. (2017). Where the U.S. tobacco epidemic still rages: most remaining smokers have lower socioeconomic status. Journal of Health Care for the Poor and Underserved, 28, 100107.Google Scholar
Luthy, C., Cedraschi, C., Pasquina, P., et al. (2013). Perception of chronic respiratory impairment in patients’ drawings. Journal of Rehabilitation Medicine, 45, 694700.Google Scholar
McCarthy, B., Casey, D., Devane, D., et al. (2015). Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews, 2, CD003793.Google Scholar
Nici, L., Donner, C., Wouters, E., et al. (2006). ATS/ERS statement on pulmonary rehabilitation. American Journal of Respiratory and Critical Care Medicine, 173, 13901413.Google Scholar
Peytremann-Bridevaux, I., Staeger, P., Brideveaux, P. O., Ghali, W. A. & Burnand, B. (2008). Effectiveness of chronic obstructive pulmonary disease-management programs: systematic review and meta-analysis. American Journal of Medicine, 121, 433443.Google Scholar
Ringbaek, T. J. & Lange, P. (2014). Trends in long-term oxygen therapy for COPD in Denmark. Respiratory Medicine, 108, 511516.Google Scholar
Scharloo, M. & Kaptein, A. A. (2003). Chronic obstructive pulmonary disease: a behavioural medicine approach. In Llewelyn, S. & Kennedy, P. (eds), Handbook of Clinical Health Psychology (pp. 155179). Chichester: Wiley.Google Scholar
Schou, L., Østergaard, B., Rasmussen, L. S., Rydahl-Hansen, S. & Phanareth, K. (2012). Cognitive dysfunction in patients with chronic obstructive pulmonary disease: a systematic review. Respiratory Medicine, 106, 10711081.Google Scholar
Vaske, I., Thöne, M. F., Kühl, K., et al. (2015). For better or for worse: a longitudinal study on dyadic coping and quality of life among couples with a partner suffering from COPD. Journal of Behavioral Medicine, 38, 851862.Google Scholar
Webb, M. W. & Lawton, A. H. (1961). Basic personality traits characteristic of patients with primary obstructive pulmonary emphysema. Journal of the American Geriatrics Society, 9, 590610.Google Scholar

References

Alappattu, M. J. & Bishop, M. D. (2011). Psychological factors in chronic pelvic pain in women: relevance and application of the fear-avoidance model of pain. Physical Therapy, 91, 15421550.CrossRefGoogle ScholarPubMed
As-Sanie, S., Clevenger, L. A., Geisser, M. E., et al. (2014). History of abuse and its relationship to pain experience and depression in women. American Journal of Obstetrics & Gynecology. 210(4):317.e1–8. DOI: 10.1016/j.ajog.2013.12.048.Google Scholar
Ballweg, M. L. (2004). Impact of endometriosis on women’s health: comparative historical data show that the earlier the onset, the more severe the disease. Best Practice & Research Clinical Obstetrics & Gynaecology, 18, 201218.Google Scholar
Bawa, F. L., Mercer, S. W., Atherton, R. J., et al. (2015). Does mindfulness improve outcomes in patients with chronic pain? Systematic review and meta-analysis. British Journal of General Practice, 65, e387–400.Google Scholar
Berkley, K. J., Rapkin, A. J. & Papka, R. E. (2005). The pains of endometriosis. Science, 308(5728), 15871589.Google Scholar
Bryant, C., Cockburn, R., Plante, A. F., et al. (2016). The psychological profile of women presenting to a multidisciplinary clinic for chronic pelvic pain: high levels of psychological dysfunction and implications for practice. Journal of Pain Research, 9, 10491056.Google Scholar
Carey, E. T. & As-Sanie, S. (2016). New developments in the pharmacotherapy of neuropathic chronic pelvic pain. Future Science OA, 2(4). DOI: 10.4155/fsoa-2016-0048.Google Scholar
De Graaff, A. A., Van Lankveld, J., Smits, L. J., et al. (2016). Dyspareunia and depressive symptoms are associated with impaired sexual functioning in women with endometriosis, whereas sexual functioning in their male partners is not affected. Human Reproduction, 31(11), 25772586.Google Scholar
Dunne, F. (2011). Depression and pain: is there a common pathway? British Journal of Medical Practitioners, 4.Google Scholar
Fenton, B. W. (2007). Limbic associated pelvic pain: a hypothesis to explain the diagnostic relationships and features of patients with chronic pelvic pain. Medical Hypotheses, 69(2), 282286.Google Scholar
Greene, R. S. P., Cleary, S. D., Ballweg, M. L. & Sinaii, N. (2009). Diagnostic experience among 4,334 women reporting surgically diagnosed endometriosis. Fertility and Sterility, 91, 3239.Google Scholar
Heim, C., Ehlert, U., Hanker, J. P. et al. (1998). Abuse-related posttraumatic stress disorder and alterations of the of the hypothalamic-pituitary-adrenal axis in women with chronic pelvic pain. Psychosomatic Medicine, 60(3), 309318.Google Scholar
Howard, F. M. (2003). The role of laparoscopy in the chronic pelvic pain patient. Clinical Obstetrics and Gynecology, 46(4), 749766.Google Scholar