Book contents
- The Cambridge Handbook of Infant Development
- The Cambridge Handbook of Infant Development
- Copyright page
- Dedication
- Contents
- Illustrations
- Contributors
- Preface
- Part I Foundations
- Part II Perceptual Development
- Part III Cognitive Development
- Part IV Action
- Part V Language
- Part VI Emotional and Social Development
- Index
- References
Part II - Perceptual Development
Published online by Cambridge University Press: 26 September 2020
Book contents
- The Cambridge Handbook of Infant Development
- The Cambridge Handbook of Infant Development
- Copyright page
- Dedication
- Contents
- Illustrations
- Contributors
- Preface
- Part I Foundations
- Part II Perceptual Development
- Part III Cognitive Development
- Part IV Action
- Part V Language
- Part VI Emotional and Social Development
- Index
- References
- Type
- Chapter
- Information
- The Cambridge Handbook of Infant DevelopmentBrain, Behavior, and Cultural Context, pp. 155 - 338Publisher: Cambridge University PressPrint publication year: 2020
References
References
Anzures, G., Wheeler, A., Quinn, P. C., Pascalis, O., Slater, A. M., Heron-Delaney, M., … Lee, K. (2012). Brief daily exposures to Asian females reverses perceptual narrowing for Asian faces in Caucasian infants. Journal of Experimental Child Psychology, 112(4), 484–495. doi:10.1016/j.jecp.2012.04.005CrossRefGoogle ScholarPubMed
Armstrong, V., Maurer, D., Ellemberg, D., & Lewis, T. L. (2011). Sensitivity to first- and second-order drifting gratings in 3-month-old infants. Iperception, 2(5), 440–457. doi:10.1068/i0406Google ScholarPubMed
Atkinson, J., Braddick, O., Lin, M. H., Curran, W., Guzzetta, A., & Cioni, G. (1999). Form and motion: Is there a dorsal stream vulnerability in development? Investigative Ophthalmology & Visual Science, 40, S395.Google Scholar
Banks, M., & Bennett, P. (1988). Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. Journal of the Optical Society of America, 5(12), 2059–2079.CrossRefGoogle ScholarPubMed
Banks, M., (1978). Acuity and contrast sensitivity in 1-, 2-, and 3-month-old human infants. Investigative Ophthalmology & Visual Science, 17, 361–365.Google ScholarPubMed
Bar-Haim, Y., Ziv, T., Lamy, D., & Hodes, R. M. (2006). Nature and nurture in own-race face processing. Psychological Science, 17(2), 159–163.CrossRefGoogle ScholarPubMed
Bardi, L., Regolin, L., & Simion, F. (2011). Biological motion preference in humans at birth: Role of dynamic and configural properties. Developmental Science, 14(2), 353–359.CrossRefGoogle ScholarPubMed
Bhatt, R. S., Bertin, E., Hayden, A., & Reed, A. (2005). Face processing in infancy: Developmental changes in the use of different kinds of relational information. Child Development, 76(1), 169–181. doi:10.1111/j.1467-8624.2005.00837.xCrossRefGoogle ScholarPubMed
Biagi, L., Crespi, S. A., Tosetti, M., & Morrone, M. C. (2015). BOLD response selective to flow-motion in very young infants. PLoS Biol, 13(9), e1002260. doi:10.1371/journal.pbio.1002260CrossRefGoogle ScholarPubMed
Bidet-Ildei, C., Kitromilides, E., Orliaguet, J. P., Pavlova, M., & Gentaz, E. (2014). Preference for point-light human biological motion in newborns: Contribution of translational displacement. Developmental Psychology, 50(1), 113–120. doi:10.1037/a0032956CrossRefGoogle ScholarPubMed
Birch, D. G., Birch, E. E., Hoffman, D. R., & Uauy, R. D. (1992). Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Investigative Ophthalmology & Visual Science, 33(8), 2365–2376.Google ScholarPubMed
Birch, E. E., Birch, D. G., Hoffman, D. R., & Uauy, R. (1992). Dietary essential fatty acid supply and visual acuity development. Investigative Ophthalmology & Visual Science, 33, 3242–3253.Google ScholarPubMed
Birch, E. E., Cheng, C., Stager, D. R., Weakley, D. R., & Stager, D. R. (2009). The critical period for surgical treatment of dense congenital bilateral cataracts. Journal of American Association for Pediatric Ophthalmology and Strabismus, 13(1), 67–71.CrossRefGoogle ScholarPubMed
Birch, E. E., Garfield, S., Castañeda, Y., Hughbanks-Wheaton, D., Uauy, R., & Hoffman, D. (2007). Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Human Development, 83(5), 279–284. doi:10.1016/j.earlhumdev.2006.11.003CrossRefGoogle Scholar
Birch, E. E., Gwiazda, J., & Held, R. (1982). Stereoacuity development for crossed and uncrossed disparities in human infants. Vision Research, 22(5), 507–513.CrossRefGoogle ScholarPubMed
Birtles, D. B., Braddick, O. J., Wattam-Bell, J., Wilkinson, A. R., & Atkinson, J. (2007). Orientation and motion-specific visual cortex responses in infants born preterm. Neuroreport, 18, 1975–1979. doi:10.1097/WNR.0b013e3282f228c8CrossRefGoogle ScholarPubMed
Blakemore, C. (1990). Maturation of mechanisms for efficient spatial vision. In Blakemore, C. (Ed.), Vision: Coding and efficiency (pp. 254–266). Cambridge, UK: Cambridge University Press.Google Scholar
Blakemore, C., & Vital-Durand, F. (1986). Organization and post-natal development of the monkey’s lateral geniculate nucleus. Journal of Physiology, 380(1), 453–491.CrossRefGoogle ScholarPubMed
Blakstad, E. W., Strømmen, K., Moltu, S. J., Wattam-Bell, J., Nordheim, T., Almaas, A. N., … Nakstad, B. (2015). Improved visual perception in very low birth weight infants on enhanced nutrient supply. Neonatology, 108(1), 30–37. doi:10.1159/000381660CrossRefGoogle ScholarPubMed
Bowering, E. R., Maurer, D., Lewis, T. L., & Brent, H. P. (1993). Sensitivity in the nasal and temporal hemifields in children treated for cataract. Investigative Ophthalmology & Visual Science, 34(13), 3501–3509.Google ScholarPubMed
Bowering, E. R., Maurer, D., Lewis, T. L., Brent, H. P., & Riedel, P. (1996). The visual field in childhood: Normal development and the influence of deprivation. Developmental Cognitive Neuroscience Technical Report, 96, 1–33.Google Scholar
Braddick, O., & Atkinson, J. (2011). Development of human visual function. Vision Research, 51(13), 1588–1609. doi:10.1016/j.visres.2011.02.018CrossRefGoogle ScholarPubMed
Braddick, O., Birtles, D., Wattam-Bell, J., & Atkinson, J. (2005). Motion- and orientation-specific cortical responses in infancy. Vision Research, 45(25–26), 3169–3179. doi:10.1016/j.visres.2005.07.021CrossRefGoogle ScholarPubMed
Braddick, O., Wattam-Bell, J., Day, J., & Atkinson, J. (1983). The onset of binocular function in human infants. Human Neurobiology, 2(2), 65–69.Google ScholarPubMed
Brenna, J. T., Varamini, B., Jensen, R. G., Diersen-Schade, D. A., Boettcher, J. A., & Arterburn, L. M. (2007). Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. American Journal of Clinical Nutrition, 85(6), 1457–1464.CrossRefGoogle ScholarPubMed
Brown, A. M., Lindsey, D. T., Cammenga, J. G., Giannone, P. J., & Stenger, M. R. (2015). The contrast sensitivity of the newborn human infant. Investigative Ophthalmology & Visual Science, 56(1), 625–632. doi:10.1167/iovs.14-14757CrossRefGoogle ScholarPubMed
Brown, A. M., Opoku, F. O., & Stenger, M. R. (2018). Neonatal contrast sensitivity and visual acuity: Basic psychophysics. Translational Vision Science & Technology, 7(3), 18. doi:10.1167/tvst.7.3.18CrossRefGoogle ScholarPubMed
Bushnell, I. W. R. (2001). Mother’s face recognition in newborn infants: Learning and memory. Infant and Child Development, 10(1–2), 67–74. doi:10.1002/icd.248CrossRefGoogle Scholar
Candy, T. R., Crowell, J. A., & Banks, M. S. (1998). Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate. Vision Research, 38(24), 3857–3870.CrossRefGoogle ScholarPubMed
Cashon, C. H., & Cohen, L. B. (2004). Beyond U-shaped development in infants’ processing of faces: An information-processing account. Journal of Cognition and Development, 5(1), 59–80.CrossRefGoogle Scholar
Cassia, V. M., Turati, C., & Simion, F. (2004). Can a nonspecific bias toward top-heavy patterns explain newborns’ face preference? Psychological Science, 15(6), 379–383. doi:10.1111/j.0956-7976.2004.00688.xGoogle ScholarPubMed
Cecchini, M., Iannoni, M. E., Aceto, P., Baroni, E., Di Vito, C., & Lai, C. (2017). Active sleep is associated with the face preference in the newborns who familiarized with a responsive face. Infant Behaviour and Development, 49, 37–45. doi:10.1016/j.infbeh.2017.06.004CrossRefGoogle ScholarPubMed
Chang, D. H., & Troje, N. F. (2009). Characterizing global and local mechanisms in biological motion perception. Journal of Vision, 9(5), 8.1–810. doi:10.1167/9.5.8CrossRefGoogle ScholarPubMed
Collignon, O., Dormal, G., de Heering, A., Lepore, F., Lewis, T. L., & Maurer, D. (2015). Long-lasting crossmodal cortical reorganization triggered by brief postnatal visual deprivation. Current Biology, 25(18), 2379–2383. doi:10.1016/j.cub.2015.07.036CrossRefGoogle ScholarPubMed
de Haan, M., Johnson, M. H., Maurer, D., & Perrett, D. I. (2001). Recognition of individual faces and average face prototypes by 1- and 3-month-old infants. Cognitive Development, 16(2), 659–678.CrossRefGoogle Scholar
de Heering, A., & Maurer, D. (2014). Face memory deficits in patients deprived of early visual input by bilateral congenital cataracts. Developmental Psychobiology, 56(1), 96–108. doi:10.1002/dev.21094CrossRefGoogle ScholarPubMed
de Heering, A., Turati, C., Rossion, B., Bulf, H., Goffaux, V., & Simion, F. (2008). Newborns’ face recognition is based on spatial frequencies below 0.5 cycles per degree. Cognition, 106(1), 444–454. doi:10.1016/j.cognition.2006.12.012CrossRefGoogle ScholarPubMed
Delaney, S. M., Dobson, V., Mohan, K. M., Harvey, M. A., & Harvey, E. M.(2004). The effect of flicker rate on nasal and temporal measured visual field extent in infants. Optometry and Vision Science, 81(12), 922–928.Google ScholarPubMed
Di Giorgio, E., Leo, I., Pascalis, O., & Simion, F. (2012). Is the face-perception system human-specific at birth. Developmental Psychology, 48(4), 1083–1090. doi:10.1037/a0026521CrossRefGoogle ScholarPubMed
Drover, J. R., Earle, A. E., Courage, M. L., & Adams, R. J. (2002). Improving the effectiveness of the infant contrast sensitivity card procedure. Optometry and Vision Science, 79(1), 52–59.CrossRefGoogle ScholarPubMed
Ellemberg, D., Lewis, T. L., Defina, N., Maurer, D., Brent, H. P., Guillemot, J. -P., & Lepore, F. (2005). Greater losses in sensitivity to second-order local motion than to first-order local motion after early visual deprivation in humans. Vision Research, 45(22), 2877–2884. doi:10.1016/j.visres.2004.11.019CrossRefGoogle ScholarPubMed
Ellemberg, D., Lewis, T. L., Liu, C. H., & Maurer, D. (1999). Development of spatial and temporal vision during childhood. Vision Research, 39(14), 2325–2333.CrossRefGoogle ScholarPubMed
Ellemberg, D., Lewis, T. L., Maurer, D., Brar, S., & Brent, H. P. (2002). Better perception of global motion after monocular than after binocular deprivation. Vision Research, 42(2), 169–179.CrossRefGoogle ScholarPubMed
Ellemberg, D., Lewis, T. L., Maurer, D., Lui, C. H., & Brent, H. P. (1999). Spatial and temporal vision in patients treated for bilateral congenital cataracts. Vision Research, 39(20), 3480–3489.CrossRefGoogle ScholarPubMed
Fair, J., Flom, R., Jones, J., & Martin, J. (2012). Perceptual learning: 12-month-olds’ discrimination of monkey faces. Child Development, 83(6), 1996–2006. doi:10.1111/j.1467-8624.2012.01814.xCrossRefGoogle ScholarPubMed
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140(3564), 296–297.CrossRefGoogle ScholarPubMed
Fantz, R. L., Ordy, J. M., & Udelf, M. S. (1962). Maturation of pattern vision in infants during the first six months. Journal of Comparative and Physiological Psychology, 55, 907–917.CrossRefGoogle Scholar
Farroni, T., Menon, E., & Johnson, M. H. (2006). Factors influencing newborns’ preference for faces with eye contact. Journal of Experimental Child Psychology, 95(4), 298–308. doi:10.1016/j.jecp.2006.08.001CrossRefGoogle ScholarPubMed
Ferguson, K. T., Kulkofsky, S., Cashon, C. H., & Casasola, M. (2009). The development of specialized processing of own-race faces in infancy. Infancy, 14(3), 263–284. doi:10.1080/15250000902839369CrossRefGoogle ScholarPubMed
Fine, I., Wade, A. R., Brewer, A. A., May, M. G., Goodman, D. F., Boynton, G. M., … MacLeod, D. I. (2003). Long-term deprivation affects visual perception and cortex. Nature Neuroscience, 6(9), 915–916.CrossRefGoogle ScholarPubMed
Frie, J., Padilla, N., Ådén, U., Lagercrantz, H., & Bartocci, M. (2016). Extremely preterm-born infants demonstrate different facial recognition processes at 6–10 months of corrected age. Journal of Pediatrics, 172, 96–102.e1. doi:10.1016/j.jpeds.2016.02.021CrossRefGoogle ScholarPubMed
Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179–192.CrossRefGoogle ScholarPubMed
Grady, C. L., Mondloch, C. J., Lewis, T. L., & Maurer, D. (2014). Early visual deprivation from congenital cataracts disrupts activity and functional connectivity in the face network. Neuropsychologia, 57, 122–139. doi:10.1016/j.neuropsychologia.2014.03.005CrossRefGoogle ScholarPubMed
Guerreiro, M. J. S., Putzar, L., & Röder, B. (2016). Persisting cross-modal changes in sight-recovery individuals modulate visual perception. Current Biology, 26(22), 3096–3100. doi:10.1016/j.cub.2016.08.069CrossRefGoogle ScholarPubMed
Gwiazda, J., Bauer, J., & Held, R. (1989). Binocular function in human infants: Correlation of stereoptic and fusion-rivalry discriminations. Journal of Pediatric Ophthalmology and Strabismus, 26(3), 128–132.Google ScholarPubMed
Hadad, B.-S., Maurer, D., & Lewis, T. L. (2012). Sparing of sensitivity to biological motion but not of global motion after early visual deprivation. Developmental Science, 15(4), 474–481. doi:10.1111/j.1467-7687.2012.01145.xCrossRefGoogle Scholar
Hainline, L. (1978). Developmental changes in visual scanning of face and nonface patterns by infants. Journal of Experimental Child Psychology, 25(1), 90–115.CrossRefGoogle ScholarPubMed
Haith, M. M., Bergman, T., & Moore, M. J. (1977). Eye contact and face scanning in early infancy. Science, 198(4319), 853–855.CrossRefGoogle ScholarPubMed
Hayden, A., Bhatt, R. S., Reed, A., Corbly, C. R., & Joseph, J. E. (2007). The development of expert face processing: Are infants sensitive to normal differences in second-order relational information? Journal of Experimental Child Psychology, 97(2), 85–98. doi:10.1016/j.jecp.2007.01.004CrossRefGoogle ScholarPubMed
Hensch, T. K., & Quinlan, E. M. (2018). Critical periods in amblyopia. Visual Neuroscience, 35, E014. doi:10.1017/S0952523817000219CrossRefGoogle ScholarPubMed
Heron-Delaney, M., Anzures, G., Herbert, J. S., Quinn, P. C., Slater, A. M., Tanaka, J. W., … Pascalis, O. (2011). Perceptual training prevents the emergence of the other race effect during infancy. PloS one, 6(5), e19858.CrossRefGoogle ScholarPubMed
Hoffman, D. R., Boettcher, J. A., & Diersen-Schade, D. A. (2009). Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins, Leukotrienes and Essential Fatty Acids, 81(2–3), 151–158. doi:10.1016/j.plefa.2009.05.003CrossRefGoogle ScholarPubMed
Hood, B., & Atkinson, J. (1993). Disengaging visual attention in the infant and adult. Infant Behaviour and Development, 16, 405–422.CrossRefGoogle Scholar
Hou, C., Norcia, A. M., Madan, A., Tith, S., Agarwal, R., & Good, W. V. (2011). Visual cortical function in very low birth weight infants without retinal or cerebral pathology. Investigative Ophthalmology & Visual Science, 52(12), 9091–9098. doi:10.1167/iovs.11–7458CrossRefGoogle ScholarPubMed
Humphrey, A. L., & Saul, A. B. (1998). Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. Journal of Neurophysiology, 80(6), 2991–3004.CrossRefGoogle ScholarPubMed
Huttenlocher, P. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517–527.CrossRefGoogle ScholarPubMed
Jayaraman, S., Fausey, C. M., & Smith, L. B. (2017). Why are faces denser in the visual experiences of younger than older infants? Developmental Psychology, 53(1), 38–49. doi:10.1037/dev0000230CrossRefGoogle ScholarPubMed
Jayaraman, S., & Smith, L. B. (2018). Faces in early visual environments are persistent not just frequent. Vision Research, 157, 213–221. doi:10.1016/j.visres.2018.05.005CrossRefGoogle Scholar
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6(10), 766–774. doi:10.1038/nrn1766CrossRefGoogle ScholarPubMed
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1–2), 1–19.CrossRefGoogle ScholarPubMed
Johnson, M. H., Senju, A., & Tomalski, P. (2015). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience Biobehavioral Review, 50, 169–179. doi:10.1016/j.neubiorev.2014.10.009CrossRefGoogle ScholarPubMed
Kelly, D. J., Liu, S., Ge, L., Quinn, P. C., Slater, A. M., Lee, K., … Pascalis, O. (2007). Cross-race preferences for same-race faces extend beyond the African versus Caucasian contrast in 3-month-old infants. Infancy, 11(1), 87–95. doi:10.1080/15250000709336871CrossRefGoogle ScholarPubMed
Kelly, D. J., Liu, S., Lee, K., Quinn, P. C., Pascalis, O., Slater, A. M., & Ge, L. (2009). Development of the other-race effect during infancy: Evidence toward universality? Journal of Experimental Child Psychology, 104(1), 105–114. doi:10.1016/j.jecp.2009.01.006CrossRefGoogle ScholarPubMed
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Ge, L., & Pascalis, O. (2007). The other-race effect develops during infancy: Evidence of perceptual narrowing. Psychological Science, 18(12), 1084–1089.CrossRefGoogle ScholarPubMed
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Gibson, A., Smith, M., … Pascalis, O. (2005). Three-month-olds, but not newborns, prefer own-race faces. Developmental Science, 8(6), F31–F36.CrossRefGoogle Scholar
Kiorpes, L. (2016). The puzzle of visual development: Behavior and neural limits. Journal of Neuroscience, 36(45), 11384–11393. doi:10.1523/JNEUROSCI.2937-16.2016CrossRefGoogle ScholarPubMed
Kodas, E., Galineau, L., Bodard, S., Vancassel, S., Guilloteau, D., Besnard, J. C., & Chalon, S. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. Journal of Neurochemistry, 89(3), 695–702. doi:10.1111/j.1471-4159.2004.02401.xCrossRefGoogle ScholarPubMed
Le Grand, R., Mondloch, C. J., Maurer, D., & Brent, H. P. (2001). Neuroperception: Early visual experience and face processing. Nature, 410(6831), 890.CrossRefGoogle ScholarPubMed
Le Grand, R., Mondloch, C. J., Maurer, D., (2003). Expert face processing requires visual input to the right hemisphere during infancy. Nature Neuroscience, 6(10), 1108–1112. doi:10.1038/nn1121CrossRefGoogle ScholarPubMed
Le Grand, R., Mondloch, C. J., Maurer, D., (2004). Impairment in holistic face processing following early visual deprivation. Psychological Science, 15(11), 762–768.CrossRefGoogle ScholarPubMed
Lewis, T. L., Ellemberg, D., Maurer, D., Wilkinson, F., Wilson, H. R., Dirks, M., & Brent, H. P. (2002). Sensitivity to global form in glass patterns after early visual deprivation in humans. Vision Research, 42(8), 939–948.CrossRefGoogle ScholarPubMed
Lewis, T. L., & Maurer, D. (1992). The development of the temporal and nasal visual fields during infancy. Vision Research, 32(5), 903–911.CrossRefGoogle ScholarPubMed
Lewis, T. L., (2009). Effects of early pattern deprivation on visual development. Optometry and Vision Science, 86(6), 640–646. doi:10.1097/OPX.0b013e3181a7296bCrossRefGoogle ScholarPubMed
Lewis, T. L., Maurer, D., & Brent, H. P. (1995). Development of grating acuity in children treated for unilateral or bilateral congenital cataract. Investigative Ophthalmology & Visual Science, 36(10), 2080–2095.Google ScholarPubMed
Lewis, T. L., Maurer, D., Tytla, M. E., Bowering, E. R., & Brent, H. P. (1992). Vision in the “good” eye of children treated for unilateral congenital cataract. Ophthalmology, 99(7), 1013–1017.CrossRefGoogle ScholarPubMed
MacKay, T. L., Jakobson, L. S., Ellemberg, D., Lewis, T. L., Maurer, D., & Casiro, O. (2005). Deficits in the processing of local and global motion in very low birthweight children. Neuropsychologia, 43(12), 1738–1748. doi:10.1016/j.neuropsychologia.2005.02.008CrossRefGoogle ScholarPubMed
Markant, J., Oakes, L. M., & Amso, D. (2016). Visual selective attention biases contribute to the other-race effect among 9-month-old infants. Developmental Psychobiology, 58(3), 355–365. doi:10.1002/dev.21375CrossRefGoogle ScholarPubMed
Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(6), 255–260.CrossRefGoogle ScholarPubMed
Maurer, D., & Lewis, T. L. (1998). Overt orienting toward peripheral stimuli: Normal development and underlying mechanisms. In Richards, J. (Ed.), Cognitive neuroscience of attention: A developmental perspective (pp. 51–102). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Maurer, D., Lewis, T. L., Brent, H. P., & Levin, A. V. (1999). Rapid improvement in the acuity of infants after visual input. Science, 286(5437), 108–110.CrossRefGoogle ScholarPubMed
Maurer, D., & Martello, M. (1980). The discrimination of orientation by young infants. Vision Research, 20, 201–204.CrossRefGoogle ScholarPubMed
Maurer, D., Mondloch, C. J., & Lewis, T. L. (2007). Sleeper effects. Developmental Science, 10(1), 40–47. doi:10.1111/j.1467-7687.2007.00562.xCrossRefGoogle ScholarPubMed
Maurer, D., & Salapatek, P. (1976). Developmental changes in the scanning of faces by young infants. Child Development, 47, 523–527.CrossRefGoogle ScholarPubMed
Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison of language and faces. Developmental Psychobiology, 56(2), 154–178. doi:10.1002/dev.21177CrossRefGoogle ScholarPubMed
Mayer, D. L., Beiser, A. S., Warner, A. F., Pratt, E. M., Raye, K. N., & Lang, J. M. (1995). Monocular acuity norms for the Teller Acuity Cards between ages one month and four years. Investigative Ophthalmology & Visual Science, 36(3), 671–685.Google ScholarPubMed
Mondloch, C. J., Le Grand, R., & Maurer, D. (2002). Configural face processing develops more slowly than featural face processing. Perception, 31(5), 553–566. doi:10.1068/p3339CrossRefGoogle ScholarPubMed
Mondloch, C. J., Le Grand, R., & Maurer, D. (2003). Early visual experience is necessary for the development of some – but not all – aspects of face processing. In Pascalis, O. & Slater, A. (Eds.), The development of face processing in infancy and early childhood (pp. 99–117). New York, NY: Nova Science.Google Scholar
Mondloch, C. J., Lewis, T. L., Budreau, D. R., Maurer, D., Dannemiller, J. L., Stephens, B. R., & Kleiner-Gathercoal, K. A. (1999). Face perception during early infancy. Psychological Science, 10(5), 419–422.CrossRefGoogle Scholar
Mondloch, C. J., Lewis, T. L., Levin, A. V., & Maurer, D. (2013). Infant face preferences after binocular visual deprivation. International Journal of Behavioral Development, 37(2), 148–153. doi:10.1177/0165025412471221CrossRefGoogle Scholar
Mondloch, C. J., & Maurer, D. (2008). The effect of face orientation on holistic processing. Perception, 37(8), 1175. doi:10.1068/p6048CrossRefGoogle ScholarPubMed
Mondloch, C. J., Robbins, R., & Maurer, D. (2010). Discrimination of facial features by adults, 10-year-olds, and cataract-reversal patients. Perception, 39(2), 184–194. doi:10.1068/p6153CrossRefGoogle ScholarPubMed
Mondloch, C. J., Segalowitz, S. J., Lewis, T. L., Dywan, J., Le Grand, R., & Maurer, D. (2013). The effect of early visual deprivation on the development of face detection. Developmental Science, 16(5), 728–742. doi:10.1111/desc.12065CrossRefGoogle ScholarPubMed
Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98, 164–181.CrossRefGoogle ScholarPubMed
Movshon, J. A., & Kiorpes, L. (1993). Biological limits on visual development in primates. In Simons, K. (Ed.), Early visual development: normal and abnormal (pp. 296–305). New York, NY: Oxford University Press.Google Scholar
Nakato, E., Kanazawa, S., & Yamaguchi, M. K. (2018). Holistic processing in mother’s face perception for infants. Infant Behaviour and Development, 50, 257–263. doi:10.1016/j.infbeh.2018.01.007CrossRefGoogle ScholarPubMed
Orioli, G., Filippetti, M. L., Gerbino, W., Dragovic, D., & Farroni, T. (2018). Trajectory discrimination and peripersonal space perception in newborns. Infancy, 23(2), 252–267. doi:10.1111/infa.12207CrossRefGoogle ScholarPubMed
Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life? Science, 296(5571), 1321–1323.CrossRefGoogle ScholarPubMed
Pascalis, O., de Schonen, S., Morton, J., Deruelle, C., & Fabre-Gremet, M. (1995). Mother’s face recognition by neonates: A replication and an extension. Infant Behaviour and Development, 18, 79–85.CrossRefGoogle Scholar
Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., & Nelson, C. A. (2005). Plasticity of face processing in infancy. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 5297–5300.CrossRefGoogle ScholarPubMed
Pasternak, T., & Leinen, L. J. (1986). Pattern and motion vision in cats with selective loss of cortical directional selectivity. Journal of Neuroscience, 6(4), 938–945.CrossRefGoogle ScholarPubMed
Pereira, S. A., Pereira Junior, A., Costa, M. F., Monteiro, M. V., Almeida, V. A., Fonseca Filho, G. G., … Simion, F. (2017). A comparison between preterm and full-term infants’ preference for faces. Journal of Pediatrics (Rio J), 93(1), 35–39. doi:10.1016/j.jped.2016.04.009CrossRefGoogle ScholarPubMed
Quinn, P. C., Uttley, L., Lee, K., Gibson, A., Smith, M., Slater, A. M., & Pascalis, O. (2008). Infant preference for female faces occurs for same- but not other-race faces. Journal of Neuropsychology, 2(Pt. 1), 15–26.CrossRefGoogle Scholar
Quinn, P. C., Yahr, J., Kuhn, A., Slater, A. M., & Pascalils, O. (2002). Representation of the gender of human faces by infants: a preference for female. Perception, 31(9), 1109–1121.CrossRefGoogle ScholarPubMed
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27(12), 1825–1828.e3. doi:10.1016/j.cub.2017.05.044CrossRefGoogle ScholarPubMed
Renier, L., de Volder, A. G., & Rauschecker, J. P. (2014). Cortical plasticity and preserved function in early blindness. Neuroscience and Biobehaviour Reviews, 41, 53–63. doi:10.1016/j.neubiorev.2013.01.025CrossRefGoogle ScholarPubMed
Rhodes, G., & Jeffery, L. (2006). Adaptive norm-based coding of facial identity. Vision Research, 46(18), 2977–2987. doi:10.1016/j.visres.2006.03.002CrossRefGoogle ScholarPubMed
Robbins, R. A., Nishimura, M., Mondloch, C. J., Lewis, T. L., & Maurer, D. (2010). Deficits in sensitivity to spacing after early visual deprivation in humans: A comparison of human faces, monkey faces, and houses. Developmental Psychobiology, 52(8), 775–781. doi:10.1002/dev.20473CrossRefGoogle ScholarPubMed
Sai, F. Z. (2005). The role of the mother’s voice in developing mother’s face preference: Evidence for intermodal perception at birth. Infant and Child Development, 14(1), 29–50. doi:10.1002/icd.376CrossRefGoogle Scholar
Salapatek, P., & Kessen, W. (1966). Visual scanning of triangles by the human newborn. Journal of Experimental Child Psychology, 3(2), 155–167.CrossRefGoogle ScholarPubMed
Sangrigoli, S., Pallier, C., Argenti, A. M., Ventureyra, V. A., & de Schonen, S. (2005). Reversibility of the other-race effect in face recognition during childhood. Psychological Science, 16(6), 440–444.Google ScholarPubMed
Scott, L. S., & Monesson, A. (2009). The origin of biases in face perception. Psychological Science, 20(6), 676–680. doi:10.1111/j.1467-9280.2009.02348.xCrossRefGoogle ScholarPubMed
Sifre, R., Olson, L., Gillespie, S., Klin, A., Jones, W., & Shultz, S. (2018). A longitudinal investigation of preferential attention to biological motion in 2- to 24-month-old infants. Scientific Reports, 8(1), 2527. doi:10.1038/s41598-018-20808-0CrossRefGoogle ScholarPubMed
Simion, F., & Giorgio, E. D. (2015). Face perception and processing in early infancy: Inborn predispositions and developmental changes. Frontiers in Psychology, 6, 969. doi:10.3389/fpsyg.2015.00969CrossRefGoogle ScholarPubMed
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences of the United States of America, 195, 809–813.CrossRefGoogle Scholar
Simpson, E. A., Varga, K., Frick, J. E., & Fragaszy, D. (2011). Infants experience perceptual narrowing for nonprimate faces. Infancy, 16, 318–330.CrossRefGoogle ScholarPubMed
Siu, C. R., & Murphy, K. M. (2018). The development of human visual cortex and clinical implications. Eye Brain, 10, 25–36. doi:10.2147/EB.S130893CrossRefGoogle ScholarPubMed
Sugden, N. A., & Marquis, A. R. (2017). Meta-analytic review of the development of face discrimination in infancy: Face race, face gender, infant age, and methodology moderate face discrimination. Psychological Bulletin, 143(11), 1201–1244. doi:10.1037/bul0000116CrossRefGoogle ScholarPubMed
Sugden, N. A., Mohamed-Ali, M. I., & Moulson, M. C. (2014). I spy with my little eye: Typical, daily exposure to faces documented from a first-person infant perspective. Developmental Psychobiology, 56(2), 249–261. doi:10.1002/dev.21183CrossRefGoogle ScholarPubMed
Sugden, N. A., & Moulson, M. C. (2017). Hey baby, what’s “up”? One- and 3-month-olds experience faces primarily upright but non-upright faces offer the best views. Quarterly Journal of Experimental Psychology (Hove), 70(5), 959–969. doi:10.1080/17470218.2016.1154581CrossRefGoogle ScholarPubMed
Taylor, N. M., Jakobson, L. S., Maurer, D., & Lewis, T. L. (2009). Differential vulnerability of global motion, global form, and biological motion processing in full-term and preterm children. Neuropsychologia, 47(13), 2766–2778. doi:10.1016/j.neuropsychologia.2009.06.001CrossRefGoogle ScholarPubMed
Turati, C., Bulf, H., & Simion, F. (2008). Newborns’ face recognition over changes in viewpoint. Cognition, 106(3), 1300–1321. doi:10.1016/j.cognition.2007.06.005CrossRefGoogle ScholarPubMed
Turati, C., Di Giorgio, E., Bardi, L., & Simion, F. (2010). Holistic face processing in newborns, 3-month-old infants, and adults: Evidence from the composite face effect. Child Development, 81(6), 1894–1905. doi:10.1111/j.1467-8624.2010.01520.xCrossRefGoogle ScholarPubMed
Turati, C., Macchi Cassia, V., Simion, F., & Leo, I. (2006). Newborns’ face recognition: Role of inner and outer facial features. Child Development, 77(2), 297–311. doi:10.1111/j.1467-8624.2006.00871.xCrossRefGoogle ScholarPubMed
Turati, C., Valenza, E., Leo, I., & Simion, F. (2005). Three-month-olds’ visual preference for faces and its underlying visual processing mechanisms. Journal of Experimental Child Psychology, 90(3), 255–273. doi:10.1016/j.jecp.2004.11.001CrossRefGoogle ScholarPubMed
Tytla, M. E., Lewis, T. L., Maurer, D., & Brent, H. P. (1993). Stereopsis after congenital cataract. Investigative Ophthalmology & Visual Science, 34(5), 1767–1773.Google ScholarPubMed
Uttley, L., de Boisferon, A. H., Dupierrix, E., Lee, K., Quinn, P. C., Slater, A. M., & Pascalis, O. (2013). Six-month-old infants match other-race faces with a non-native language. International Journal of Behavioral Development, 37(2), 84–89. doi:10.1177/0165025412467583CrossRefGoogle Scholar
Ventureyra, V. A. G., Pallier, C., & Yoo, H. -Y. (2004). The loss of first language phonetic perception in adopted Koreans. Journal of Neurolinguistics, 17(1), 79–91. doi:10.1016/S0911-6044(03)00053-8CrossRefGoogle Scholar
Vogel, M., Monesson, A., & Scott, L. S. (2012). Building biases in infancy: The influence of race on face and voice emotion matching. Developmental Science, 15(3), 359–372. doi:10.1111/j.1467-7687.2012.01138.xCrossRefGoogle ScholarPubMed
Vogelsang, L., Gilad-Gutnick, S., Ehrenberg, E., Yonas, A., Diamond, S., Held, R., & Sinha, P. (2018). Potential downside of high initial visual acuity. Proceedings of the National Academy of Sciences of the United States of America, 115(44), 11333–11338. doi:10.1073/pnas.1800901115CrossRefGoogle ScholarPubMed
von Hofsten, O., von Hofsten, C., Sulutvedt, U., Laeng, B., Brennen, T., & Magnussen, S. (2014). Simulating newborn face perception. Journal of Vision, 14(13), 16. doi:10.1167/14.13.16CrossRefGoogle ScholarPubMed
Warner, C. E., Kwan, W. C., & Bourne, J. A. (2012). The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. Journal of Neuroscience, 32(48), 17073–17085. doi:10.1523/JNEUROSCI.3269-12.2012CrossRefGoogle ScholarPubMed
Wattam-Bell, J. (1991). Development of motion-specific cortical responses in infancy. Vision Research, 31(2), 287–297.CrossRefGoogle ScholarPubMed
Wattam-Bell, J. (1996a). Visual motion processing in one-month-old infants: Habituation experiments. Vision Research, 36(11), 1679–1685.CrossRefGoogle ScholarPubMed
Wattam-Bell, J. (1996b). Visual motion processing in one-month-old infants: Preferential looking experiments. Vision Research, 36(11), 1671–1677.CrossRefGoogle ScholarPubMed
Wattam-Bell, J., Birtles, D., Nyström, P., von Hofsten, C., Rosander, K., Anker, S., … Braddick, O. (2010). Reorganization of global form and motion processing during human visual development. Current Biology, 20(5), 411–415. doi:10.1016/j.cub.2009.12.020CrossRefGoogle ScholarPubMed
Weinacht, S., Kind, C., Mönting, J. S., & Gottlob, I. (1999). Visual development in preterm and full-term infants: A prospective masked study. Investigative Ophthalmology & Visual Science, 40(2), 346–353.Google ScholarPubMed
Williams, C., Birch, E. E., Emmett, P. M., & Northstone, K. (2001). Stereoacuity at age 3.5 y in children born full-term is associated with prenatal and postnatal dietary factors: A report from a population-based cohort study. American Journal of Clinical Nutrition, 73(2), 316–322. doi:10.1093/ajcn/73.2.316CrossRefGoogle Scholar
Young, A. W., Hellawell, D., & Hay, D. C. (2013). Configurational information in face perception. Perception, 42(11), 1166–1178.CrossRefGoogle ScholarPubMed
References
Abrams, S. M., Field, T., Scafidi, F., & Prodromidis, M. (1995). Newborns of depressed mothers. Infant Mental Health Journal, 16(3), 233–239.3.0.CO;2-1>CrossRefGoogle Scholar
Aktar, E., Mandell, D. J., de Vente, W., Majdandžić, M., Raijmakers, M. E., & Bögels, S. M. (2016). Infants’ temperament and mothers’, and fathers’ depression predict infants’ attention to objects paired with emotional faces. Journal of Abnormal Child Psychology, 44(5), 975–990.CrossRefGoogle ScholarPubMed
Amso, D., Fitzgerald, M., Davidow, J., Gilhooly, T., & Tottenham, N. (2010). Visual exploration strategies and the development of infants’ facial emotion discrimination. Frontiers in Psychology, 1, 180.CrossRefGoogle ScholarPubMed
Amso, D., Haas, S., & Markant, J. (2014). An eye-tracking investigation of developmental change in bottom-up attention orienting to faces in cluttered natural scenes. PLoS One, 9(1), e85701.CrossRefGoogle ScholarPubMed
Amso, D., & Johnson, S. P. (2006). Learning by selection: Visual search and object perception in young infants. Developmental Psychology, 42, 1236–1245. doi: 10.1037/0012-1649.42.6.1236CrossRefGoogle ScholarPubMed
Amso, D., & Lynn, A. (2017). Distinctive mechanisms of adversity and socioeconomic inequality in child development: A review and recommendations for evidence-based policy. Policy Insights from the Behavioral and Brain Sciences, 4(2), 139–146.CrossRefGoogle ScholarPubMed
Amso, D., & Scerif, G. (2015). The attentive brain: Insights from developmental cognitive neuroscience. Nature Reviews Neuroscience, 16(10), 606.CrossRefGoogle ScholarPubMed
Aslin, R. N. (2007). What’s in a look? Developmental Science, 10(1), 48–53. doi: 10.1111/j.1467-7687.2007.00563.xCrossRefGoogle ScholarPubMed
Aslin, R. N. (2012). Infant eyes: A window on cognitive development. Infancy, 17(1), 126–140. doi: 10.1111/j.1532-7078.2011.00097.xCrossRefGoogle ScholarPubMed
Atkinson, J., Braddick, O., & Moar, K. (1977). Development of contrast sensitivity over the first 3 months of life in the human infant. Vision Research, 17(9), 1037–1044.CrossRefGoogle ScholarPubMed
Baillargeon, R. (1987). Object permanence in 3½- and 4½-month-old infants. Developmental Psychology, 23(5), 655–664. doi: 10.1037/0012-1649.23.5.655CrossRefGoogle Scholar
Baillargeon, R. (2002). The acquisition of physical knowledge in infancy: A summary in eight lessons. In Goswami, U. (Ed.), The Blackwell handbook of childhood cognitive development (Vol. 1, pp. 46–83). Malden, MA: Blackwell.Google Scholar
Bertenthal, B., & von Hofsten, C. (1998). Eye, head and trunk control: The foundation for manual development. Neuroscience & Biobehavioral Reviews, 22(4), 515–520.CrossRefGoogle ScholarPubMed
Bornstein, M. H., Mash, C., Arterberry, M. E., & Manian, N. (2012). Object perception in 5-month-old infants of clinically depressed and nondepressed mothers. Infant Behavior and Development, 35(1), 150–157.CrossRefGoogle ScholarPubMed
Braddick, O. J., Wattam-Bell, J., & Atkinson, J. (1986). Orientation-specific cortical responses develop in early infancy. Nature, 320(6063), 617–619.CrossRefGoogle ScholarPubMed
Bradley, R., & Corwyn, R. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371–399. doi: 10.1146/annurev.psych.53.100901.135233CrossRefGoogle ScholarPubMed
Breznitz, Z., & Friedman, S. L. (1988). Toddlers’ concentration: Does maternal depression make a difference? Journal of Child Psychology and Psychiatry, 29(3), 267–279.CrossRefGoogle Scholar
Bronson, G. W. (1990). Changes in infants’ visual scanning across the 2- to 14-week age period. Journal of Experimental Child Psychology, 49, 101–125.CrossRefGoogle ScholarPubMed
Bulf, H., & Valenza, E. (2013). Object-based visual attention in 8-month-old infants: Evidence from an eye-tracking study. Developmental Psychology, 49(10), 1909–1918. doi: 10.1037/a0031310CrossRefGoogle ScholarPubMed
Bushnell, I. W. R. (2001). Mother’s face recognition in newborn infants: Learning and memory. Infant and Child Development, 10(1–2), 67–74. doi: 10.1002/icd.248CrossRefGoogle Scholar
Canfield, R. L., & Haith, M. M. (1991). Young infants’ visual expectations for symmetric and asymmetric stimulus sequences. Developmental Psychology, 27, 198–208.CrossRefGoogle Scholar
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525.CrossRefGoogle ScholarPubMed
Casey, B. J., & Richards, J. E. (1988). Sustained visual attention in young infants measured with an adapted version of the visual preference paradigm. Child Development, 59(6), 1514–1521.CrossRefGoogle ScholarPubMed
Clearfield, M. W., & Jedd, K. E. (2012). The effects of socio-economic status on infant attention. Infant and Child Development, 22(1), 53–67. doi: 10.1002/icd.1770CrossRefGoogle Scholar
Cohen, L. B., & Cashon, C. H. (2003). Infant perception and cognition. In Lerner, R. M., Easterbrooks, M. A., & Mistry, J. (Eds.), Handbook of psychology: Developmental psychology (Vol. 6, pp. 65–89). Hoboken, NJ: John Wiley & Sons.Google Scholar
Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 52(1), 337–367. doi: 10.1146/annurev.psych.52.1.337CrossRefGoogle ScholarPubMed
Colombo, J., & Cheatham, C. L. (2006). The emergence and basis of endogenous attention in infancy and early childhood. Advances in Child Development and Behavior, 34, 283.CrossRefGoogle ScholarPubMed
Colombo, J., Mitchell, D. W., Coldren, J. T., & Freeseman, L. J. (1991). Individual differences in infant visual attention: Are short lookers faster processors or feature processors? Child Development, 62(6), 1247–1257. doi: 10.1111/j.1467–8624.1991.tb01603.xCrossRefGoogle ScholarPubMed
Courage, M. L., Reynolds, G. D., & Richards, J. E. (2006). Infants’ attention to patterned stimuli: Developmental change from 3 to 12 months of age. Child Development, 77(3), 680–695.CrossRefGoogle ScholarPubMed
Courchesne, E., Ganz, L., & Norcia, A. M. (1981). Event-related brain potentials to human faces in infants. Child Development, 52(3), 804–811.CrossRefGoogle ScholarPubMed
Csibra, G., & Volein, A. (2008). Infants can infer the presence of hidden objects from referential gaze information. British Journal of Developmental Psychology, 26, 1–11.CrossRefGoogle Scholar
Dannemiller, J. L. (2005). Motion popout in selective visual orienting at 4.5 but not at 2 months in human infants. Infancy, 8(3), 201–216.CrossRefGoogle Scholar
de Boer, T., Scott, L. S., & Nelson, C. A. (2007). Methods for acquiring and analyzing infant event-related potentials. In de Haan, M. (Ed.), Infant EEG and event-related potentials (pp. 5–37). New York, NY: Psychology Press.Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Reviews of Neuroscience, 18, 193–222. doi: 10.1016/j.cub.2014.02.049CrossRefGoogle ScholarPubMed
DiPietro, J. A., Bornstein, M. H., Hahn, C. S., Costigan, K., & Achy-Brou, A. (2007). Fetal heart rate and variability: Stability and prediction to developmental outcomes in early childhood. Child Development, 78(6), 1788–1798.Google ScholarPubMed
Ellis, A. E., Xiao, N. G., Lee, K., & Oakes, L. M. (2017). Scanning of own- versus other-race faces in infants from racially diverse or homogenous communities. Developmental Psychobiology, 59(5), 613–627. doi: 10.1002/dev.21527CrossRefGoogle ScholarPubMed
Elsabbagh, M., Volein, A., Holmboe, K., Tucker, L., Csibra, G., Baron-Cohen, S., … Johnson, M. H. (2009). Visual orienting in the early broader autism phenotype: Disengagement and facilitation. Journal of Child Psychology and Psychiatry, 50(5), 637–642.CrossRefGoogle ScholarPubMed
Emberson, L. L., & Amso, D. (2012). Learning to sample: Eye tracking and fMRI indices of changes in object perception. Journal of Cognitive Neuroscience, 24, 2030–2042. doi: 10.1162/jocn_a_00259CrossRefGoogle ScholarPubMed
Fair, J., Flom, R., Jones, J., & Martin, J. (2012). Perceptual learning: 12-month-olds’ discrimination of monkey faces. Child Development, 83(6), 1996–2006.Google ScholarPubMed
Fantz, R. L. (1956). A method for studying early visual development. Perceptual and Motor Skills, 6, 13–15. doi: 10.2466/pms.1956.6.g.13CrossRefGoogle Scholar
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140(3564), 296–297. doi: 10.1126/science.140.3564.296CrossRefGoogle ScholarPubMed
Farroni, T., Massaccesi, S., Pividori, D., & Johnson, M. H. (2004). Gaze following in newborns. Infancy, 5, 39–60.CrossRefGoogle Scholar
Field, T., Healy, B., & LeBlanc, W. G. (1989). Sharing and synchrony of behavior states and heart rate in nondepressed versus depressed mother–infant interactions. Infant Behavior and Development, 12(3), 357–376.CrossRefGoogle Scholar
Franchak, J. M., & Adolph, K. E. (2010). Visually guided navigation: Head-mounted eye-tracking of natural locomotion in children and adults. Vision Research, 50(24), 2766–2774. doi: 10.1016/j.visres.2010.09.024CrossRefGoogle ScholarPubMed
Frank, M. C., Amso, D., & Johnson, S. P. (2014). Visual search and attention to faces during early infancy. Journal of Experimental Child Psychology, 118(1), 13–26. doi: 10.1016/j.jecp.2013.08.012CrossRefGoogle ScholarPubMed
Frank, M. C., Vul, E., & Johnson, S. P. (2009). Development of infants’ attention to faces during the first year. Cognition, 110, 160–170.CrossRefGoogle ScholarPubMed
Frick, J. E., & Richards, J. E. (2001). Individual differences in infants’ recognition of briefly presented visual stimuli. Infancy, 2(3), 331–352. doi: 10.1207/S15327078IN0203_3CrossRefGoogle Scholar
Gaither, S. E., Pauker, K., & Johnson, S. P. (2012). Biracial and monoracial infant own-race face perception: An eye-tracking study. Developmental Science, 15(6), 775–782.Google Scholar
Gibson, E. (2000). Perceptual learning in development: Some basic concepts. Ecological Psychology, 12(4), 295–302. doi: 10.1207/S15326969ECO1204_04CrossRefGoogle Scholar
Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54(5), 677–696.CrossRefGoogle ScholarPubMed
Grunau, R. E., Weinberg, J., & Whitfield, M. F. (2004). Neonatal procedural pain and preterm infant cortisol response to novelty at 8 months. Pediatrics, 114(1), e77-e84.Google ScholarPubMed
Grunau, R. E., Whitfield, M. F., & Fay, T. B. (2004). Psychosocial and academic characteristics of extremely low birth weight (≤ 800 g) adolescents who are free of major impairment compared with term-born control subjects. Pediatrics, 114(6), e725-e732.CrossRefGoogle Scholar
Haith, M. M. (1980). Rules that babies look by: The organization of newborn visual activity. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experiences of young American children. Baltimore, MD: Paul H. Brookes.Google Scholar
Hoehl, S., Reid, V. M., Mooney, J., & Striano, T. (2008). What are you looking at? Infants’ neural processing of an adult’s object-directed eye gaze. Developmental Science, 11, 10–16.CrossRefGoogle ScholarPubMed
Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford: Oxford University Press.Google Scholar
Hood, B. M. (1995). Visual selective attention in the human infant: A neuroscientific approach. In Rovee-Collier, C. & Lipsitt, L. (Eds.), Advances in infancy research (Vol. 9, pp. 163–216). Norwood, NJ: Ablex.Google Scholar
Hood, B. M., Willen, J. D., & Driver, J. (1998). Adult’s eyes trigger shifts of visual attention in human infants. Psychological Science, 9(2), 131–134. doi: 10.1111/1467–9280.00024CrossRefGoogle Scholar
Hurley, K. B., & Oakes, L. M. (2015). Experience and distribution of attention: Pet exposure and infants’ scanning of animal images. Journal of Cognition and Development, 16(1), 11–30. doi: 10.1080/15248372.2013.833922CrossRefGoogle ScholarPubMed
Hutchinson, E. A., de Luca, C. R., Doyle, L. W., Roberts, G., & Anderson, P. J. (2013). School-age outcomes of extremely preterm or extremely low birth weight children. Pediatrics, 131(4), e1053–e1061. doi: 10.1542/peds.2012–2311CrossRefGoogle ScholarPubMed
Hwang, K., Velanova, K., & Luna, B. (2010). Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: A functional magnetic resonance imaging effective connectivity study. Journal of Neuroscience, 30(46), 15535–15545. doi: 10.1523/JNEUROSCI.2825-10.2010CrossRefGoogle ScholarPubMed
Jankowski, J. J., Rose, S. A., & Feldman, J. F. (2001). Modifying the distribution of attention in infants. Child Development, 72(2), 339–351. doi: 10.1111/1467–8624.00282CrossRefGoogle ScholarPubMed
Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience, 2, 81–95. doi: 10.1162/jocn.1990.2.2.81CrossRefGoogle ScholarPubMed
Johnson, M. H. (1995). The inhibition of automatic saccades in early infancy. Developmental Psychobiology, 28, 281–291. doi: 10.1002/dev.420280504CrossRefGoogle ScholarPubMed
Johnson, M. H., Posner, M. I., & Rothbart, M. K. (1991). Components of visual orienting in early infancy: Contingency learning, anticipatory looking, and disengaging. Journal of Cognitive Neuroscience, 3, 335–344. doi: 10.1162/jocn.1991.3.4.335CrossRefGoogle ScholarPubMed
Johnson, S. P., Amso, D., & Slemmer, J. A. (2003). Development of object concepts in infancy: Evidence for early learning in an eye-tracking paradigm. Proceedings of the National Academy of Sciences, 100(18), 10568–10573. doi: 10.1073/pnas.1630655100CrossRefGoogle Scholar
Johnson, S. P., Slemmer, J. A., & Amso, D. (2004). Where infants look determines how they see: Eye movements and object perception performance in 3-month-olds. Infancy, 6, 185–201.CrossRefGoogle Scholar
Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature, 504(7480), 427.CrossRefGoogle ScholarPubMed
Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198, 1264–1267.CrossRefGoogle ScholarPubMed
Káldy, Z., & Leslie, A. M. (2003). Identification of objects in 9-month-old infants: integrating “what” and “where” information. Developmental Science, 6, 360–373.CrossRefGoogle Scholar
Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147.CrossRefGoogle ScholarPubMed
Konrad, K., Neufang, S., Thiel, C. M., Specht, K., Hanisch, C., Fan, J., … Fink, G. R. (2005). Development of attentional networks: An fMRI study with children and adults. NeuroImage, 28(2), 429–439.CrossRefGoogle ScholarPubMed
Kramer, M. S., Goulet, L., Lydon, J., Seguin, L., McNamara, H., Dassa, C., … Koren, G. (2001). Socio-economic disparities in preterm birth: Casual pathways and mechanisms. Pediatric and Perinatal Epidemiology, 15(Suppl. 2), 104–123.CrossRefGoogle Scholar
Kretch, K. S., Franchak, J. M., & Adolph, K. E. (2014). Crawling and walking infants see the world differently. Child Development, 85(4), 1503–1518. doi: 10.1111/cdev.12206CrossRefGoogle ScholarPubMed
Kuhlmeier, V., Wynn, K., & Bloom, P. (2003). Attribution of dispositional states by 12-month-olds. Psychological Science, 14(5), 402–408. doi: 10.1111/1467–9280.01454CrossRefGoogle ScholarPubMed
Lancaster, C. A., Gold, K. J., Flynn, H. A., Yoo, H., Marcus, S. M., & Davis, M. M. (2010 ). Risk factors for depressive symptoms during pregnancy: A systematic review. American Journal of Obstetrics and Gynecology, 202, 5–14. doi: 10.1016/j.ajog.2009.09.007CrossRefGoogle ScholarPubMed
Lawson, K. R., & Ruff, H. A. (2004). Early focused attention predicts outcome for children born prematurely. Journal of Developmental & Behavioral Pediatrics, 25(6), 399–406.CrossRefGoogle ScholarPubMed
Leppänen, J. M., Cataldo, J. K., Bosquet Enlow, M., & Nelson, C. A. (2018). Early development of attention to threat-related facial expressions. PLoS One, 13(5), e0197424. doi: 10.1371/journal.pone.0197424CrossRefGoogle ScholarPubMed
Lewis, M., & Brooks-Gunn, J. (1981). Visual attention at three months as a predictor of cognitive functioning at two years of age. Intelligence, 5(2), 131–140.CrossRefGoogle Scholar
Lloyd-Fox, S., Blasi, A., & Elwell, C.E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience & Biobehavioral Reviews, 34(3), 269–284.CrossRefGoogle ScholarPubMed
Markant, J., Ackerman, L. K., Nussenbaum, K., & Amso, D. (2016). Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants. Developmental Cognitive Neuroscience, 18, 26–33.CrossRefGoogle ScholarPubMed
Markant, J., & Amso, D. (2013). Selective memories: Infants’ encoding is enhanced in selection via suppression. Developmental Science, 16, 926–940.Google ScholarPubMed
Johnson, M. H. (2014). Leveling the playing field: Attention mitigates the effect of IQ on memory. Cognition, 131(2), 195–204.Google Scholar
Johnson, M. H. (2016). The development of selective attention orienting is an agent of change in learning and memory efficacy. Infancy, 21(2), 154–176.Google Scholar
Markant, J., Oakes, L. M., & Amso, D. (2016). Visual selective attention biases contribute to the other-race effect among 9-month-old infants. Developmental Psychobiology, 58(3), 355–365.CrossRefGoogle ScholarPubMed
Markant, J., Worden, M. S., & Amso, D. (2015). Not all attention orienting is created equal: Recognition memory is enhanced when attention orienting involves distractor suppression. Neurobiology of Learning and Memory, 120, 28–40. doi: 10.1016/j.nlm.2015.02.006CrossRefGoogle ScholarPubMed
McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53(2), 185–204. doi: 10.1037/0003-066X.53.2.185CrossRefGoogle ScholarPubMed
Mundy, P. (2003). Annotation: The neural basis of social impairments in autism – the role of the dorsal medial-frontal cortex and anterior cingulate system. Journal of Child Psychology and Psychiatry, 44(6), 793–809.CrossRefGoogle ScholarPubMed
Mundy, P., Block, J., Delgado, C., Pomares, Y., van Hecke, A. V., & Parlade, M. V. (2007). Individual differences and the development of joint attention in infancy. Child Development, 78(3), 938–954.CrossRefGoogle ScholarPubMed
Mundy, P., & Newell, L. (2007). Attention, joint attention, and social cognition. Current Directions in Psychological Science, 16(5), 269–274.CrossRefGoogle ScholarPubMed
Oakes, L. M., Kannass, K. N., & Shaddy, D. J. (2002). Developmental changes in endogenous control of attention: The role of target familiarity on infants’ distraction latency. Child Development, 73(6), 1644–1655. doi: 10.1111/1467–8624.00496CrossRefGoogle ScholarPubMed
Pascalis, O., de Haan, M., & Nelson, C.A. (2002). Is face processing species-specific during the first year of life? Science, 296, 1321–1323.CrossRefGoogle ScholarPubMed
Posner, M. I. (Ed.). (2004). Cognitive neuroscience of attention. New York, NY: Guilford Press.Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. doi: 10.1146/annurev.ne.13.030190.000325Google ScholarPubMed
Posner, M. I., Rafal, R. D., & Choate, L.S. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211–228.CrossRefGoogle Scholar
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27(12), 1825–1828.CrossRefGoogle ScholarPubMed
Reid, V. M., Striano, T., Kaufman, J., & Johnson, M. H. (2004). Eye-gaze cueing facilitates neural processing of objects in 4-month-old infants. NeuroReport, 15, 2553–2555.CrossRefGoogle ScholarPubMed
Reynolds, G. D., Guy, M. W., & Zhang, D. (2011). Neural correlates of individual differences in infant visual attention and recognition memory. Infancy, 16(4), 368–391. doi: 10.1111/j.1532-7078.2010.00060.xCrossRefGoogle ScholarPubMed
Reynolds, G. D., & Richards, J. E. (2005). Familiarization, attention, and recognition memory in infancy: An event-related potential and cortical source localization study. Developmental Psychology, 41(4), 598.Google ScholarPubMed
Richards, J. E. (2000). Localizing the development of covert attention in infants with scalp event-related potentials. Developmental Psychology, 36(1), 91–108. doi: 10.1037/0012-1649.36.1.91CrossRefGoogle ScholarPubMed
Richards, J. E. (2003). Attention affects the recognition of briefly presented visual stimuli in infants: An ERP study. Developmental Science, 6(3), 312–328. doi: 10.1111/1467–7687.00287CrossRefGoogle Scholar
Richards, J. E., & Casey, B. J. (1992). Development of sustained visual attention in the human infant. In Campbell, B. A. & Hayne, H. (Eds.), Attention and information processing in infants and adults: perspectives from human and animal research (pp. 30–60). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rosander, K. (2007). Visual tracking and its relationship to cortical development. Progress in Brain Research, 164, 105–122. doi: 10.1016/S0079-6123(07)64006-0CrossRefGoogle ScholarPubMed
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2001). Attention and recognition memory in the 1st year of life: A longitudinal study of preterm and full-term infants. Developmental Psychology, 37(1), 135.CrossRefGoogle ScholarPubMed
Rose, S. A., Feldman, J. F., (2012). Implications of infant cognition for executive functions at age 11. Psychological Science, 23(11), 1345–55.CrossRefGoogle ScholarPubMed
Ross-Sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child Development, 74, 1807–1822.CrossRefGoogle ScholarPubMed
Ruff, H. A., Lawson, K. R., Parrinello, R., & Weissberg, R. (1990). Long-term stability of individual differences in sustained attention in the early years. Child Development, 61(1), 60–75.CrossRefGoogle ScholarPubMed
Salapatek, P., & Kessen, W. (1966). Visual scanning of triangles by the human newborn. Journal of Experimental Child Psychology, 3, 155–167.CrossRefGoogle ScholarPubMed
Schlesinger, M., & Amso, D. (2013). Image free-viewing as intrinsically motivated exploration: Estimating the learnability of center-of-gaze image samples in infants and adults. Frontiers in Psychology. doi: 10.3389/fpsyg.2013.00802CrossRefGoogle ScholarPubMed
Schoenfeld, M. A., Hopf, J. M., Merkel, C., Heinze, H. J., & Hillyard, S. A. (2014). Object-based attention involves the sequential activation of feature-specific cortical modules. Nature Neuroscience, 17 (4), 619–624.CrossRefGoogle ScholarPubMed
Scott, L. S., & Monesson, A. (2010). Experience-dependent neural specialization during infancy. Neuropsychologia, 48(6), 1857–1861.CrossRefGoogle ScholarPubMed
Senju, A., Csibra, G., & Johnson, M. (2008). Understanding the referential nature of looking: Infants’ preference for object-directed gaze. Cognition, 108, 303–319.CrossRefGoogle ScholarPubMed
Sigman, M., Cohen, S. E., & Beckwith, L. (1997). Why does infant attention predict adolescent intelligence? Infant Behavior and Development, 20(2), 133–140.CrossRefGoogle Scholar
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences, 105(2), 809–813. doi: 10.1073/pnas.0707021105CrossRefGoogle ScholarPubMed
Simion, F., Valenza, E., Umiltà, C., & Barba, B. D. (1995). Inhibition of return in newborns is temporo-nasal asymmetrical. Infant Behavior and Development, 18(2), 189–194.CrossRefGoogle Scholar
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96(1), B1–B11. doi: 10.1016/j.cognition.2004.07.004CrossRefGoogle ScholarPubMed
Spelke, E. S., Katz, G., Purcell, S. E., Ehrlich, S. M., & Breinlinger, K. (1994). Early knowledge of object motion: Continuity and inertia. Cognition, 51(2), 131–176. doi: 10.1016/0010-0277(94)90013-2CrossRefGoogle ScholarPubMed
Striano, T., Chen, X., Cleveland, A., & Bradshaw, S. (2006). Joint attention social cues influence infant learning. European Journal of Developmental Psychology, 3, 289–299.CrossRefGoogle Scholar
Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings of the National Academy of Sciences, 105(1), 394–398.CrossRefGoogle ScholarPubMed
Tacke, N. F., Bailey, L. S., & Clearfield, M. W. (2015). Socio-economic status (SES) affects infants’ selective exploration. Infant and Child Development, 24(6), 571–586. doi: 10.1002/icd.1900CrossRefGoogle Scholar
Tummeltshammer, K., & Amso, D. (2017). Top-down contextual knowledge guides visual attention in infancy. Developmental Science, 21(4), 1–9. doi: 10.1111/desc.12599Google ScholarPubMed
Valenza, E., Simion, F., & Umiltà, C. (1994). Inhibition of return in newborn infants. Infant Behavior and Development, 17(3), 293–302.CrossRefGoogle Scholar
Vogel, M., Monesson, A., & Scott, L.S. (2012). Building biases in infancy: The influence of race on face and voice emotion matching. Developmental Science, 15(3), 359–372.CrossRefGoogle ScholarPubMed
von Hofsten, C., & Rosander, K. (1997). Development of smooth pursuit tracking in young infants. Vision Research, 37(13), 1799–1810.CrossRefGoogle ScholarPubMed
Weissman, M. M., Leckman, J. F., Merikangas, K. R., Gammon, G. D., & Prusoff, B. A. (1984). Depression and anxiety disorders in parents and children: Results from the Yale Family Study. Archives of General Psychiatry, 41(9), 845–852.CrossRefGoogle ScholarPubMed
Wellman, H. M., Phillips, A. T., Dunphy-Lelii, S., & LaLonde, N. (2004). Infant social attention predicts preschool social cognition. Developmental Science, 7(3), 283–288.CrossRefGoogle ScholarPubMed
Werchan, D. M., & Amso, D. (2017). A novel ecological account of prefrontal cortex functional development. Psychological Review, 124(6), 720–739. doi: 10.1037/rev0000078CrossRefGoogle ScholarPubMed
Wheeler, A., Anzures, G., Quinn, P. C., Pascalis, O., Omrin, D. S., & Lee, K. (2011). Caucasian infants scan own- and other-race faces differently. PloS One, 6(4), e18621.CrossRefGoogle ScholarPubMed
Young, G. S., Merin, N., Rogers, S. J., & Ozonoff, S. (2009). Gaze behavior and affect at 6 months: Predicting clinical outcomes and language development in typically developing infants and infants at risk for autism. Developmental Science, 12(5), 798–814CrossRefGoogle ScholarPubMed
Yu, C., & Smith, L. B. (2016). The social origins of sustained attention in one-year-old human infants. Current Biology, 26(9), 1235–1240. doi: 10.1016/j.cub.2016.03.026Google ScholarPubMed
Zweigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23(2–3), 143–152.CrossRefGoogle Scholar
References
Abdala, C., & Keefe, D. H. (2012) Morphological and functional ear development. In Werner, L., Fay, R., & Popper, A. (Eds.) Human auditory development (pp. 19–60). New York, NY: Springer International.CrossRefGoogle Scholar
Anderson, D. E., & Patel, A. D. (2018). Infants born preterm, stress, and neurodevelopment in the neonatal intensive care unit: Might music have an impact? Developmental Medicine & Child Neurology, 60, 256–266.CrossRefGoogle ScholarPubMed
Arnaud, A., Gracco, V., & Ménard, L. (2018). Enhanced perception of pitch changes in speech and music in early blind adults. Neuropsychologia, 117, 261–270.CrossRefGoogle ScholarPubMed
Arnon, S., Diamant, C., Bauer, S., Regev, R., Sirota, G., & Litmanovitz, I. (2014). Maternal singing during kangaroo care led to autonomic stability in preterm infants and reduced maternal anxiety. Acta Paediatrica, 103, 1039–1044.CrossRefGoogle ScholarPubMed
Bargones, J. Y., & Werner, L. A. (1994). Adults listen selectively: Infants do not. Psychological Science, 5, 170–174.CrossRefGoogle Scholar
Baruch, C., & Drake, C. (1997). Tempo discrimination in infants. Infant Behavior and Development, 20, 573–577.CrossRefGoogle Scholar
Bendixen, A., Háden, G. P., Németh, R., Farkas, D., Török, M., & Winkler, I. (2015). Newborn infants detect cues of concurrent sound segregation. Developmental Neuroscience, 37, 172–181.CrossRefGoogle ScholarPubMed
Bergeson, T. R., & Trehub, S. E. (2002). Absolute pitch and tempo in mothers’ songs to infants. Psychological Science, 13, 72–75.CrossRefGoogle ScholarPubMed
Bergeson, T. R., (2006). Infants perception of rhythmic patterns. Music Perception, 23, 345–360.CrossRefGoogle Scholar
Bergeson, T. R., (2007). Signature tunes in mother’s speech to infants. Infant Behavior and Development, 30, 648–654.CrossRefGoogle Scholar
Bernier, D. E., & Soderstrom, M. (2018). Was that my name? Infants’ listening in conversational multi-talker backgrounds. Journal of Child Language, 45, 1439–1449.CrossRefGoogle ScholarPubMed
Bigand, E., & Poulin-Charronnat, B. (2006). Are we ‘‘experienced listeners’’? A review of the musical capacities that do not depend on formal musical training. Cognition, 100, 100–130.CrossRefGoogle Scholar
Birnholz, J. C., & Benacerraf, B. R. (1983). The development of human fetal hearing. Science, 222, 516–518.CrossRefGoogle ScholarPubMed
Blacking, J. (1992). The biology of music making. In Myers, H. (Ed.), Ethnomusicology: An introduction (pp. 301–314). New York, NY: Norton.Google Scholar
Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Broadbent, D. E. (1952). Listening to one of two synchronous messages. Journal of Experimental Psychology, 44, 51–55.CrossRefGoogle ScholarPubMed
Broesch, T. L., & Bryant, G. A. (2015). Prosody in infant-directed speech is similar across Western and traditional cultures. Journal of Cognition and Development, 16, 31–43.CrossRefGoogle Scholar
Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300, 498–502.CrossRefGoogle ScholarPubMed
Chang, H. W., & Trehub, S. E. (1977a). Auditory processing of relational information by young infants. Journal of Experimental Child Psychology, 24, 324–331.CrossRefGoogle Scholar
Chang, H. W., (1977b). Infants’ perception of temporal grouping in auditory patterns. Child Development, 48, 1666–1670.CrossRefGoogle ScholarPubMed
Cirelli, L. K. (2018). How interpersonal synchrony facilitates early prosocial behavior. Current Opinion in Psychology, 20, 35–39.CrossRefGoogle ScholarPubMed
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17, 1003–1011.CrossRefGoogle ScholarPubMed
Cirelli, L. K., Jurewicz, Z. B., & Trehub, S. E. (in press). Effects of maternal singing style on mother–infant arousal and behavior. Journal of Cognitive Neuroscience.Google Scholar
Cirelli, L. K., Spinelli, C., Nozaradan, S., & Trainor, L. J. (2016). Measuring neural entrainment to beat and meter in infants: Effects of music background. Frontiers in Neuroscience, 10, 229.CrossRefGoogle ScholarPubMed
Cirelli, L. K., & Trehub, S. E. (2018). Infants help singers of familiar songs. Music & Science, 1, doi:2059204318761622.CrossRefGoogle Scholar
Cirelli, L. K., & Trehub, S. E. (2020). Familiar songs reduce infant distress. Developmental Psychology, 56(5), 861–868. doi: 10.1037/dev0000917CrossRefGoogle Scholar
Cirelli, L. K., Trehub, S. E., & Trainor, L. J. (2018). Rhythm and melody as social signals for infants. Annals of the New York Academy of Sciences, 1423, 66–72.CrossRefGoogle Scholar
Cooke, M. P., & Brown, G. J. (1993). Computational auditory scene analysis: Exploiting principles of perceived continuity. Speech Communication, 13, 391–399.Google Scholar
Corbeil, M., Trehub, S. E., & Peretz, I. (2016). Singing delays the onset of infant distress. Infancy, 21, 373–391.CrossRefGoogle Scholar
Corrigall, K. A., & Trainor, L. J. (2010). Musical enculturation in preschool children: Acquisition of key and harmonic knowledge. Music Perception, 28, 195–200.CrossRefGoogle Scholar
Costa-Giomi, E. (2014). Mode of presentation affects infants’ preferential attention to singing and speech. Music Perception, 32, 160–169.CrossRefGoogle Scholar
Cross, I. (2011). The meanings of musical meanings: Comment on “Towards a Neural Basis of Processing Musical Semantics” by Stefan Koelsch. Physics of Life Reviews, 8, 116–119.Google ScholarPubMed
Darwin, C. J., & Hukin, R. W. (1999). Auditory objects of attention: The role of interaural time-differences. Journal of Experimental Psychology: Human Perception and Performance, 25, 617–629.Google ScholarPubMed
Dowling, W. J., & Harwood, D. L. (1986). Music cognition. New York, NY: Academic Press.Google Scholar
Draganova, R., Eswaran, H., Lowery, C. L., Murphy, P., Huotilainen, M., & Preissl, H. (2005). Sound frequency change detection in fetuses and newborns: A magnetoencephalographic study. NeuroImage, 28, 354–361.CrossRefGoogle ScholarPubMed
Erickson, L. C., & Newman, R. S. (2017). Influences of background noise on infants and children. Current Directions in Psychological Science, 26, 451–457.CrossRefGoogle ScholarPubMed
Fancourt, D., & Perkins, R. (2018). Effect of singing interventions on symptoms of postnatal depression: Three-arm randomised controlled trial. British Journal of Psychiatry, 212, 119–121.CrossRefGoogle ScholarPubMed
Fernald, A. (1985). Four-month-old infants prefer to listen to motherese. Infant Behavior and Development, 8, 181–195.CrossRefGoogle Scholar
Fernald, A. (1992). Meaningful melodies in mothers’ speech to infants. In Papousek, H., Jurgens, U., & Papousek, M. (Eds.), Nonverbal vocal behaviour (pp. 262–282). Cambridge, UK: Cambridge University Press.Google Scholar
Fernandez-Prieto, I., Navarra, J., & Pons, F. (2015). How big is this sound? Crossmodal association between pitch and size in infants. Infant Behavior and Development, 38, 77–81.CrossRefGoogle ScholarPubMed
Field, T. (2010). Postpartum depression effects on early interactions, parenting, and safety practices: A review. Infant Behavior and Development, 33, 1–6.CrossRefGoogle ScholarPubMed
Folland, N. A., Butler, B. E., Payne, J. E., & Trainor, L. J. (2015). Cortical representations sensitive to the number of perceived auditory objects emerge between 2 and 4 months of age: Electrophysiological evidence. Journal of Cognitive Neuroscience, 27, 1060–1067.CrossRefGoogle ScholarPubMed
Fujioka, T., Trainor, L. J., & Ross, B. (2008). Simultaneous pitches are encoded separately in auditory cortex: An MMNm study. NeuroReport, 19, 361–366.CrossRefGoogle ScholarPubMed
Ghazban, N. (2013). Emotion regulation in infants using maternal singing and speech (Unpublished doctoral dissertation). Ryerson University, Toronto, Canada.Google Scholar
Granier-Deferre, C., Bassereau, S., Ribeiro, A., Jacquet, A. Y., & Decasper, A. J. (2011). A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS ONE, 6, e17304.CrossRefGoogle ScholarPubMed
Gudmundsdottir, H., & Trehub, S. (2018). Adults recognize toddlers’ song renditions. Psychology of Music, 46, 281–291.CrossRefGoogle Scholar
Háden, G. P., Honing, H., Török, M., & Winkler, I. (2015). Detecting the temporal structure of sound sequences in newborn infants. International Journal of Psychophysiology, 96, 23–28.CrossRefGoogle ScholarPubMed
Hannon, E. E., Schachner, A., & Nave-Blodgett, J. E. (2017). Babies know bad dancing when they see it: Older but not younger infants discriminate between synchronous and asynchronous audiovisual musical displays. Journal of Experimental Child Psychology, 159, 159–174.CrossRefGoogle Scholar
Hannon, E. E., & Trehub, S. E. (2005a). Metrical categories in infancy and adulthood. Psychological Science, 16, 48–55.CrossRefGoogle ScholarPubMed
Hannon, E. E., (2005b). Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences, 102, 12639–12643.CrossRefGoogle ScholarPubMed
Haryu, E., & Kajikawa, S. (2012). Are higher-frequency sounds brighter in color and smaller in size? Auditory-visual correspondences in 10-month-old-infants. Infant Behavior and Development, 35, 727–732.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–355.CrossRefGoogle Scholar
Kisilevsky, B. S., Hains, S. M., Brown, C. A., Lee, C. T., Cowperthwaite, B., Stutzman, S. S., … Wang, Z. (2009). Fetal sensitivity to properties of maternal speech and language. Infant Behavior and Development, 32, 59–71.CrossRefGoogle ScholarPubMed
Krumhansl, C. L., & Jusczyk, P. W. (1990). Infants’ perception of phrase structure in music. Psychological Science, 1, 70–73.CrossRefGoogle Scholar
Lasky, R. E., & Williams, A. L. (2005). The development of the auditory system from conception to term. NeoReviews, 6, 141–152.CrossRefGoogle Scholar
Leerkes, E. M., Blankson, A. N., & O’Brien, M. (2009). Differential effects of maternal sensitivity to infant distress and nondistress on social-emotional functioning. Child Development, 80, 762–775.CrossRefGoogle ScholarPubMed
Lin, J. Y., & Hartmann, W. M. (1998). The pitch of a mistuned harmonic: Evidence for a template model. Journal of the Acoustical Society of America, 103, 2608–2617.CrossRefGoogle ScholarPubMed
Litovsky, R. Y. (1997). Developmental changes in the precedence effect: Estimates of minimum audible angle. Journal of the Acoustical Society of America, 102, 1739–1745.CrossRefGoogle ScholarPubMed
Marie, C., & Trainor, L. J. (2013). Development of simultaneous pitch encoding: Infants show a high voice superiority effect. Cerebral Cortex, 23, 660–669.CrossRefGoogle ScholarPubMed
Marie, C., (2014). Early development of polyphonic sound encoding and the high voice superiority effect. Neuropsychologia, 57, 50–58.CrossRefGoogle ScholarPubMed
McAdams, S., & Bertoncini, J. (1997). Organization and discrimination of repeating sound sequences by newborn infants. Journal of the Acoustical Society of America, 102, 2945–2953.CrossRefGoogle ScholarPubMed
McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., & Miller, N. S. (2006). The time of our lives: Life span development of timing and event tracking. Journal of Experimental Psychology: General, 135, 348–367.CrossRefGoogle ScholarPubMed
McElwain, N. L., & Booth-Laforce, C. (2006). Maternal sensitivity to infant distress and nondistress as predictors of infant–mother attachment security. Journal of Family Psychology, 20, 247–255.CrossRefGoogle ScholarPubMed
McMillan, B. T., & Saffran, J. R. (2016). Learning in complex environments: The effects of background speech on early word learning. Child Development, 87, 1841–1855.CrossRefGoogle ScholarPubMed
McNeill, W. H. (1995). Keeping together in time: Dance and drill in human history. Cambridge, MA: Harvard University Press.Google Scholar
Mehr, S. A., Singh, M., York, H., Glowacki, L., & Krasnow, M. M. (2018). Form and function in human song. Current Biology, 28, 356–368.CrossRefGoogle ScholarPubMed
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For 5-month-old infants, melodies are social. Psychological Science, 27, 486–501.CrossRefGoogle ScholarPubMed
Moore, J. K., & Guan, Y. L. (2001). Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology, 2, 297–311.CrossRefGoogle ScholarPubMed
Morton, D. (1980). Thailand. In Sadie, S. (Ed.), The new Grove dictionary of music and musicians (Vol. 18, pp. 712–722). London: Macmillan.Google Scholar
Nakata, T., & Trehub, S. E. (2004). Infants’ responsiveness to maternal speech and singing. Infant Behavior and Development, 27, 455–464.CrossRefGoogle Scholar
Nakata, T., (2011). Expressive timing and dynamics in infant-directed and non-infant-directed singing. Psychomusicology: Music, Mind and Brain, 21, 130–138.CrossRefGoogle Scholar
Newman, R. S. (2005). The cocktail party effect in infants revisited: Listening to one’s name in noise. Developmental Psychology, 41, 352–362.CrossRefGoogle ScholarPubMed
Olsho, L. W., Koch, E. G., Carter, E. A., Halpin, C. F., & Spetner, N. B. (1988). Pure-tone sensitivity of human infants. Journal of the Acoustical Society of America, 84, 1316–1324.CrossRefGoogle ScholarPubMed
Olsho, L. W., Koch, E. G., & Halpin, C. F. (1987). Level and age effects in infant frequency discrimination. Journal of the Acoustical Society of America, 82, 454–464.CrossRefGoogle ScholarPubMed
Ozturk, O., Krehm, M., & Vouloumanos, A. (2013). Sound symbolism in infancy: Evidence for sound-shape cross-modal correspondences in 4-month-olds. Journal of Experimental Child Psychology, 114, 173–186.CrossRefGoogle ScholarPubMed
Papacharalampous, G. X., Nikolopoulos, T. P., Davilis, D. I., Xenellis, I. E., & Korres, S. G. (2011). Universal newborn hearing screening, a revolutionary diagnosis of deafness: Real benefits and limitations. European Archives of Otorhinolaryngology, 268, 1399–1406.CrossRefGoogle ScholarPubMed
Parga, J. J., Daland, R., Kesavan, K., Macey, P. M. Zeltzer, L., & Harper, R. M. (2018). A description of externally recorded womb sounds in human subjects during gestation. PLoS ONE, 13, e0197045.CrossRefGoogle ScholarPubMed
Pujol, J., Soriano-Mas, C., Ortiz, H., Sebastián-Gallés, N., Losilla, J. M., & Deus, J. (2006). Myelination of language-related areas in the developing brain. Neurology, 66, 339–343.CrossRefGoogle ScholarPubMed
Pundir, A. S., Hameed, L. S., Dikshit, P. C., Kumar, P., Mohan, S., Radotra, B., … Iyengar, S. (2012). Expression of medium and heavy chain neurofilaments in the developing human auditory cortex. Brain Structure and Function, 217, 303–321.CrossRefGoogle ScholarPubMed
Pundir, A. S., Singh, U. A., Ahuja, N., Makhija, S., Dikshit, P. C., Radotra, B., … Iyengar, S. (2016). Growth and refinement of excitatory synapses in the human auditory cortex. Brain Structure and Function, 221, 3641–3674.CrossRefGoogle ScholarPubMed
Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308, 1430–1430.Google ScholarPubMed
Phillips-Silver, J., (2007). Hearing what the body feels: Auditory encoding of rhythmic movement. Cognition, 105, 533–546.CrossRefGoogle ScholarPubMed
Piazza, E. A., Iordan, M. C., & Lew-Williams, C. (2017). Mothers consistently alter their unique vocal fingerprints when communicating with infants. Current Biology, 27, 3162–3167.CrossRefGoogle ScholarPubMed
Plantinga, J., & Trainor, L. J. (2005). Memory for melody: Infants use a relative pitch code. Cognition, 98, 1–11.CrossRefGoogle ScholarPubMed
Plantinga, J., & Trehub, S. E. (2014). Revisiting the innate preference for consonance. Journal of Experimental Psychology Human Perception & Performance, 40, 40–49.CrossRefGoogle ScholarPubMed
Plomp, R., & Levelt, W. J. (1965). Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America, 38, 548–60.CrossRefGoogle ScholarPubMed
Remez, R. E., Fellowes, J. M., & Nagel, D. S. (2007). On the perception of similarity among talkers. Journal of the Acoustical Society of America, 122, 3688–3696.CrossRefGoogle ScholarPubMed
Rich, M. (2014, June 24). Pediatrics group to recommend reading aloud to children from birth. New York Times. Retrieved from www.nytimes.com/2014/06/24/us/pediatrics-group-to-recommend-reading-aloud-to-children-from-birth.html.Google Scholar
Richards, D. S., Frentzen, B., Gerhardt, K. J., McCann, M. E., & Abrams, R. M. (1992). Sound levels in the human uterus. Obstetrics & Gynecology, 80, 186–190.Google ScholarPubMed
Rocha, S., & Mareschal, D. (2017). Getting into the groove: The development of tempo-flexibility between 10 and 18 months of age. Infancy, 22, 540–551.CrossRefGoogle Scholar
Rose, M. M., & Moore, B. C. (2000). Effects of frequency and level on auditory stream segregation. Journal of the Acoustical Society of America, 108, 1209–1214.CrossRefGoogle ScholarPubMed
Rubin, D. C. (1995). Memory in oral traditions: The cognitive psychology of epic, ballads, and counting-out rhymes. New York, NY: Oxford University Press.Google Scholar
Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19, 86–91.CrossRefGoogle ScholarPubMed
Savage, P. E., Brown, S., Sakai, E., & Currie, T. E. (2015). Statistical universals reveal the structures and functions of human music. Proceedings of the National Academy of Sciences, 112, 8987–8992.CrossRefGoogle ScholarPubMed
Schellenberg, E. G., & Trainor, L. J. (1996). Sensory consonance and the perceptual similarity of complex-tone harmonic intervals: Tests of adult and infant listeners. Journal of the Acoustical Society of America, 100, 3321–3328.CrossRefGoogle ScholarPubMed
Schellenberg, E. G., & Trehub, S. E. (1994). Frequency ratios and the perception of tone patterns. Psychonomic Bulletin & Review, 1, 191–201.CrossRefGoogle ScholarPubMed
Schellenberg, E. G., (1996). Natural musical intervals: Evidence from infant listeners. Psychological Science, 7, 272–277.CrossRefGoogle Scholar
Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270, 303–304.CrossRefGoogle ScholarPubMed
Sharma, A., Dorman, M. F., & Kral, A. (2005). The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hearing Research, 203, 134–143.CrossRefGoogle ScholarPubMed
Shaw, R., Isaia, A., Schwartz, A., & Atkins, M. (2019). Encouraging parenting behaviors that promote early childhood development among caregivers from low-income urban communities: A randomized static group comparison trial of a primary care-based parenting program. Maternal and Child Health Journal, 23, 39–46.Google Scholar
Smith, N. A., Folland, N. A., Martinez, D. M., & Trianor, L. J. (2017). Multisensory object perception in infancy: 4-month-olds perceive a mistuned harmonic as a separate auditory and visual object. Cognition, 164, 1–7.CrossRefGoogle ScholarPubMed
Smith, N. A., & Trainor, L. J. (2011). Auditory stream segregation improves infants’ selective attention to target tones amid distracters. Infancy, 16, 655–668.CrossRefGoogle Scholar
Smith, S. L., Gerhadt, K. J., Griffiths, S. K., Huang, X., & Abrams, R. M. (2003). Intelligibility of sentences recorded from the uterus of a pregnant ewe and from the fetal inner ear. Audiology and Neurotology, 8, 347–353.CrossRefGoogle ScholarPubMed
Sohmer, H., Perez, R., Sichel, J. Y., Priner, R., & Freeman, S. (2001). The pathway enabling external sounds to reach and excite the fetal inner ear. Audiology and Neurotology, 6, 109–116.CrossRefGoogle ScholarPubMed
Sole, M. (2017). Crib song: Insights into functions of toddlers’ private spontaneous singing. Psychology of Music, 45, 172–192.CrossRefGoogle Scholar
Soley, G., & Hannon, E. E. (2010). Infants prefer the musical meter of their own culture: A cross-cultural comparison. Developmental Psychology, 46, 286–292.CrossRefGoogle ScholarPubMed
Sussman, E., & Steinschneider, M. (2009). Attention effects on auditory scene analysis in children. Neuropsychologia, 47, 771–785.CrossRefGoogle ScholarPubMed
Thorpe, L. A., & Trehub, S. E. (1989). Duration illusion and auditory grouping in infancy. Developmental Psychology, 25, 122–127.CrossRefGoogle Scholar
Trainor, L. J. (1996). Infant preferences for infant-directed versus noninfant-directed playsongs and lullabies. Infant Behavior and Development, 19, 83–92.CrossRefGoogle Scholar
Trainor, L. J., & Heinmiller, B. M. (1998). Infants prefer to listen to consonance over dissonance. Infant Behavior, 21, 77–88.CrossRefGoogle Scholar
Trainor, L. J., & Trehub, S. E. (1992). A comparison of infants’ and adults’ sensitivity to Western musical structure. Journal of Experimental Psychology: Human Perception and Performance, 18, 394–402.Google ScholarPubMed
Trainor, L. J., (1993). What mediates infants’ and adults’ superior processing of the major over the augmented triad? Music Perception, 11, 185–196.CrossRefGoogle Scholar
Tramo, M. J., Cariani, P. A., Delgutte, B., & Braida, L. D. (2001). Neurobiological foundations for the theory of harmony in Western tonal music. Annals of the New York Academy of Sciences, 930, 92–116.CrossRefGoogle ScholarPubMed
Trehub, S. E. (2015). Cross-cultural convergence of musical features. Proceedings of the National Academy of Sciences, 112, 8809–8810.CrossRefGoogle ScholarPubMed
Trehub, S. E., & Cirelli, L. K. (2018). Precursors to the performing arts in infancy and early childhood. Progress in Brain Research, 237, 225–242.CrossRefGoogle ScholarPubMed
Trehub, S. E., & Gudmundsdottir, H. R. (2019). Mothers as singing mentors for infants. In Welsh, G. F., Howard, D. M., & Nix, J. (Eds.), The Oxford handbook of singing (pp. 455–469). Oxford: Oxford University Press.Google Scholar
Trehub, S. E., & Hannon, E. E. (2009). Conventional rhythms enhance infants’ and adults’ perception of musical patterns. Cortex, 45, 110–118.CrossRefGoogle ScholarPubMed
Trehub, S. E., Plantinga, J., & Russo, F. A. (2016). Maternal vocal interactions with infants: Reciprocal visual influences. Social Development, 25, 665–683.CrossRefGoogle Scholar
Trehub, S. E., & Russo, F. A. (in press). Infant-directed singing from a dynamic multimodal perspective: Evolutionary origins, cross-cultural variation, and relation to infant-directed speech. In Russo, F., Ilari, B., & Cohen, A. (Eds.), Routledge companion to interdisciplinary studies in singing: Vol 1. New York, NY: Routledge.Google Scholar
Trehub, S. E., Schellenberg, E. G., & Kamenetsky, S. B. (1999). Infants’ and adults’ perception of scale structure. Journal of Experimental Psychology: Human Perception and Performance, 25, 965–975.Google ScholarPubMed
Trehub, S. E., Schneider, B. A., & Endman, M. (1980). Developmental changes in infants’ sensitivity to octave-band noises. Journal of Experimental Child Psychology, 29, 282–293.CrossRefGoogle ScholarPubMed
Trehub, S. E., Schneider, B. A., & Henderson, J. L. (1995). Gap detection in infants, children, and adults. Journal of the Acoustical Society of America, 98, 2532–2541.CrossRefGoogle ScholarPubMed
Trehub, S. E., Schneider, B. A., Morrongiello, B. A., & Thorpe, L. A. (1988). Auditory sensitivity in school-age children. Journal of Experimental Child Psychology, 46, 273–285.CrossRefGoogle ScholarPubMed
Trehub, S. E., & Thorpe, L. A. (1989). Infants’ perception of rhythm: Categorization of auditory sequences by temporal structure. Canadian Journal of Psychology, 43, 217–229.CrossRefGoogle ScholarPubMed
Trehub, S. E., Thorpe, L. A., & Morrongiello, B. A. (1985). Infants’ perception of melodies: Changes in a single tone. Infant Behavior and Development, 8, 213–223.CrossRefGoogle Scholar
Trehub, S. E., Thorpe, L. A., (1987). Organizational processes in infants’ perception of auditory patterns. Child Development, 58, 741–749.CrossRefGoogle ScholarPubMed
Trehub, S. E., & Trainor, L. (1998). Singing to infants: Lullabies and play songs. Advances in Infancy Research, 12, 43–78.Google Scholar
Trehub, S. E., Unyk, A. M., Kamenetsky, S. B., Hill, D. S., Trainor, L. J., Henderson, J. L., & Saraza, M. (1997). Mothers’ and fathers’ singing to infants. Developmental Psychology, 33, 500–507.CrossRefGoogle ScholarPubMed
Trehub, S. E., Unyk, A. M., & Trainor, L. J. (1993a). Adults identify infant-directed music across cultures. Infant Behavior and Development, 16, 193–211.CrossRefGoogle Scholar
Trehub, S. E., Unyk, A. M., (1993b). Maternal singing in cross-cultural perspective. Infant Behavior and Development, 16, 285–295.CrossRefGoogle Scholar
van Puyvelde, M., Rodrigues, H., Loots, G., de Coster, L., Du Ville, K., Matthijs, L., … Pattyn, N. (2014). Shall we dance? Music as a port of entrance to maternal-infant intersubjectivity in a context of postnatal depression. Infant Mental Health Journal, 35, 220–232.CrossRefGoogle Scholar
Virtala, P., Huotilainen, M., Partanen, E., Fellman, V., & Tervaniemi, M. (2013). Newborn infants’ auditory system is sensitive to Western music chord categories. Frontiers in Psychology, 4, 492.CrossRefGoogle ScholarPubMed
Volkova, A., Trehub, S. E., & Schellenberg, E. G. (2006). Infants’ memory for musical performances. Developmental Science, 9, 583–589.CrossRefGoogle ScholarPubMed
Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2010). Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences. Psychological Science, 21, 21–25.CrossRefGoogle Scholar