Book contents
- The Cambridge Handbook of Intelligence and Cognitive Neuroscience
- Reviews
- The Cambridge Handbook of Intelligence and Cognitive Neuroscience
- Copyright page
- Dedication
- Contents
- Figures
- Tables
- Contributors
- Preface
- Part I Fundamental Issues
- Part II Theories, Models, and Hypotheses
- Part III Neuroimaging Methods and Findings
- Part IV Predictive Modeling Approaches
- Part V Translating Research on the Neuroscience of Intelligence into Action
- Index
- References
Part I - Fundamental Issues
Published online by Cambridge University Press: 11 June 2021
Book contents
- The Cambridge Handbook of Intelligence and Cognitive Neuroscience
- Reviews
- The Cambridge Handbook of Intelligence and Cognitive Neuroscience
- Copyright page
- Dedication
- Contents
- Figures
- Tables
- Contributors
- Preface
- Part I Fundamental Issues
- Part II Theories, Models, and Hypotheses
- Part III Neuroimaging Methods and Findings
- Part IV Predictive Modeling Approaches
- Part V Translating Research on the Neuroscience of Intelligence into Action
- Index
- References
Summary
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.

- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2021
References
References
Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131(1), 30–60.CrossRefGoogle ScholarPubMed
Barbey, A. K. (2018). Network neuroscience theory of human intelligence. Trends in Cognitive Sciences, 22(1), 8–20.CrossRefGoogle ScholarPubMed
Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 10–27.CrossRefGoogle Scholar
Basten, U., Stelzel, C., & Fiebach, C. J. (2013). Intelligence is differentially related to neural effort in the task-positive and the task-negative brain network. Intelligence, 41(5), 517–528.CrossRefGoogle Scholar
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity, Intelligence, 46, 73–83.CrossRefGoogle ScholarPubMed
Bezzola, L., Mérillat, S., Gaser, C., & Jäncke, L. (2011). Training-induced neural plasticity in golf novices. Journal of Neuroscience, 31(35), 12444–12448.CrossRefGoogle ScholarPubMed
Binet, A., & Simon, T. (1916). The development of intelligence in children. Baltimore, MD: Williams & Wilkins (reprinted 1973, New York: Arno Press).Google Scholar
Blum, D., & Holling, H. (2017). Spearman’s law of diminishing returns. A meta-analysis. Intelligence, 65, 60–66.CrossRefGoogle Scholar
Bouchard, T. J. (1997). Experience producing drive theory: How genes drive experience and shape personality. Acta Paediatrica, 86(Suppl. 422), 60–64.CrossRefGoogle Scholar
Brown, K. G., Le, H., & Schmidt, F. L. (2006). Specific aptitude theory revisited: Is there incremental validity for training performance? International Journal of Selection and Assessment, 14(2), 87–100.CrossRefGoogle Scholar
Brown, R. E. (2016) Hebb and Cattell: The genesis of the theory of fluid and crystallized intelligence. Frontiers in Human Neuroscience, 10, 1–11.CrossRefGoogle ScholarPubMed
Canivez, G. L., & Watkins, M. W. (2010). Exploratory and higher-order factor analyses of the Wechsler Adult Intelligence Scale–Fourth Edition (WAIS-IV) adolescent subsample. School Psychology Quarterly, 25(4), 223–235.CrossRefGoogle Scholar
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1–22.CrossRefGoogle Scholar
Cattell, R. B. (1987). Intelligence: Its structure, growth and action. New York: North-Holland.Google Scholar
Colom, R., Haier, R. J., Head, K., Álvarez-Linera, J., Ángeles Quiroga, M., Chun Shih, P., & Jung, R. E. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: Testing the P-FIT model. Intelligence, 37(2), 124–135.CrossRefGoogle Scholar
Colom, R., Jung, R. E., & Haier, R. J. (2006a). Finding the g-factor in brain structure using the method of correlated vectors. Intelligence, 34(6), 561–570.CrossRefGoogle Scholar
Colom, R., Jung, R. E., & Haier, R. J. (2006b). Distributed brain sites for the g-factor of intelligence. Neuroimage, 31(3), 1359–1365.CrossRefGoogle ScholarPubMed
Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. C. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32(3), 277–296.CrossRefGoogle Scholar
Coyle, T. R. (2013). Effects of processing speed on intelligence may be underestimated: Comment on Demetriou et al. (2013). Intelligence, 41(5), 732–734.CrossRefGoogle Scholar
Coyle, T. R. (2015). Relations among general intelligence (g), aptitude tests, and GPA: Linear effects dominate. Intelligence, 53, 16–22.CrossRefGoogle Scholar
Coyle, T. R. (2018a). Non-g factors predict educational and occupational criteria: More than g. Journal of Intelligence, 6(3), 1–15.CrossRefGoogle ScholarPubMed
Coyle, T. R. (2018b). Non-g residuals of group factors predict ability tilt, college majors, and jobs: A non-g nexus. Intelligence, 67, 19–25.CrossRefGoogle Scholar
Coyle, T. R. (2019). Tech tilt predicts jobs, college majors, and specific abilities: Support for investment theories. Intelligence, 75, 33–40.CrossRefGoogle Scholar
Coyle, T. R., Elpers, K. E., Gonazalez, M. C., Freeman, J., & Baggio, J. A. (2018). General intelligence (g), ACT scores, and theory of mind: ACT(g) predicts limited variance among theory of mind tests. Intelligence, 71, 85–91.CrossRefGoogle Scholar
Coyle, T. R., & Pillow, D. R. (2008). SAT and ACT predict college GPA after removing g. Intelligence, 36(6), 719–729.CrossRefGoogle Scholar
Coyle, T. R., Purcell, J. M., Snyder, A. C., & Kochunov, P. (2013). Non-g residuals of the SAT and ACT predict specific abilities. Intelligence, 41(2), 114–120.CrossRefGoogle Scholar
Coyle, T. R., Snyder, A. C., Richmond, M. C., & Little, M. (2015). SAT non-g residuals predict course specific GPAs: Support for investment theory. Intelligence, 51, 57–66.CrossRefGoogle Scholar
Deary, I. J., Egan, V., Gibson, G. J., Brand, C. R., Austin, E., & Kellaghan, T. (1996). Intelligence and the differentiation hypothesis. Intelligence, 23(2), 105–132.CrossRefGoogle Scholar
Deary, I. J., Ferguson, K. J., Bastin, M. E., Barrow, G. W. S., Reid, L. M., Seckl, J. R., … MacLullich, A. M. J. (2007). Skull size and intelligence, and King Robert Bruce’s IQ. Intelligence, 35(6), 519–525.CrossRefGoogle Scholar
Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science, 15(6), 373–378.CrossRefGoogle ScholarPubMed
Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17(2), 172–179.CrossRefGoogle ScholarPubMed
Gardner, H. (1983/2003). Frames of mind. The theory of multiple intelligences. New York: Basic Books.Google Scholar
Gerber, P., Schlaffke, L., Heba, S., Greenlee, M. W., Schultz, T., & Schmidt-Wilcke, T. (2014). Juggling revisited – A voxel-based morphometry study with expert jugglers. Neuroimage, 95, 320–325.CrossRefGoogle ScholarPubMed
Gignac, G. E. (2015). Raven’s is not a pure measure of general intelligence: Implications for g factor theory and the brief measurement of g. Intelligence, 52, 71–79.CrossRefGoogle Scholar
Gignac, G. E., & Bates, T. C. (2017). Brain volume and intelligence: The moderating role of intelligence measurement quality. Intelligence, 64, 18–29.CrossRefGoogle Scholar
Gignac, G., Vernon, P. A., & Wickett, J. C. (2003). Factors influencing the relationship between brain size and intelligence. In Nyborg, H. (ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 93–106). New York: Pergamon.CrossRefGoogle Scholar
Gignac, G. E., & Watkins, M. W. (2015). There may be nothing special about the association between working memory capacity and fluid intelligence. Intelligence, 52, 18–23.CrossRefGoogle Scholar
Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24(1), 13–23.CrossRefGoogle Scholar
Haier, R. J. (2017). The neuroscience of intelligence. New York: Cambridge University Press.CrossRefGoogle Scholar
Haier, R. J. & Jung, R. E. (2007). Beautiful minds (i.e., brains) and the neural basis of intelligence. Behavioral and Brain Sciences, 30(2), 174–178.CrossRefGoogle Scholar
Haier, R. J., Siegel, B. V. Jr, Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., … Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199–217.CrossRefGoogle Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavior & Brain Sciences, 33(2–3), 61–83.CrossRefGoogle Scholar
Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57(5), 253–270.CrossRefGoogle ScholarPubMed
Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, CT: Praeger.Google Scholar
Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Amsterdam, The Netherlands: Elsevier.Google Scholar
Johnson, W., Bouchard, T. J. Jr, Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g: Consistent results from three test batteries. Intelligence, 32(1), 95–107.CrossRefGoogle Scholar
Johnson, W., te Nijenhuis, J., & Bouchard, T. J. Jr. (2008). Still just 1 g: Consistent results from five test batteries. Intelligence, 36(1), 81–95.CrossRefGoogle Scholar
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135–154.CrossRefGoogle ScholarPubMed
Kuncel, N. R., & Hezlett, S. A. (2007). Standardized tests predict graduate students’ success. Science, 315(5815), 1080–1081.CrossRefGoogle ScholarPubMed
Lee, J. J., Wedow, R., Okbay, A., Kong, O., Maghzian, M., Zacher, M., … Cesarini, D. (2018). Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment. Nature Genetics, 50(8), 1112–1121.CrossRefGoogle ScholarPubMed
Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C. & Jiang, T. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5(5), 1–17.CrossRefGoogle ScholarPubMed
Lubinski, D. (2016). From Terman to today: A century of findings on intellectual precocity. Review of Educational Research, 86(4), 900–944.CrossRefGoogle Scholar
Major, J. T., Johnson, W., & Bouchard, T. J. (2011). The dependability of the general factor of intelligence: Why small, single-factor models do not adequately represent g. Intelligence, 39(5), 418–433.CrossRefGoogle Scholar
McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33(4), 337–346.CrossRefGoogle Scholar
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10.CrossRefGoogle Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.CrossRefGoogle ScholarPubMed
Nave, G., Jung, W. H., Linnér, R. K., Kable, J. W., & Koellinger, P. D. (2019). Are bigger brains smarter? Evidence from a large-scale preregistered study. Psychological Science, 30(1), 43–54.CrossRefGoogle ScholarPubMed
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33(7), 1004–1023.CrossRefGoogle ScholarPubMed
Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (2015). Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience and Biobehavioral Reviews, 57, 411–432.CrossRefGoogle ScholarPubMed
Ree, M. J., Earles, J. A., & Teachout, M. S. (1994). Predicting job performance: Not much more than g. Journal of Applied Psychology, 79(4), 518–524.CrossRefGoogle Scholar
Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118–137.CrossRefGoogle Scholar
Sackett, P. R., Kuncel, N. R., Arneson, J. J., Cooper, S. R., & Waters, S. D. (2009). Does socioeconomic status explain the relationship between admissions tests and post-secondary academic performance? Psychological Bulletin, 135(1), 1–22.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., & Rossi, S. (2014). Efficiency of weak brain connections support general cognitive functioning. Human Brain Mapping, 35(9), 4566–4582.CrossRefGoogle ScholarPubMed
Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory of genotype ➔ environment effects. Child Development, 54(2), 424–435.Google ScholarPubMed
Scarr-Salapatek, S. (1971). Race, social class, and IQ. Science, 174(4016), 1285–1295.CrossRefGoogle ScholarPubMed
Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 124(2), 262–274.CrossRefGoogle Scholar
Schmidt, F. L., & Hunter, J. E. (2004). General mental ability in the world of work: Occupational attainment and job performance. Journal of Personality and Social Psychology, 86(1), 162–173.CrossRefGoogle ScholarPubMed
Spearman, C. (1927). The abilities of man: Their nature and measurement. New York: The Macmillan Company.Google Scholar
Taubert, M., Draganski, B., Anwander, A., Müller, K., Horstmann, A., Villringer, A., & Ragert, P. (2010). Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. Journal of Neuroscience, 30(35), 11670–11677.CrossRefGoogle ScholarPubMed
Thomas, C., & Baker, C. I. (2013). Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans. Neuroimage, 73, 225–236.CrossRefGoogle ScholarPubMed
Thorndike, R. L. (1984). Intelligence as information processing: The mind and the computer. Bloomington, IN: Center on Evaluation, Development, and Research.Google Scholar
Tucker-Drob, E. M. (2009). Differentiation of cognitive abilities across the life span. Developmental Psychology, 45(4), 1097–1118.CrossRefGoogle ScholarPubMed
Tucker-Drob, E. M., & Bates, T. C. (2015). Large cross-national differences in gene × socioeconomic status interaction on intelligence. Psychological Science, 27(2), 138–149.CrossRefGoogle Scholar
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 7619–7624.CrossRefGoogle ScholarPubMed
Warne, R. T., & Burningham, C. (2019). Spearman’s g found in 31 non-Western nations: Strong evidence that g is a universal phenomenon. Psychological Bulletin, 145(3), 237–272.CrossRefGoogle ScholarPubMed
Wechsler, D. (1944). The measurement of adult intelligence (3rd ed.). Baltimore, MD: Williams & Wilkins.Google Scholar
Woodley of Menie, M. A., Pallesen, J., & Sarraf, M. A. (2018). Evidence for the Scarr-Rowe effect on genetic expressivity in a large U.S. sample. Twin Research and Human Genetics, 21(6), 495–501.CrossRefGoogle Scholar
References
Amico, E., Arenas, A., & Goñi, J. (2019) Centralized and distributed cognitive task processing in the human connectome. Network Neuroscience, 3(2), 455–474.CrossRefGoogle ScholarPubMed
Anokhin, A. P., Lutzenberger, W., & Birbaumer, N. (1999). Spatiotemporal organization of brain dynamics and intelligence: An EEG study in adolescents. International Journal of Psychophysiology, 33(3), 259–273.CrossRefGoogle ScholarPubMed
Avena-Koenigsberger, A., Misic, B., & Sporns, O. (2018). Communication dynamics in complex brain networks. Nature Reviews Neuroscience, 19(1), 17–33.CrossRefGoogle Scholar
Barbey, A. K. (2018). Network neuroscience theory of human intelligence. Trends in Cognitive Sciences, 22(1), 1–13.CrossRefGoogle ScholarPubMed
Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 10–27.CrossRefGoogle Scholar
Basten, U., Stelzel, C., & Fiebach, C. J. (2013). Intelligence is differentially related to neural effort in the task-positive and the task-negative brain network. Intelligence, 41(5), 517–528.CrossRefGoogle Scholar
Betzel, R. F., & Bassett, D. S. (2017a). Generative models for network neuroscience: Prospects and promise. Journal of the Royal Society Interface, 14(136), 20170623.CrossRefGoogle ScholarPubMed
Betzel, R. F., & Bassett, D. S. (2017b). Multi-scale brain networks. Neuroimage, 160, 73–83.CrossRefGoogle ScholarPubMed
Bielczyk, N. Z., Uithol, S., van Mourik, T., Anderson, P., Glennon, J. C., & Buitelaar, J. K. (2019). Disentangling causal webs in the brain using functional magnetic resonance imaging: A review of current approaches. Network Neuroscience, 3(2), 237–273.CrossRefGoogle ScholarPubMed
Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., … Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage, 83, 550–558.CrossRefGoogle ScholarPubMed
Buckner, R. L., Krienen, F. M., & Yeo, B. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832–837.CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336–349.CrossRefGoogle ScholarPubMed
Cheung, M., Chan, A. S., Han, Y. M., & Sze, S. L. (2014). Brain activity during resting state in relation to academic performance. Journal of Psychophysiology, 28(2), 47–53.CrossRefGoogle Scholar
Chiang, M.-C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., … Thompson, P. M. (2009). Genetics of brain fiber architecture and intellectual performance. Journal of Neuroscience, 29(7), 2212–2224.CrossRefGoogle ScholarPubMed
Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83(1), 238–251.CrossRefGoogle ScholarPubMed
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 8988–8999.CrossRefGoogle ScholarPubMed
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.CrossRefGoogle Scholar
Craddock, R. C., Jbabdi, S., Yan, C. G., Vogelstein, J. T., Castellanos, F. X., Di Martino, A., … Milham, M. P. (2013). Imaging human connectomes at the macroscale. Nature Methods, 10(6), 524–539.CrossRefGoogle ScholarPubMed
Crossley, N. A., Mechelli, A., Vértes, P. E., Winton-Brown, T. T., Patel, A. X., Ginestet, C. E., … Bullmore, E. T. (2013). Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences USA, 110(28), 11583–11588.CrossRefGoogle ScholarPubMed
Damiani, D., Pereira, L. K., Damiani, D., & Nascimento, A. M. (2017). Intelligence neurocircuitry: Cortical and subcortical structures. Journal of Morphological Sciences, 34(3), 123–129.Google Scholar
Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences USA, 103(37), 13848–13853.CrossRefGoogle ScholarPubMed
Dosenbach, N. U. F., Fair, D. A, Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., … Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences USA, 104(26), 11073–11078.CrossRefGoogle ScholarPubMed
Duan, F., Watanabe, K., Yoshimura, Y., Kikuchi, M., Minabe, Y., & Aihara, K. (2014). Relationship between brain network pattern and cognitive performance of children revealed by MEG signals during free viewing of video. Brain and Cognition, 86, 10–16.CrossRefGoogle ScholarPubMed
Dubois, J., Galdi, P., Paul, L. K., Adolphs, R., Engineering, B., Angeles, L., … Dubois, J. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society of London B Biological Sciences, 373(1756), 20170284.CrossRefGoogle ScholarPubMed
Dunst, B., Benedek, M., Koschutnig, K., Jauk, E., & Neubauer, A. C. (2014). Sex differences in the IQ-white matter microstructure relationship: A DTI study. Brain and Cognition, 91, 71–78.CrossRefGoogle ScholarPubMed
Ewald, A., Avarvand, F. S., & Nolte, G. (2013). Identifying causal networks of neuronal sources from EEG/MEG data with the phase slope index: A simulation study. Biomedizinische Technik, 58(2), 165–178.CrossRefGoogle ScholarPubMed
Ferguson, M. A., Anderson, J. S., & Spreng, R. N. (2017). Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture. Network Neuroscience, 1(2), 192–207.CrossRefGoogle ScholarPubMed
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664–1671.CrossRefGoogle ScholarPubMed
Fornito, A., Zalesky, A., & Bullmore, E. (2016). Fundamentals of brain network analysis. Cambridge, MA: Academic Press.Google Scholar
Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1–44.CrossRefGoogle Scholar
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences USA, 102(27), 9673–9678.CrossRefGoogle ScholarPubMed
Fukushima, M., Betzel, R. F., He, Y., de Reus, M. A., van den Heuvel, M. P., Zuo, X. N., & Sporns, O. (2018). Fluctuations between high- and low-modularity topology in time-resolved functional connectivity. NeuroImage, 180(Pt. B), 406–416.CrossRefGoogle ScholarPubMed
Girn, M., Mills, C., & Christo, K. (2019). Linking brain network reconfiguration and intelligence: Are we there yet? Trends in Neuroscience and Education, 15, 62–70.CrossRefGoogle ScholarPubMed
Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., … Smith, S. M. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178.CrossRefGoogle ScholarPubMed
Gollo, L. L., Roberts, J. A., Cropley, V. L., Di Biase, M. A., Pantelis, C., Zalesky, A., & Breakspear, M. (2018). Fragility and volatility of structural hubs in the human connectome. Nature Neuroscience, 21(8), 1107–1116.CrossRefGoogle ScholarPubMed
Gonzalez-Castillo, J., Hoy, C. W., Handwerker, D. A., Robinson, M. E., Buchanan, L. C., Saad, Z. S., & Bandettini, P. A. (2015). Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proceedings of the National Academy of Sciences USA, 112(28), 8762–8767.CrossRefGoogle ScholarPubMed
Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. (2016). Generation and evaluation of a cortical area parcellation from resting-state correlations. Cerebral Cortex, 26(1), 288–303.CrossRefGoogle ScholarPubMed
Greene, A. S., Gao, S., Scheinost, D., & Costable, T. (2018). Task-induced brain states manipulation improves prediction of individual traits. Nature Communications, 9(1), 2807.CrossRefGoogle ScholarPubMed
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences USA, 100(1), 253–258.CrossRefGoogle ScholarPubMed
Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.CrossRefGoogle ScholarPubMed
Haász, J., Westlye, E. T., Fjær, S., Espeseth, T., Lundervold, A., & Lundervold, A. J. (2013). General fluid-type intelligence is related to indices of white matter structure in middle-aged and old adults. NeuroImage, 83, 372–383.CrossRefGoogle ScholarPubMed
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.CrossRefGoogle ScholarPubMed
Hearne, L. J., Mattingley, J. B., & Cocchi, L. (2016). Functional brain networks related to individual differences in human intelligence at rest. Scientific Reports, 6, 32328.CrossRefGoogle ScholarPubMed
Hilger, K., Ekman, M., Fiebach, C. J. & Basten, U. (2017a). Efficient hubs in the intelligent brain: Nodal efficiency of hub regions in the salience network is associated with general intelligence. Intelligence, 60, 10–25.CrossRefGoogle Scholar
Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017b). Intelligence is associated with the modular structure of intrinsic brain networks. Scientific Reports, 7(1), 16088.CrossRefGoogle ScholarPubMed
Hilger, K., Fukushima, M., Sporns, O., & Fiebach, C. J. (2020). Temporal stability of functional brain modules associated with human intelligence. Human Brain Mapping, 41(2), 362–372.CrossRefGoogle ScholarPubMed
Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences USA, 104(24), 10240–10245.CrossRefGoogle ScholarPubMed
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences USA, 106(6), 2035–2040.CrossRefGoogle ScholarPubMed
Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., & Menon, R. S. (2013). Resting‐state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Human Brain Mapping, 34(9), 2154–2177.CrossRefGoogle ScholarPubMed
Jahidin, A. H., Taib, M. N., Tahir, N. M., Megat Ali, M. S. A., & Lias, S. (2013). Asymmetry pattern of resting EEG for different IQ levels. Procedia – Social and Behavioral Sciences, 97, 246–251.CrossRefGoogle Scholar
Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C., & Behrens, T. E. (2015). Measuring macroscopic brain connections in vivo. Nature Neuroscience, 18(11), 1546.CrossRefGoogle ScholarPubMed
Jeub, L. G., Sporns, O., & Fortunato, S. (2018). Multiresolution consensus clustering in networks. Scientific Reports, 8(1), 3259.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135–154.CrossRefGoogle ScholarPubMed
Kievit, R. A., Davis, S. W., Griffiths, J. D., Correia, M. M., & Henson, R. N. A. (2016). A watershed model of individual differences in fluid intelligence. Neuropsychologia, 91, 186–198.CrossRefGoogle ScholarPubMed
Kievit, R. A., van Rooijen, H., Wicherts, J. M., Waldorp, L. J., Kan, K. J., Scholte, H. S., & Borsboom, D. (2012). Intelligence and the brain: A model-based approach. Cognitive Neuroscience, 3(2), 89–97.CrossRefGoogle ScholarPubMed
Kim, D.-J., Davis, E. P., Sandman, C. A., Sporns, O., O’Donnell, B. F., Buss, C., & Hetrick, W. P. (2015). Children’s intellectual ability is associated with structural network integrity. NeuroImage, 124(Pt. A), 550–556.CrossRefGoogle ScholarPubMed
Koenis, M. M. G., Brouwer, R. M., van den Heuvel, M. P., Mandl, R. C. W., van Soelen, I. L. C., Kahn, R. S., … Hulshoff Pol, H. E. (2015). Development of the brain’s structural network efficiency in early adolescence: A longitudinal DTI twin study. Human Brain Mapping, 36(12), 4938–4953.CrossRefGoogle ScholarPubMed
Kruschwitz, J. D., Waller, L., Daedelow, L. S., Walter, H., & Veer, I. M. (2018). General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set. Neuroimage, 171, 323–331.CrossRefGoogle Scholar
Langer, N., Pedroni, A., Gianotti, L. R. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33(6), 1393–1406.CrossRefGoogle ScholarPubMed
Langer, N., Pedroni, A., & Jäncke, L. (2013). The problem of thresholding in small-world network analysis. PLoS One, 8(1), e53199.CrossRefGoogle ScholarPubMed
Langeslag, S. J. E., Schmidt, M., Ghassabian, A., Jaddoe, V. W., Hofman, A., van der Lugt, A., … White, T. J. H. (2013). Functional connectivity between parietal and frontal brain regions and intelligence in young children: The generation R study. Human Brain Mapping, 34(12), 3299–3307.CrossRefGoogle ScholarPubMed
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701.CrossRefGoogle ScholarPubMed
Laumann, T. O., Gordon, E. M., Adeyemo, B., Snyder, A. Z., Joo, S. J., Chen, M. Y., … Schlaggar, B. L. (2015). Functional system and areal organization of a highly sampled individual human brain. Neuron, 87(3), 657–670.CrossRefGoogle ScholarPubMed
Lee, T. W., Wu, Y. Te, Yu, Y. W. Y., Wu, H. C., & Chen, T. J. (2012). A smarter brain is associated with stronger neural interaction in healthy young females: A resting EEG coherence study. Intelligence, 40(1), 38–48.CrossRefGoogle Scholar
Lerch, J. P., Worsley, K., Shaw, W. P., Greenstein, D. K., Lenroot, R.K., Giedd, J., & Evans, A. C. (2006). Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage, 31(3), 993–1003.CrossRefGoogle ScholarPubMed
Li, Y. H., Liu, Y., Li, J., Qin, W., Li, K. C., Yu, C. S., & Jiang, T. Z. (2009). Brain anatomical network and intelligence. Plos Computational Biology, 5(5), e1000395.CrossRefGoogle ScholarPubMed
Ma, J., Kang, H. J., Kim, J. Y., Jeong, H. S., Im, J. J., Namgung, E., … Yoon, S. (2017). Network attributes underlying intellectual giftedness in the developing brain. Scientific Reports, 7(1), 11321.CrossRefGoogle ScholarPubMed
Maier-Hein, K. H., Neher, P. F., Houde, J. C., Côté, M. A., Garyfallidis, E., Zhong, J., … Reddick, W. E. (2017). The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 8(1), 1349.CrossRefGoogle ScholarPubMed
Malpas, C. B., Genc, S., Saling, M. M., Velakoulis, D., Desmond, P. M., & Brien, T. J. O. (2016). MRI correlates of general intelligence in neurotypical adults. Journal of Clinical Neuroscience, 24, 128–134.CrossRefGoogle ScholarPubMed
Navas-Sánchez, F. J., Alemán-Gómez, Y., Sánchez-Gonzalez, J., Guzmán-De-Villoria, J. A, Franco, C., Robles, O., … Desco, M. (2013). White matter microstructure correlates of mathematical giftedness and intelligence quotient. Human Brain Mapping, 35(6), 2619–2631.CrossRefGoogle ScholarPubMed
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33(7), 1004–1023.CrossRefGoogle ScholarPubMed
Neubauer, A. C., Wammerl, M., Benedek, M., Jauk, E., & Jausovec, N. (2017). The influence of transcranial alternating current on fluid intelligence. A fMRI study. Personality and Individual Differences, 118, 50–55.CrossRefGoogle ScholarPubMed
Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.CrossRefGoogle ScholarPubMed
Pahor, A., & Jaušovec, N. (2014). Theta–gamma cross-frequency coupling relates to the level of human intelligence. Intelligence, 46, 283–290.CrossRefGoogle Scholar
Pamplona, G. S. P., Santos Neto, G. S., Rosset, S. R. E., Rogers, B. P., & Salmon, C. E. G. (2015). Analyzing the association between functional connectivity of the brain and intellectual performance. Frontiers in Human Neuroscience, 9, 61.CrossRefGoogle ScholarPubMed
Pestilli, F., Yeatman, J. D., Rokem, A., Kay, K. N., & Wandell, B. A. (2014). Evaluation and statistical inference for human connectomes. Nature Methods, 11(10), 1058–1063.CrossRefGoogle ScholarPubMed
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678.CrossRefGoogle ScholarPubMed
Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage, 105, 536–551.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682.CrossRefGoogle ScholarPubMed
Rubinov, M. (2016). Constraints and spandrels of interareal connectomes. Nature Communications, 7(1), 13812.CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069.CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. Neuroimage, 56(4), 2068–2079.CrossRefGoogle ScholarPubMed
Ryyppö, E., Glerean, E., Brattico, E., Saramäki, J., & Korhonen, O. (2018). Regions of interest as nodes of dynamic functional brain networks. Network Neuroscience, 2(4), 513–535.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Muller, T., Rossi, S., Sarkar, A., Polizzotto, N. R., Rossi, A., & Cohen Kadosh, R. (2016). Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex, 75, 33–43.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Rossi, S., & Rossi, A. (2015). The smarter, the stronger: Intelligence level correlates with brain resilience to systematic insults. Cortex, 64, 293–309.CrossRefGoogle ScholarPubMed
Schmithorst, V. J. (2009). Developmental sex differences in the relation of neuroanatomical connectivity to intelligence. Intelligence, 37(2), 164–173. Schultz, X. D. H., & Cole, X. W. (2016). Higher intelligence is associated with less ask-related brain network reconfiguration. Journal of Neuroscience, 36(33), 8551–8561.CrossRefGoogle ScholarPubMed
Sherman, L. E., Rudie, J. D., Pfeifer, J. H., Masten, C. L., McNealy, K., & Dapretto, M. (2014). Development of the default mode and central executive networks across early adolescence: A longitudinal study. Developmental Cognitive Neuroscience, 10, 148–159.CrossRefGoogle ScholarPubMed
Shinn, M., Romero-Garcia, R., Seidlitz, J., Váša, F., Vértes, P. E., & Bullmore, E. (2017). Versatility of nodal affiliation to communities. Scientific Reports, 7(1), 4273.CrossRefGoogle ScholarPubMed
Smit, D. J. A, Stam, C. J., Posthuma, D., Boomsma, D. I., & De Geus, E. J. C. (2008). Heritability of “small-world” networks in the brain: A graph theoretical analysis of resting-state EEG functional connectivity. Human Brain Mapping, 29(12), 1368–1378.CrossRefGoogle ScholarPubMed
Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences USA, 106(31), 13040–13045.CrossRefGoogle Scholar
Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E., Glasser, M. F., … Miller, K. L. (2015). A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 18(11), 1565–1567.CrossRefGoogle ScholarPubMed
Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., & Jiang, T. (2008). Brain spontaneous functional connectivity and intelligence. NeuroImage, 41(3), 1168–1176.CrossRefGoogle ScholarPubMed
Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17(5), 652–660.CrossRefGoogle ScholarPubMed
Sporns, O., & Betzel, R. F. (2016). Modular brain networks. Annual Review of Psychology, 67, 613–640.CrossRefGoogle ScholarPubMed
Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28(11), 1178–1193.CrossRefGoogle ScholarPubMed
Tang, C. Y., Eaves, E. L., Ng, J. C., Carpenter, D. M., Mai, X., Schroeder, D. H., … Haier, R. J. (2010). Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI. Intelligence, 38(3), 293–303.CrossRefGoogle Scholar
Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216–220.CrossRefGoogle ScholarPubMed
Telesford, Q. K., Lynall, M. E., Vettel, J., Miller, M. B., Grafton, S. T., & Bassett, D. S. (2016). Detection of functional brain network reconfiguration during task-driven cognitive states. NeuroImage, 142, 198–210.CrossRefGoogle ScholarPubMed
Thomas, C., Frank, Q. Y., Irfanoglu, M. O., Modi, P., Saleem, K. S., Leopold, D. A., & Pierpaoli, C. (2014). Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proceedings of the National Academy of Sciences USA, 111(46), 16574–16579.CrossRefGoogle ScholarPubMed
Vaiana, M., & Muldoon, S. F. (2018). Multilayer brain networks. Journal of Nonlinear Science, 1–23.Google Scholar
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 7619–7624.CrossRefGoogle ScholarPubMed
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442.CrossRefGoogle ScholarPubMed
Wolf, D., Fischer, F. U., Fesenbeckh, J., Yakushev, I., Lelieveld, I. M., Scheurich, A., … Fellgiebel, A. (2014). Structural integrity of the corpus callosum predicts long-term transfer of fluid intelligence-related training gains in normal aging. Human Brain Mapping, 35(1), 309–318.CrossRefGoogle ScholarPubMed
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122.CrossRefGoogle ScholarPubMed
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165.Google ScholarPubMed
Yeo, R. A., Ryman, S. G., van den Heuvel, M. P., de Reus, M. A., Jung, R. E., Pommy, J., … Calhoun, V. D. (2016). Graph metrics of structural brain networks in individuals with schizophrenia and healthy controls: Group differences, relationships with intelligence, and genetics. Journal of the International Neuropsychological Society, 22(2), 240–249.CrossRefGoogle ScholarPubMed
Yu, C. S., Li, J., Liu, Y., Qin, W., Li, Y. H., Shu, N., … Li, K. C. (2008). White matter tract integrity and intelligence in patients with mental retardation and healthy adults. Neuroimage, 40(4), 1533–1541.CrossRefGoogle ScholarPubMed
Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., & Breakspear, M. (2014). Time-resolved resting-state brain networks. Proceedings of the National Academy of Sciences, 111(28), 10341–10346.CrossRefGoogle ScholarPubMed
Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E. T. (2010). Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage, 50(3), 970–983.CrossRefGoogle ScholarPubMed
Zalesky, A., Fornito, A., Seal, M. L., Cocchi, L., Westin, C., Bullmore, E. T., … Pantelis, C. (2011). Disrupted axonal fiber connectivity in schizophrenia. Biological Psychiatry, 69(1), 80–89.CrossRefGoogle Scholar
Zuo, X. N., & Xing, X. X. (2014). Test–retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: A systems neuroscience perspective. Neuroscience & Biobehavioral Reviews, 45, 100–118.CrossRefGoogle ScholarPubMed
References
Ad-Dab’bagh, Y., Lyttelton, O., Muehlboeck, J. S., Lepage, C., Einarson, D., Mok, K., … Evans, A. C. (2006). The CIVET image-processing environment: A fully automated comprehensive pipeline for anatomical neuroimaging research. Proceedings of the 12th annual meeting of the organization for human brain mapping (Vol. 2266). Florence, Italy.Google Scholar
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – The methods. Neuroimage, 11(6), 805–821.CrossRefGoogle ScholarPubMed
Barbey, A. K. (2018). Network neuroscience theory of human intelligence. Trends in Cognitive Sciences, 22(1), 8–20.CrossRefGoogle ScholarPubMed
Basten, U., Hilger, K., & Fieback, C. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 10–27.CrossRefGoogle Scholar
Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., … Schonberg, T. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 582, 84–88.CrossRefGoogle ScholarPubMed
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376.CrossRefGoogle ScholarPubMed
Caspi, A., & Moffitt, T. E. (2018). All for one and one for all: Mental disorders in one dimension. American Journal of Psychiatry, 175(9), 831–844.CrossRefGoogle ScholarPubMed
Chekroud, A. M., Ward, E. J., Rosenberg, M. D., & Holmes, A. J. (2016). Patterns in the human brain mosaic discriminate males from females. Proceedings of the National Academy of Sciences, 113(14), E1968–E1968.CrossRefGoogle ScholarPubMed
Chen, C. H., Fiecas, M., Gutierrez, E. D., Panizzon, M. S., Eyler, L. T., Vuoksimaa, E., … & Kremen, W. S. (2013). Genetic topography of brain morphology. Proceedings of the National Academy of Sciences, 110(42), 17089–17094.CrossRefGoogle ScholarPubMed
Chuderski, A. (2019). Even a single trivial binding of information is critical for fluid intelligence. Intelligence, 77, 101396.CrossRefGoogle Scholar
Cole, M. W., Yarkoni, T., Repovš, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 8988–8999.CrossRefGoogle ScholarPubMed
Colom, R., Burgaleta, M., Román, F. J., Karama, S., Álvarez-Linera, J., Abad, F. J., … Haier, R. J. (2013). Neuroanatomic overlap between intelligence and cognitive factors: Morphometry methods provide support for the key role of the frontal lobes. Neuroimage, 72, 143–152. doi: 10.1016/j.neuroimage.2013.01.032.CrossRefGoogle ScholarPubMed
Colom, R., Chuderski, A., & Santarnecchi, E. (2016). Bridge over troubled water: Commenting on Kovacs and Conway’s process overlap theory. Psychological Inquiry, 27(3), 181–189.CrossRefGoogle Scholar
Colom, R., Haier, R. J., Head, K., Álvarez-Linera, J., Quiroga, M. Á., Shih, P. C., & Jung, R. E. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: Testing the P-FIT model. Intelligence, 37(2), 124–135.CrossRefGoogle Scholar
Colom, R., Jung, R. E., & Haier, R. J. (2006). Distributed brain sites for the g-factor of intelligence. NeuroImage, 31(3), 1359–1365.CrossRefGoogle ScholarPubMed
Colom, R., Jung, R. E., & Haier, R. J. (2007). General intelligence and memory span: Evidence for a common neuroanatomic framework. Cognitive Neuropsychology, 24(8), 867–878.CrossRefGoogle ScholarPubMed
Colom, R., Karama, S., Jung, R. E., & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12(4), 489–501.Google ScholarPubMed
Colom, R., & Román, F. (2018). Enhancing intelligence: From the group to the individual. Journal of Intelligence, 6(1), 11.CrossRefGoogle Scholar
Colom, R., & Thompson, P. M. (2011). Understanding human intelligence by imaging the brain. In Chamorro-Premuzic, T., von Stumm, S., & Furnham, A. (eds.), The Wiley-Blackwell handbook of individual differences (p. 330–352). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Daugherty, A. M., Sutton, B. P., Hillman, C., Kramer, A. F., Cohen, N. J., & Barbey, A. K. (2020). Individual differences in the neurobiology of fluid intelligence predict responsiveness to training: Evidence from a comprehensive cognitive, mindfulness meditation, and aerobic exercise intervention. Trends in Neuroscience and Education, 18, 100123.CrossRefGoogle ScholarPubMed
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11(3), 201–211.CrossRefGoogle ScholarPubMed
Dubois, J., & Adolphs, R. (2016). Building a science of individual differences from fMRI. Trends in Cognitive Sciences, 20(6), 425–443.CrossRefGoogle ScholarPubMed
Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170284.CrossRefGoogle ScholarPubMed
Estrada, E., Ferrer, E., Román, F. J., Karama, S., & Colom, R. (2019). Time-lagged associations between cognitive and cortical development from childhood to early adulthood. Developmental Psychology, 55(6), 1338–1352.CrossRefGoogle ScholarPubMed
Euler, M. J. (2018). Intelligence and uncertainty: Implications of hierarchical predictive processing for the neuroscience of cognitive ability. Neuroscience & Biobehavioral Reviews, 94, 93–112.CrossRefGoogle ScholarPubMed
Evans, A. C., & Brain Development Cooperative Group (2006). The NIH MRI study of normal brain development. NeuroImage, 30(1), 184–202.CrossRefGoogle ScholarPubMed
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprint: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664–1671.CrossRefGoogle ScholarPubMed
Fjell, A. M., Westlye, L. T., Amlien, I., Tamnes, C. K., Grydeland, H., Engvig, A., … Walhovd, K. B. (2015). High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cerebral Cortex, 25(1), 26–34.CrossRefGoogle ScholarPubMed
Frost, M. A., & Goebel, R. (2012). Measuring structural–functional correspondence: Spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage, 59(2), 1369–1381.CrossRefGoogle ScholarPubMed
Gignac, G. E., & Bates, T. C. (2017). Brain volume and intelligence: The moderating role of intelligence measurement quality. Intelligence, 64, 18–29. doi: 10.1016/j.intell.2017.06.004.CrossRefGoogle Scholar
Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., … Petersen, S. E. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron, 98(2), 439–452.CrossRefGoogle ScholarPubMed
Grotzinger, A. D., Cheung, A. K., Patterson, M. W., Harden, K. P., & Tucker-Drob, E. M. (2019). Genetic and environmental links between general factors of psychopathology and cognitive ability in early childhood. Clinical Psychological Science, 7(3), 430–444.CrossRefGoogle ScholarPubMed
Haier, R. J. (2017). The neuroscience of intelligence. Cambridge University Press.CrossRefGoogle Scholar
Haier, R. J., Colom, R., Schroeder, D., Condon, C., Tang, C., Eaves, E., & Head, K. (2009). Gray matter and intelligence factors: Is there a neuro-g? Intelligence, 37(2), 136–144.CrossRefGoogle Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: Sex matters. NeuroImage, 25(1), 320–327.CrossRefGoogle ScholarPubMed
Hearne, L. J., Mattingley, J. B., & Cocchi, L. (2016). Functional brain networks related to individual differences in human intelligence at rest. Scientific Reports, 6, 32328. doi: 10.1038/srep32328.CrossRefGoogle ScholarPubMed
Hill, W. D., Harris, S. E., & Deary, I. J. (2019). What genome-wide association studies reveal about the association between intelligence and mental health. Current Opinion in Psychology, 27, 25–30. doi: 10.1016/j.copsyc.2018.07.007.CrossRefGoogle ScholarPubMed
Horien, C., Shen, X., Scheinost, D., & Constable, R. T. (2019). The individual functional connectome is unique and stable over months to years. NeuroImage, 189, 676–687. doi: 10.1016/j.neuroimage.2019.02.002.CrossRefGoogle ScholarPubMed
Im, K., Lee, J. M., Lyttelton, O., Kim, S. H., Evans, A. C., & Kim, S. I. (2008). Brain size and cortical structure in the adult human brain. Cerebral Cortex, 18(9), 2181–2191.CrossRefGoogle ScholarPubMed
Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., … Verma, R. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences, 111(2), 823–828.CrossRefGoogle ScholarPubMed
Jensen, A. R. (1998). The g factor. The science of mental ability. Westport, CT: Praeger. doi: 10.1093/cercor/bhm244.Google Scholar
Johnson, W., & Bouchard, T. (2005). The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393–416.CrossRefGoogle Scholar
Johnson, W., Bouchard, T. J. Jr, Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g: Consistent results from three batteries. Intelligence, 32(1), 95–107.CrossRefGoogle Scholar
Johnson, W., te Nijenhuis, J., & Bouchard, T. (2008). Still just 1 g: Consistent results from five test batteries. Intelligence, 36(1), 81–95.CrossRefGoogle Scholar
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135–187.CrossRefGoogle ScholarPubMed
Karama, S., Colom, R., Johnson, W., Deary, I. J., Haier, R., Waber, D. P., … Brain Development Cooperative Group (2011). Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. NeuroImage, 55(4), 1443–1453.CrossRefGoogle ScholarPubMed
Kim, J. S., Singh, V., Lee, J. K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., … Evans, A. C. (2005). Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. NeuroImage, 27(1), 210–221.CrossRefGoogle ScholarPubMed
Kruschwitz, J. D., Waller, L., Daedelow, L. S., Walter, H., & Veer, I. M. (2018). General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set. NeuroImage, 171, 323–331. doi: 10.1016/j.neuroimage.2018.01.018.CrossRefGoogle Scholar
Langer, N., Pedroni, A., Gianotti, L. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33(6), 1393–1406.CrossRefGoogle ScholarPubMed
MacDonald, D., Kabani, N., Avis, D., & Evans, A. C. (2000). Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage, 12(3), 340–356.CrossRefGoogle ScholarPubMed
Martínez, K., Madsen, S. K., Joshi, A. A., Joshi, S. H., Roman, F. J., Villalon‐Reina, J., … Colom, R. (2015). Reproducibility of brain–cognition relationships using three cortical surface-based protocols: An exhaustive analysis based on cortical thickness. Human Brain Mapping, 36(8), 3227–3245.CrossRefGoogle ScholarPubMed
Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging Reviews, 1(2), 105–113.CrossRefGoogle Scholar
Pakkenberg, B., & Gundersen, H. J. G. (1997). Neocortical neuron number in humans: Effect of sex and age. Journal of Comparative Neurology, 384(2), 312–320.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., … Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11), 2728–2735.CrossRefGoogle ScholarPubMed
Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (2015). Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience & Biobehavioral Reviews, 57, 411–432.CrossRefGoogle ScholarPubMed
Pineda-Pardo, J. A., Martínez, K., Román, F. J., & Colom, R. (2016). Structural efficiency within a parieto-frontal network and cognitive differences. Intelligence, 54, 105–116. doi: 10.1016/j.intell.2015.12.002.CrossRefGoogle Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top 10 replicated findings from behavioral genetics. Perspectives on Psychological Science, 11(1), 3–23.CrossRefGoogle ScholarPubMed
Ponsoda, V., Martínez, K., Pineda‐Pardo, J. A., Abad, F. J., Olea, J., Román, F. J., … Colom, R. (2017). Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis. Human Brain Mapping, 38(2), 803–816.CrossRefGoogle ScholarPubMed
Price, C. J. (2018). The evolution of cognitive models: From neuropsychology to neuroimaging and back. Cortex, 107, 37–49.CrossRefGoogle Scholar
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241(4862), 170–176.CrossRefGoogle ScholarPubMed
Ritchie, S. J., Cox, S. R., Shen, X., Lombardo, M. V., Reus, L. M., Alloza, C., … Deary, I. J. (2018). Sex differences in the adult human brain: Evidence from 5216 UK Biobank participants. Cerebral Cortex, 28(8), 2959–2975.CrossRefGoogle ScholarPubMed
Román, F. J., Abad, F. J., Escorial, S., Burgaleta, M., Martínez, K., Álvarez‐Linera, J., … Colom, R. (2014). Reversed hierarchy in the brain for general and specific cognitive abilities: A morphometric analysis. Human Brain Mapping, 35(8), 3805–3818.CrossRefGoogle ScholarPubMed
Román, F. J., Morillo, D., Estrada, E., Escorial, S., Karama, S., & Colom, R. (2018). Brain–intelligence relationships across childhood and adolescence: A latent-variable approach. Intelligence, 68, 21–29. doi: 10.1016/j.intell.2018.02.006.CrossRefGoogle Scholar
Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9(5), 250–257.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Rossi, S., & Rossi, A. (2015). The smarter, the stronger: Intelligence level correlates with brain resilience to systematic insults. Cortex, 64, 293–309. doi: 10.1016/j.cortex.2014.11.005.CrossRefGoogle ScholarPubMed
Saxe, G. N., Calderone, D., & Morales, L. J. (2018). Brain entropy and human intelligence: A resting-state fMRI study. PloS One, 13(2), e0191582.CrossRefGoogle ScholarPubMed
Schneider, W. J., & McGrew, K. S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. In Flanagan, D. P., & McDonough, E. M. (eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 73–163). New York: The Guilford Press.Google Scholar
Sella, G., & Barton, N. H. (2019). Thinking about the evolution of complex traits in the era of genome-wide association studies. Annual Review of Genomics and Human Genetics, 20, 461–493.CrossRefGoogle ScholarPubMed
Thompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Rapoport, J. L., … Toga, A. W. (2004). Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. NeuroImage, 23, S2–S18. doi: 10.1016/j.neuroimage.2004.07.071.CrossRefGoogle Scholar
Thompson, P. M., Jahanshad, N., Ching, C. R., Salminen, L. E., Thomopoulos, S. I., Bright, J., … for the ENIGMA Consortium (2020). ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 10(1), 1–28.CrossRefGoogle ScholarPubMed
Valizadeh, S. A., Liem, F., Mérillat, S., Hänggi, J., & Jäncke, L. (2018). Identification of individual subjects on the basis of their brain anatomical features. Scientific Reports, 8(1), 1–9.CrossRefGoogle ScholarPubMed
van den Heuvel, M.P., Stam, C.J., Kahn, R.S., Hulshoff Pol, H.E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 7619–7624.CrossRefGoogle ScholarPubMed
Viviano, R. P., Raz, N., Yuan, P., & Damoiseaux, J. S. (2017). Associations between dynamic functional connectivity and age, metabolic risk, and cognitive performance. Neurobiology of Aging, 59, 135–143. doi: 10.1016/j.neurobiolaging.2017.08.003.CrossRefGoogle ScholarPubMed
Vuoksimaa, E., Panizzon, M. S., Chen, C. H., Fiecas, M., Eyler, L. T., Fennema-Notestine, C., … Kremen, W. S. (2015). The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cerebral Cortex, 25(8), 2127–2137.CrossRefGoogle ScholarPubMed
Wendelken, C., Ferrer, E., Ghetti, S., Bailey, S. K., Cutting, L., & Bunge, S. A. (2017). Frontoparietal structural connectivity in childhood predicts development of functional connectivity and reasoning ability: A large-scale longitudinal investigation. Journal of Neuroscience, 37(35), 8549–8558.CrossRefGoogle ScholarPubMed
Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., … Glahn, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146.CrossRefGoogle ScholarPubMed
References
Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., … Milham, M. P. (2017). Data descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data, 4, 1–26.CrossRefGoogle Scholar
Andreasen, N. C., Flaum, M., Swayze, V., O’Leary, D. S., Alliger, R., Cohen, G., …, Yuh, W. T. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150(1), 130–134.Google ScholarPubMed
Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J. (2014). Architecture of fluid intelligence and working memory revealed by lesion mapping. Brain Structure and Function, 219(2), 485–494. doi: 10.1007/s00429-013-0512-z.CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135(Pt 4), 1154–1164. doi: 10.1093/brain/aws021.CrossRefGoogle ScholarPubMed
Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 10–27.CrossRefGoogle Scholar
Bedford, S. A., Park, M. T. M., Devenyi, G. A., Tullo, S., Germann, J., Patel, R., … Chakravarty, M. M. (2020). Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Molecular Psychiatry, 25(3), 614–628.CrossRefGoogle ScholarPubMed
Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., … Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences USA, 107(10), 4734–4739.CrossRefGoogle ScholarPubMed
Book, G. A., Stevens, M. C., Assaf, M., Glahn, D. C., & Pearlson, G. D. (2016). Neuroimaging data sharing on the neuroinformatics database platform. Neuroimage, 124(Pt. B), 1089–1092.CrossRefGoogle ScholarPubMed
Brown, M. R. G. G., Sidhu, G. S., Greiner, R., Asgarian, N., Bastani, M., Silverstone, P. H., … Dursun, S. M. (2012). ADHD-200 global competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Frontiers in Systems Neuroscience, 6, 1–22.CrossRefGoogle ScholarPubMed
Burgaleta, M., Johnson, W., Waber, D. P., Colom, R., & Karama, S. 2014. Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. Neuroimage, 84, 810–819.CrossRefGoogle ScholarPubMed
Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., … Dale, A. M. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43–54.CrossRefGoogle ScholarPubMed
Colom, R., Haier, R. J., Head, K., Álvarez-Linera, J., Quiroga, M. Á., Shih, P. C., & Jung, R. E. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: Testing the P-FIT model. Intelligence, 37(2), 124–135.CrossRefGoogle Scholar
Colom, R., Karama, S., Jung, R. E., & Haier, R. J. 2010. Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12(4), 489–501.Google ScholarPubMed
Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M., & Deary, I. J. (2019). Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence, 76, 101376.CrossRefGoogle ScholarPubMed
Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A., … Bellec, P. (2013). The Neuro Bureau Preprocessing Initiative: Open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7. doi: 10.3389/conf.fninf.2013.09.00041.Google Scholar
Daugherty, A., Sutton, B., Hillman, C. H., Kramer, A., Cohen, N., & Barbey, A. K. (2020). Individual differences in the neurobiology of fluid intelligence predict responsiveness to training: Evidence from a comprehensive cognitive, mindfulness meditation, and aerobic exercise intervention. Trends in Neuroscience and Education, 18, 100123.CrossRefGoogle ScholarPubMed
Deary, I. J., Gow, A. J., Taylor, M. D., Corley, J., Brett, C., Wilson, V., … Starr, J. M. (2007). The Lothian Birth Cohort 1936: A study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatrics, 7, 28.CrossRefGoogle ScholarPubMed
Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., … Milham, M. P. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4, 170010.CrossRefGoogle ScholarPubMed
Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., … Milham, M. P. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.CrossRefGoogle ScholarPubMed
Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society B Biological Science, 373(1756), 20170284.CrossRefGoogle ScholarPubMed
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.CrossRefGoogle ScholarPubMed
Evans, A. C., & Brain Development Cooperative Group. (2006). The NIH MRI study of normal brain development. Neuroimage, 30(1), 184–202.CrossRefGoogle ScholarPubMed
Fortin, J.-P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., … Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. Neuroimage, 167, 104–120.CrossRefGoogle ScholarPubMed
Ghiassian, S., Greiner, R., Jin, P., & Brown, M. R. G. 2016. Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism. PLoS One, 11(12), e0166934.CrossRefGoogle ScholarPubMed
Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5(6), 471–482.CrossRefGoogle ScholarPubMed
Haier, R. J. (2017). The neuroscience of intelligence. Cambridge University Press.CrossRefGoogle Scholar
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., … Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199–217.CrossRefGoogle Scholar
HD-200 Consortium TA-200, Milham, P. M., Damien, F., Maarten, M., & Stewart, H. M. (2012). The ADHD-200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. Frontiers in Systems Neuroscience, 6, 1–5.Google Scholar
Hammer, R., Paul, E. J., Hillman, C. H., Kramer, A. F., Cohen, N. J., & Barbey, A. K. (2019). Individual differences in analogical reasoning revealed by multivariate task-based functional brain imaging. Neuroimage, 184, 993–1004. doi: 10.1016/j.neuroimage.2018.09.011.CrossRefGoogle ScholarPubMed
Huguet, G., Schramm, C., Douard, E., Jiang, L., Labbe, A., Tihy, F., … Jacquemont, S. (2018). Measuring and estimating the effect sizes of copy number variants on general intelligence in community-based samples. JAMA Psychiatry, 75(5), 447–457.CrossRefGoogle ScholarPubMed
Jernigan, T. L., Brown, T. T., Hagler, D. J., Akshoomoff, N., Bartsch, H., Newman, E., … Pediatric Imaging, Neurocognition and Genetics Study. (2016). The Pediatric Imaging, Neurocognition, and Genetics (PING) data repository. Neuroimage. 124(Pt. B), 1149–1154.CrossRefGoogle ScholarPubMed
Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118–127.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135–154.CrossRefGoogle ScholarPubMed
Karama, S., Ad-Dab’bagh, Y., Haier, R. J., Deary, I. J., Lyttelton, O. C., Lepage, C., & Evans, A. C. (2009). Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds. Intelligence. 37(2), 145–155.CrossRefGoogle Scholar
Karama, S., Bastin, M. E., Murray, C., Royle, N. A., Penke, L., Muñoz Maniega, S., … Deary, I. J. (2014). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 19(3), 555–559.CrossRefGoogle ScholarPubMed
Karama, S., Colom, R., Johnson, W., Deary, I. J., Haier, R., Waber, D. P., … Evans, A. C. (2011). Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage, 55(4), 1443–1453.CrossRefGoogle ScholarPubMed
Khundrakpam, B. S., Lewis, J. D., Reid, A., Karama, S., Zhao, L., Chouinard-Decorte, F., … Brain Development Cooperative Group. (2017). Imaging structural covariance in the development of intelligence. Neuroimage, 144(Pt. A), 227–240.CrossRefGoogle ScholarPubMed
Kievit, R. A., Fuhrmann, D., Borgeest, G. S., Simpson-Kent, I. L., & Henson, R. N. A. (2018). The neural determinants of age-related changes in fluid intelligence: A pre-registered, longitudinal analysis in UK Biobank. Wellcome Open Research, 3, 38.CrossRefGoogle ScholarPubMed
King, J. B., Prigge, M. B. D., King, C. K., Morgan, J., Weathersby, F., Fox, J. C., … Anderson, J. S. (2019). Generalizability and reproducibility of functional connectivity in autism. Molecular Autism, 10, 27.CrossRefGoogle ScholarPubMed
Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., & Jiang, T. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5(5), e1000395.CrossRefGoogle ScholarPubMed
Loughnan, R. J., Palmer, C. E., Thompson, W. K., Dale, A. M., Jernigan, T. L., & Fan, C. C. (2019). Polygenic score of intelligence is more predictive of crystallized than fluid performance among children. bioRxiv. 637512. doi: 10.1101/637512.CrossRefGoogle Scholar
Luders, E., Narr, K. L., Thompson, P. M., & Toga, A. W. (2009). Neuroanatomical correlates of intelligence. Intelligence, 37(2), 156–163.CrossRefGoogle ScholarPubMed
McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33(4), 337–346.CrossRefGoogle Scholar
Mennes, M., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2013). Making data sharing work: The FCP/INDI experience. Neuroimage, 82, 683–691.CrossRefGoogle ScholarPubMed
Mihalik, A., Brudfors, M., Robu, M., Ferreira, F. S., Lin, H., Rau, A., … Oxtoby, N. P. (2019). ABCD Neurocognitive Prediction Challenge 2019: Predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression. In Pohl, K., Thompson, W., Adeli, E., & Linguraru, M. (eds.), Adolescent brain cognitive development neurocognitive prediction. ABCD-NP 2019. Lecture Notes in Computer Science, vol. 11791. Cham: Springer. doi: 10.1007/978-3-030-31901-4_16.Google Scholar
Narr, K. L., Woods, R. P., Thompson, P. M., Szeszko, P., Robinson, D., Dimtcheva, T., … Bilder, R. M. (2007). Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cerebral Cortex, 17(9), 2163–2171.CrossRefGoogle ScholarPubMed
Nielson, D. M., Pereira, F., Zheng, C. Y., Migineishvili, N., Lee, J. A., Thomas, A. G., & Bandettini, P. A. (2018). Detecting and harmonizing scanner differences in the ABCD study – Annual release 1.0. bioRxiv. 309260. doi: 10.1101/309260.CrossRefGoogle Scholar
Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler, E. D., … Anderson, J. S. (2013). Multisite functional connectivity MRI classification of autism: ABIDE results. Frontiers in Human Neuroscience, 7, 599.CrossRefGoogle ScholarPubMed
Parikh, M. N., Li, H., & He, L. (2019). Enhancing diagnosis of autism with optimized machine learning models and personal characteristic data. Frontiers in Computational Neuroscience, 13, 1–5.CrossRefGoogle ScholarPubMed
Plomin, R., & Von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19(3), 148–159.CrossRefGoogle ScholarPubMed
Poldrack, R. A., & Gorgolewski, K. J. (2014). Making big data open: Data sharing in neuroimaging. Nature Neuroscience, 17(11), 1510–1517.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Emmendorfer, A., & Pascual-Leone, A. (2017). Dissecting the parieto-frontal correlates of fluid intelligence: A comprehensive ALE meta-analysis study. Intelligence, 63, 9–28.CrossRefGoogle Scholar
Satterthwaite, T. D., Connolly, J. J., Ruparel, K., Calkins, M. E., Jackson, C., Elliott, M. A., … Gur, R. E. (2016). The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth. Neuroimage, 124(Pt. B), 1115–1119.CrossRefGoogle Scholar
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., … Posthuma, D. (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50(7), 912–919.CrossRefGoogle ScholarPubMed
Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Büchel, C., … Struve, M. (2010). The IMAGEN study: Reinforcement-related behaviour in normal brain function and psychopathology. Molecular Psychiatry, 15(12), 1128–1139.CrossRefGoogle ScholarPubMed
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676–679.CrossRefGoogle ScholarPubMed
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E., … Posthuma, D. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49(7), 1107–1112.CrossRefGoogle ScholarPubMed
Sripada, C., Angstadt, M., Rutherford, S., & Taxali, A. (2019). Brain network mechanisms of general intelligence. bioRxiv. 657205. doi: 10.1101/657205.CrossRefGoogle Scholar
Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., … Thompson, P. M. (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44(5), 552–561.CrossRefGoogle ScholarPubMed
Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., … Collins, R. (2015). UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine, 12(3), e1001779.CrossRefGoogle ScholarPubMed
Talukdar, T., Roman, F. J., Operskalski, J. T., Zwilling, C. E., & Barbey, A. K. (2018). Individual differences in decision making competence revealed by multivariate fMRI. Human Brain Mapping, 39(6), 2664–2672. doi: 10.1002/hbm.24032.CrossRefGoogle ScholarPubMed
Thompson, P. M., Dennis, E. L., Gutman, B. A., Hibar, D. P., Jahanshad, N., Kelly, S., … Ye, J. (2017). ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. Neuroimage, 145(Pt. B), 389–408.CrossRefGoogle ScholarPubMed
Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., … Drevets, W. (2014). The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behavior, 8(2), 153–182.CrossRefGoogle ScholarPubMed
Turner, B. O., Paul, E. J., Miller, M. B., & Barbey, A. K. (2018). Small sample sizes reduce the replicability of task-based fMRI studies. Communications Biology, 1, 62. doi: 10.1038/s42003-018-0073-z.CrossRefGoogle ScholarPubMed
Turner, J. A. (2014). The rise of large-scale imaging studies in psychiatry. Gigascience, 3, 1–8.CrossRefGoogle Scholar
Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Ugurbil, K., & WU-Minn HCP Consortium. (2013). The WU-Minn human connectome project: An overview. Neuroimage, 80, 62–79.CrossRefGoogle ScholarPubMed
Wachinger, C., Becker, B. G., & Rieckmann, A. (2018). Detect, quantify, and incorporate dataset bias: A neuroimaging analysis on 12,207 individuals. arXiv:1804.10764.Google Scholar
Xiao, L., Stephen, J. M., Wilson, T. W., Calhoun, V. D., & Wang, Y.-P. (2019). A manifold regularized multi-task learning model for IQ prediction from two fMRI paradigms. IEEE Transaactions in Biomedical Engineering, 67(3), 796–806.CrossRefGoogle ScholarPubMed
Zhao, Y., Klein, A., Castellanos, F. X., & Milham, M. P. (2019). Brain age prediction: Cortical and subcortical shape covariation in the developing human brain. Neuroimage, 202, 116149.CrossRefGoogle ScholarPubMed
Zwilling, C. E., Daugherty, A. M., Hillman, C. H., Kramer, A. F., Cohen, N. J., & Barbey, A. K. (2019). Enhanced decision-making through multimodal training. NPJ Science of Learning, 4, 11. doi: 10.1038/s41539-019-0049-x.CrossRefGoogle ScholarPubMed