Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-lmg95 Total loading time: 3.535 Render date: 2021-10-19T19:58:08.531Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Part I - Foundations

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access
Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 1 - 154
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolph, K. E., & Berger, S. E. (2006). Motor development. Handbook of Child Psychology, 2, 161213.Google Scholar
Akerman, C. J., Smyth, D., & Thompson, I. D. (2002). Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron, 36(5), 869879.CrossRefGoogle ScholarPubMed
Allendoerfer, K. L., & Shatz, C. J. (1994). The subplate, a transient neocortical structure: Its role in the development of connections between thalamus and cortex. Annual Review of Neuroscience, 17(1), 185218.CrossRefGoogle ScholarPubMed
Als, H., Lawhon, G., Brown, E., Gibes, R., Duffy, F. H., McAnulty, G., & Blickman, J. G. (1986). Individualized behavioral and environmental care for the very low birth weight preterm infant at high risk for bronchopulmonary dysplasia: Neonatal intensive care unit and developmental outcome. Pediatrics, 78(6), 11231132.Google ScholarPubMed
Asada, M., MacDorman, K. F., Ishiguro, H., & Kuniyoshi, Y. (2001). Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robotics and Autonomous Systems, 37(2–3), 185193.CrossRefGoogle Scholar
Ball, G., Srinivasan, L., Aljabar, P., Counsell, S. J., Durighel, G., Hajnal, J. V., … Edwards, A. D. (2013). Development of cortical microstructure in the preterm human brain. Proceedings of the National Academy of Sciences, 110(23), 95419546.CrossRefGoogle ScholarPubMed
Banerjee, A., Meredith, R. M., Rodríguez-Moreno, A., Mierau, S. B., Auberson, Y. P., & Paulsen, O. (2009). Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex. Cerebral Cortex, 19(12), 29592969.CrossRefGoogle ScholarPubMed
Barbu-Roth, M., Anderson, D. I., Desprès, A., Streeter, R. J., Cabrol, D., Trujillo, M., … Provasi, J. (2014). Air stepping in response to optic flows that move toward and away from the neonate. Developmental Psychobiology, 56(5), 11421149.CrossRefGoogle ScholarPubMed
Bayatti, N., Moss, J. A., Sun, L., Ambrose, P., Ward, J. F., Lindsay, S., & Clowry, G. J. (2007). A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cerebral Cortex, 18(7), 15361548.CrossRefGoogle ScholarPubMed
Beccaria, E., Martino, M., Briatore, E., Podestà, B., Pomero, G., Micciolo, R., … Calzolari, S. (2012). Poor repertoire general movements predict some aspects of development outcome at 2 years in very preterm infants. Early Human Development, 88(6), 393396.Google ScholarPubMed
Ben-Ari, Y., Gaiarsa, J. -L., Tyzio, R., & Khazipov, R. (2007). GABA: A pioneer transmitter that exrefs immature neurons and generates primitive oscillations. Physiological Reviews, 87(4), 12151284.CrossRefGoogle ScholarPubMed
Blaesse, P., Airaksinen, M. S., Rivera, C., & Kaila, K. (2009). Cation-chloride cotransporters and neuronal function. Neuron, 61(6), 820838.CrossRefGoogle ScholarPubMed
Blankenship, A. G., & Feller, M. B. (2010). Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature Reviews Neuroscience, 11(1), 18.CrossRefGoogle ScholarPubMed
Bobet, J., & Stein, R. B. (1998). A simple model of force generation by skeletal muscle during dynamic isometric contractions. IEEE Transactions on Biomedical Engineering, 45(8), 10101016.CrossRefGoogle ScholarPubMed
Boivin, M. J., Kakooza, A. M., Warf, B. C., Davidson, L. L., & Grigorenko, E. L. (2015). Reducing neurodevelopmental disorders and disability through research and interventions. Nature, 527(7578), S155.CrossRefGoogle ScholarPubMed
Bosco, G., & Poppele, R. (2001). Proprioception from a spinocerebellar perspective. Physiological Reviews, 81(2), 539568.CrossRefGoogle ScholarPubMed
Bradley, R. M., & Mistretta, C. M. (1975). Fetal sensory receptors. Physiological Reviews, 55(3), 352382.Google ScholarPubMed
Bremner, A. J., Lewkowicz, D. J., & Spence, C. (2012). Multisensory development. Oxford: Oxford University Press.CrossRefGoogle Scholar
Brooks, R. A. (1991). Intelligence without representation. Artificial intelligence, 47(1–3), 139159.CrossRefGoogle Scholar
Brumley, M. R., & Robinson, S. R. (2013). Sensory feedback alters spontaneous limb movements in newborn rats: Effects of unilateral forelimb weighting. Developmental Psychobiology, 55(4), 323333.CrossRefGoogle ScholarPubMed
Butterworth, G., & Hopkins, B. (1988). Hand–mouth coordination in the new-born baby. British Journal of Developmental Psychology, 6(4), 303314.CrossRefGoogle Scholar
Byrge, L., Sporns, O., & Smith, L. B. (2014). Developmental process emerges from extended brain–body–behavior networks. Trends in Cognitive Sciences, 18(8), 395403.CrossRefGoogle ScholarPubMed
Caligiore, D., Parisi, D., & Baldassarre, G. (2014). Integrating reinforcement learning, equilibrium points, and minimum variance to understand the development of reaching: A computational model. Psychological Review, 121(3), 389.CrossRefGoogle ScholarPubMed
Cascio, C. J. (2010). Somatosensory processing in neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 2(2), 62.CrossRefGoogle ScholarPubMed
Cheng-Yu, T. L., Poo, M. -M., & Dan, Y. (2009). Burst spiking of a single cortical neuron modifies global brain state. Science, 324(5927), 643646.Google Scholar
Clancy, B., Darlington, R., & Finlay, B. (2001). Translating developmental time across mammalian species. Neuroscience, 105(1), 717.CrossRefGoogle ScholarPubMed
Clifton, R. K., Morrongiello, B. A., Kulig, J. W., & Dowd, J. M. (1981). Newborns’ orientation toward sound: Possible implications for cortical development. Child Development, 52(3), 833838.CrossRefGoogle ScholarPubMed
Crisp, S. J., Evers, J. F., & Bate, M. (2011). Endogenous patterns of activity are required for the maturation of a motor network. Journal of Neuroscience, 31(29), 1044510450.CrossRefGoogle ScholarPubMed
Cuajunco, F. (1940). Development of the neuromuscular spindle in human fetuses. Contributions to Embryology, 28, 97128.Google Scholar
de Vries, J. I., Visser, G. H., & Prechtl, H. F. (1982). The emergence of fetal behaviour. I: Qualitative aspects. Early Human Development, 7(4), 301322.CrossRefGoogle ScholarPubMed
DeCasper, A. J., Lecanuet, J. -P., Busnel, M. -C., Granier-Deferre, C., & Maugeais, R. (1994). Fetal reactions to recurrent maternal speech. Infant Behavior and Development, 17(2), 159164.CrossRefGoogle Scholar
Demiris, J., Rougeaux, S., Hayes, G., Berthouze, L., & Kuniyoshi, Y. (1997). Deferred imitation of human head movements by an active stereo vision head. Paper presented at 6th IEEE International Workshop on Robot and Human Communication, RO-MAN’97 SENDAI, Sendai, Japan.CrossRefGoogle Scholar
The Developing Human Connectome Project. Retrieved from www.developingconnectome.org.Google Scholar
Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y., & Le Bihan, D. (2006). Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage, 30(4), 11211132.CrossRefGoogle ScholarPubMed
Eyre, J., Miller, S., Clowry, G., Conway, E., & Watts, C. (2000). Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain, 123(1), 5164.CrossRefGoogle ScholarPubMed
Fombonne, E. (2009). Epidemiology of pervasive developmental disorders. Pediatric Research, 65(6), 591.CrossRefGoogle ScholarPubMed
Fuchino, Y., Naoi, N., Shibata, M., Niwa, F., Kawai, M., Konishi, Y., … Myowa-Yamakoshi, M. (2013). Effects of preterm birth on intrinsic fluctuations in neonatal cerebral activity examined using optical imaging. PloS one, 8(6), e67432.CrossRefGoogle ScholarPubMed
Gallagher, S., & Zahavi, D. (2007). The phenomenological mind: An introduction to philosophy of mind and cognitive science. London: Routledge.CrossRefGoogle Scholar
Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., … Reichert, J. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46(8), 881.CrossRefGoogle ScholarPubMed
Gerhard, D. (2013). Neuroscience. 5th edition. Yale Journal of Biology and Medicine, 86(1), 113114.Google Scholar
Ghosh, A., Antonini, A., McConnell, S. K., & Shatz, C. J. (1990). Requirement for subplate neurons in the formation of thalamocortical connections. Nature, 347(6289), 179.CrossRefGoogle ScholarPubMed
Gibson, J. (1979). The theory of affordances. In Gibson, J. (Ed.), The ecological approach to visual perception (pp. 127143). Boston, MA: Houghton Mifflin.Google Scholar
Gima, H., Ohgi, S., Morita, S., Karasuno, H., Fujiwara, T., & Abe, K. (2011). A dynamical system analysis of the development of spontaneous lower extremity movements in newborn and young infants. Journal of Physiological Anthropology, 30(5), 179186.CrossRefGoogle ScholarPubMed
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 78217826.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Toga, A. W. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 81748179.CrossRefGoogle ScholarPubMed
Goldman, A., & de Vignemont, F. (2009). Is social cognition embodied? Trends in Cognitive Sciences, 13(4), 154159.Google ScholarPubMed
Gonzalez-Islas, C., & Wenner, P. (2006). Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength. Neuron, 49(4), 563575.CrossRefGoogle ScholarPubMed
Granmo, M., Petersson, P., & Schouenborg, J. (2008). Action-based body maps in the spinal cord emerge from a transitory floating organization. Journal of Neuroscience, 28(21), 54945503.CrossRefGoogle ScholarPubMed
Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52(5), 751766.Google ScholarPubMed
Grillner, S., & Jessell, T. M. (2009). Measured motion: Searching for simplicity in spinal locomotor networks. Current Opinion in Neurobiology, 19(6), 572586.CrossRefGoogle ScholarPubMed
Groen, S. E., de Blécourt, A. C., Postema, K., & Hadders-Algra, M. (2005). General movements in early infancy predict neuromotor development at 9 to 12 years of age. Developmental Medicine and Child Neurology, 47(11), 731738.Google ScholarPubMed
Hadders-Algra, M. (2004). General movements: A window for early identification of children at high risk for developmental disorders. Journal of Pediatrics, 145(2), S12S18.CrossRefGoogle ScholarPubMed
Hadders-Algra, M. (2007). Putative neural substrate of normal and abnormal general movements. Neuroscience & Biobehavioral Reviews, 31(8), 11811190.CrossRefGoogle ScholarPubMed
Hadders-Algra, M., Mavinkurve-Groothuis, A. M., Groen, S. E., Stremmelaar, E. F., Martijn, A., & Butcher, P. R. (2004). Quality of general movements and the development of minor neurological dysfunction at toddler and school age. Clinical Rehabilitation, 18(3), 287299.CrossRefGoogle ScholarPubMed
Haider, B., Duque, A., Hasenstaub, A. R., & McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26(17), 45354545.CrossRefGoogle ScholarPubMed
Hakamada, S., Hayakawa, F., Kuno, K., & Tanaka, R. (1988). Development of the monosynaptic reflex pathway in the human spinal cord. Developmental Brain Research, 42(2), 239246.Google Scholar
Hamburger, V., Wenger, E., & Oppenheim, R. (1966). Motility in the chick embryo in the absence of sensory input. Journal of Experimental Zoology, 162(2), 133159.CrossRefGoogle Scholar
Hanson, M. G., Milner, L. D., & Landmesser, L. T. (2008). Spontaneous rhythmic activity in early chick spinal cord influences distinct motor axon pathfinding decisions. Brain Research Reviews, 57(1), 7785.CrossRefGoogle ScholarPubMed
Hashimoto, T., Bazmi, H. H., Mirnics, K., Wu, Q., Sampson, A. R., & Lewis, D. A. (2008). Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. American Journal of Psychiatry, 165(4), 479489.CrossRefGoogle ScholarPubMed
He, J., Maltenfort, M. G., Wang, Q., & Hamm, T. M. (2001). Learning from biological systems: Modeling neural control. IEEE Control Systems, 21(4), 5569.Google Scholar
Hepper, P. G. (1996). Fetal memory: Does it exist? What does it do? Acta Paediatrica, 85, 1620.CrossRefGoogle Scholar
Hoffmann, M., Marques, H., Arieta, A., Sumioka, H., Lungarella, M., & Pfeifer, R. (2010). Body schema in robotics: A review. IEEE Transactions on Autonomous Mental Development, 2(4), 304324.CrossRefGoogle Scholar
Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104(24), 1024010245.CrossRefGoogle ScholarPubMed
Hooker, D. (1952). The prenatal origin of behavior. Lawrence: University of Kansas Press.Google Scholar
Hromádka, T., DeWeese, M. R., & Zador, A. M. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. PLoS biology, 6(1), e16.Google ScholarPubMed
Huffman, K. J., & Krubitzer, L. (2001). Area 3a: Topographic organization and cortical connections in marmoset monkeys. Cerebral Cortex, 11(9), 849867.Google ScholarPubMed
James, D. K. (2010). Fetal learning: A critical review. Infant and Child Development: An International Journal of Research and Practice, 19(1), 4554.CrossRefGoogle Scholar
James, D. K., Spencer, C., & Stepsis, B. (2002). Fetal learning: A prospective randomized controlled study. Ultrasound in Obstetrics & Gynecology, 20(5), 431438.CrossRefGoogle ScholarPubMed
Kaas, J. H. (1983). What, if anything, is SI? Organization of first somatosensory area of cortex. Physiological Reviews, 63(1), 206231.CrossRefGoogle ScholarPubMed
Kalaska, J., Cohen, D., Prud’Homme, M., & Hyde, M. (1990). Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Experimental Brain Research, 80(2), 351364.Google Scholar
Kanazawa, H., Kawai, M., Kinai, T., Iwanaga, K., Mima, T., & Heike, T. (2014). Cortical muscle control of spontaneous movements in human neonates. European Journal of Neuroscience, 40(3), 25482553.CrossRefGoogle ScholarPubMed
Kanold, P. O., & Luhmann, H. J. (2010). The subplate and early cortical circuits. Annual Review of Neuroscience, 33, 2348.CrossRefGoogle ScholarPubMed
Kanold, P. O., & Shatz, C. J. (2006). Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron, 51(5), 627638.CrossRefGoogle ScholarPubMed
Khazipov, R., Sirota, A., Leinekugel, X., Holmes, G. L., Ben-Ari, Y., & Buzsáki, G. (2004). Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 432(7018), 758.CrossRefGoogle ScholarPubMed
Kinney, H. C., Brody, B. A., Kloman, A. S., & Gilles, F. H. (1988). Sequence of central nervous system myelination in human infancy: II. Patterns of myelination in autopsied infants. Journal of Neuropathology & Experimental Neurology, 47(3), 217234.CrossRefGoogle ScholarPubMed
Kisilevsky, B. S., Hains, S. M., Lee, K., Xie, X., Huang, H., Ye, H. H., … Wang, Z. (2003). Effects of experience on fetal voice recognition. Psychological Science, 14(3), 220224.CrossRefGoogle ScholarPubMed
Kostović, I., & Judaš, M. (2010). The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatrica, 99(8), 11191127.CrossRefGoogle ScholarPubMed
Koyanagi, T., Horimoto, N., Maeda, H., Kukita, J., Minami, T., Ueda, K., & Nakano, H. (1993). Abnormal behavioral patterns in the human fetus at term: Correlation with lesion sites in the central nervous system after birth. Journal of child neurology, 8(1), 1926.CrossRefGoogle ScholarPubMed
Kuniyoshi, Y. (1994). The science of imitation-towards physically and socially grounded intelligence. Paper presented at the Special Issue TR-94001, Real World Computing Project Joint Symposium, Tsukuba-shi, Ibaraki-ken.Google Scholar
Kuniyoshi, Y., & Berthouze, L. (1998). Neural learning of embodied interaction dynamics. Neural Networks, 11(7–8), 12591276.CrossRefGoogle ScholarPubMed
Kuniyoshi, Y., Cheng, G., & Nagakubo, A. (2003). Etl-humanoid: A research vehicle for open-ended action imitation. Robotics Research, 6, 6782.CrossRefGoogle Scholar
Kuniyoshi, Y., Yorozu, Y., Inaba, M., & Inoue, H. (2003). From visuo-motor self-learning to early imitation: A neural architecture for humanoid learning. Paper presented at the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Japan.CrossRefGoogle Scholar
Kurjak, A., Azumendi, G., Veček, N., Kupešic, S., Solak, M., Varga, D., & Chervenak, F. (2003). Fetal hand movements and facial expression in normal pregnancy studied by four-dimensional sonography. Journal of Perinatal Medicine, 31(6), 496508.CrossRefGoogle ScholarPubMed
Larroque, B., Ancel, P. -Y., Marret, S., Marchand, L., André, M., Arnaud, C., … Thiriez, G. (2008). Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): A longitudinal cohort study. Lancet, 371(9615), 813820.CrossRefGoogle ScholarPubMed
Larsen, R. S., Rao, D., Manis, P. B., & Philpot, B. D. (2010). STDP in the developing sensory neocortex. Frontiers in Synaptic Neuroscience, 2, 9.Google ScholarPubMed
Lawn, J. E., Mwansa-Kambafwile, J., Horta, B. L., Barros, F. C., & Cousens, S. (2010). “Kangaroo mother care” to prevent neonatal deaths due to preterm birth complications. International Journal of Epidemiology, 39(suppl. 1), i144i154.CrossRefGoogle Scholar
Lüchinger, A. B., Hadders-Algra, M., van Kan, C. M., & de Vries, J. I. (2008). Fetal onset of general movements. Pediatric Research, 63(2), 191.CrossRefGoogle ScholarPubMed
Ludington-Hoe, S. M. (2013). Kangaroo care as a neonatal therapy. Newborn and Infant Nursing Reviews, 13(2), 7375.Google Scholar
Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental robotics: A survey. Connection Science, 15(4), 151190.CrossRefGoogle Scholar
McConnell, S. K., Ghosh, A., & Shatz, C. J. (1989). Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science, 245(4921), 978982.CrossRefGoogle ScholarPubMed
McQuillen, P. S., Sheldon, R. A., Shatz, C. J., & Ferriero, D. M. (2003). Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia. Journal of Neuroscience, 23(8), 33083315.CrossRefGoogle ScholarPubMed
Meliza, C. D., & Dan, Y. (2006). Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron, 49(2), 183189.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 7578.CrossRefGoogle ScholarPubMed
Merleau-Ponty, M., & Smith, C. (1996). Phenomenology of perception. Delhi: Motilal Banarsidass Publishers.Google Scholar
Milh, M., Kaminska, A., Huon, C., Lapillonne, A., Ben-Ari, Y., & Khazipov, R. (2006). Rapid cortical oscillations and early motor activity in premature human neonate. Cerebral Cortex, 17(7), 15821594.CrossRefGoogle ScholarPubMed
Miller, J. A., Ding, S. -L., Sunkin, S. M., Smith, K. A., Ng, L., Szafer, A., … Aiona, K. (2014). Transcriptional landscape of the prenatal human brain. Nature, 508(7495), 199.CrossRefGoogle ScholarPubMed
Mullen, K. M., Vohr, B. R., Katz, K. H., Schneider, K. C., Lacadie, C., Hampson, M., … Ment, L. R. (2011). Preterm birth results in alterations in neural connectivity at age 16 years. Neuroimage, 54(4), 25632570.CrossRefGoogle ScholarPubMed
Myowa-Yamakoshi, M., & Takeshita, H. (2006). Do human fetuses anticipate self-oriented actions? A study by four-dimensional (4D) ultrasonography. Infancy, 10(3), 289301.CrossRefGoogle Scholar
Nagai, Y., Hosoda, K., Morita, A., & Asada, M. (2003). A constructive model for the development of joint attention. Connection Science, 15(4), 211229.CrossRefGoogle Scholar
Narayanan, D. Z., & Ghazanfar, A. A. (2014). Developmental neuroscience: How twitches make sense. Current Biology, 24(19), R971R972.CrossRefGoogle ScholarPubMed
Nebel, M. B., Joel, S. E., Muschelli, J., Barber, A. D., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2014). Disruption of functional organization within the primary motor cortex in children with autism. Human Brain Mapping, 35(2), 567580.CrossRefGoogle ScholarPubMed
Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical review E, 69(6), 066133.CrossRefGoogle ScholarPubMed
Ohgi, S., Morita, S., Loo, K. K., & Mizuike, C. (2007). A dynamical systems analysis of spontaneous movements in newborn infants. Journal of Motor Behavior, 39(3), 203214.CrossRefGoogle ScholarPubMed
Ohlsson, A., & Jacobs, S. E. (2013). NIDCAP: A systematic review and meta-analyses of randomized controlled trials. Pediatrics, 131(3), e881e893.CrossRefGoogle ScholarPubMed
Okado, N. (1984). Ontogeny of the central nervous system: Neurogenesis, fibre connection, synaptogenesis and myelination in the spinal cord. In Prechtl, H. F. R. (Ed.), Continuity of neural functions from prenatal to postnatal life (pp. 3145). London: Spastics International Medical Publications.Google Scholar
Partridge, E. A., Davey, M. G., Hornick, M. A., McGovern, P. E., Mejaddam, A. Y., Vrecenak, J. D., … Weiland, T. R. (2017). An extra-uterine system to physiologically support the extreme premature lamb. Nature Communications, 8, 15112.CrossRefGoogle ScholarPubMed
Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60(4), 389443.CrossRefGoogle Scholar
Petersson, P., Granmo, M., & Schouenborg, J. (2004). Properties of an adult spinal sensorimotor circuit shaped through early postnatal experience. Journal of Neurophysiology, 92, 280288.CrossRefGoogle ScholarPubMed
Petersson, P., Waldenström, A., Fåhraeus, C., & Schouenborg, J. (2003). Spontaneous muscle twitches during sleep guide spinal self-organization. Nature, 424(6944), 72.CrossRefGoogle ScholarPubMed
Pfeifer, R., & Scheier, C. (2001). Understanding intelligence. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Piaget, J. (1952). The origins of intelligence in children. Madison, CT: International Universities Press.Google Scholar
Pitcher, J. B., Schneider, L. A., Burns, N. R., Drysdale, J. L., Higgins, R. D., Ridding, M. C., … Robinson, J. S. (2012). Reduced corticomotor excitability and motor skills development in children born preterm. Journal of Physiology, 590(22), 58275844.CrossRefGoogle ScholarPubMed
Pitti, A., Mori, H., Yamada, Y., & Kuniyoshi, Y. (2010). A model of spatial development from parieto-hippocampal learning of body-place associations. Paper presented at the 10th International Conference on Epigenetic Robotics, Sweden.Google Scholar
Prechtl, H. F. R. (1984). Continuity and change in early neural development. In Prechtl, H. F. R. (Ed.), Continuity of neural functions from prenatal to postnatal life (pp. 115). London: Spastics International Medical Publications.Google Scholar
Prechtl, H. F. R. (1990). Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Human Development, 23(3), 151158.CrossRefGoogle ScholarPubMed
Prechtl, H. F. R. (2001). General movement assessment as a method of developmental neurology: New paradigms and their consequences. Developmental Medicine & Child Neurology, 43(12), 836842.CrossRefGoogle ScholarPubMed
Purves, D. (2012). Neuroscience: Oxford: Oxford University Press.Google Scholar
Rausell, E., Bickford, L., Manger, P. R., Woods, T. M., & Jones, E. G. (1998). Extensive divergence and convergence in the thalamocortical projection to monkey somatosensory cortex. Journal of Neuroscience, 18(11), 42164232.CrossRefGoogle ScholarPubMed
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27(12), 18251828. e1823.CrossRefGoogle ScholarPubMed
Reissland, N., Francis, B., Aydin, E., Mason, J., & Schaal, B. (2014). The development of anticipation in the fetus: A longitudinal account of human fetal mouth movements in reaction to and anticipation of touch. Developmental Psychobiology, 56(5), 955963.CrossRefGoogle Scholar
Robinson, S. R., & Kleven, G. A. (2005). Learning to move before birth. In Hopkins, B. & Johnson, S. (Eds.), Prenatal development of postnatal functions (Advances in Infancy Research series) (Vol. 2, pp. 131175). Westport, CT: Praeger.Google Scholar
Robinson, S. R., Kleven, G. A., & Brumley, M. R. (2008). Prenatal development of interlimb motor learning in the rat fetus. Infancy, 13(3), 204228.CrossRefGoogle ScholarPubMed
Rochat, P. (2009). The infant’s world. Cambridge, MA: Harvard University Press.Google Scholar
Rochat, P. (2011). The self as phenotype. Consciousness and Cognition, 20(1), 109119.CrossRefGoogle ScholarPubMed
Rochat, P., & Hespos, S. J. (1997). Differential rooting response by neonates: Evidence for an early sense of self. Infant and Child Development, 6(3–4), 105112.Google Scholar
Rubenstein, J. L. (2010). Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Current Opinion in Neurology, 23(2), 118123.CrossRefGoogle ScholarPubMed
Rubenstein, J. L. & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2(5), 255267.CrossRefGoogle ScholarPubMed
Sarnat, H. B. (2003). Functions of the corticospinal and corticobulbar tracts in the human newborn. Journal of Pediatric Neurology, 1(1), 38.Google Scholar
Sasaki, R., Yamada, Y., Tsukahara, Y., & Kuniyoshi, Y. (2013). Tactile stimuli from amniotic fluid guides the development of somatosensory cortex with hierarchical structure using human fetus simulation. Paper presented at the 2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL), Osaka, Japan.CrossRefGoogle Scholar
Schaal, B., Marlier, L., & Soussignan, R. (1998). Olfactory function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behavioral Neuroscience, 112(6), 1438.CrossRefGoogle ScholarPubMed
Shirado, H., Konyo, M., & Maeno, T. (2007). Modeling of tactile texture recognition mechanism. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 73(9), 25142522.Google Scholar
Sizun, J., & Westrup, B. (2004). Early developmental care for preterm neonates: A call for more research. Archives of Disease in Childhood: Fetal and Neonatal Edition, 89(5), F384F388.CrossRefGoogle Scholar
Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J., Snyder, A. Z., & Neil, J. J. (2010). Longitudinal analysis of neural network development in preterm infants. Cerebral Cortex, 20(12), 28522862.CrossRefGoogle ScholarPubMed
Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13(1), 334350.Google ScholarPubMed
Spittle, A., Orton, J., Doyle, L. W., & Boyd, R. (2007). Early developmental intervention programs post hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database of Systematic Reviews, 2, CD005495. doi: 005491-CD005495.005471.CrossRefGoogle Scholar
Spitzer, N. C. (2006). Electrical activity in early neuronal development. Nature, 444(7120), 707.CrossRefGoogle ScholarPubMed
Sporns, O. (2010). Networks of the brain. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Sretavan, D. W., Shatz, C. J., & Stryker, M. P. (1988). Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature, 336(6198), 468.CrossRefGoogle ScholarPubMed
Stephen, D. G., Hsu, W. -H., Young, D., Saltzman, E. L., Holt, K. G., Newman, D. J., … Goldfield, E. C. (2012). Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination. Chaos, Solitons & Fractals, 45(9–10), 12011219.Google Scholar
Suster, M. L., & Bate, M. (2002). Embryonic assembly of a central pattern generator without sensory input. Nature, 416(6877), 174.CrossRefGoogle ScholarPubMed
Symington, A. J., & Pinelli, J. (2006). Developmental care for promoting development and preventing morbidity in preterm infants. Cochrane Database Systematic Review, 4, CD001814.Google Scholar
Takahashi, E., Folkerth, R. D., Galaburda, A. M., & Grant, P. E. (2011). Emerging cerebral connectivity in the human fetal brain: An MR tractography study. Cerebral Cortex, 22(2), 455464.CrossRefGoogle Scholar
Takahashi, E., Hayashi, E., Schmahmann, J. D., & Grant, P. E. (2014). Development of cerebellar connectivity in human fetal brains revealed by high angular resolution diffusion tractography. Neuroimage, 96, 326333.CrossRefGoogle ScholarPubMed
Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35(1), 147.CrossRefGoogle ScholarPubMed
Teramae, J. -N., Tsubo, Y., & Fukai, T. (2012). Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Scientific Reports, 2, 485.CrossRefGoogle ScholarPubMed
Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.Google Scholar
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. TRENDS in Neurosciences, 29(3), 148159.CrossRefGoogle ScholarPubMed
Tomasello, M. (2009). The cultural origins of human cognition: Cambridge, MA: Harvard University Press.Google Scholar
Tripodi, M., Stepien, A. E., & Arber, S. (2011). Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature, 479(7371), 61.CrossRefGoogle ScholarPubMed
Vaal, J., van Soest, A., Hopkins, B., Sie, L., & van der Knaap, M. (2000). Development of spontaneous leg movements in infants with and without periventricular leukomalacia. Experimental Brain Research, 135(1), 94105.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., Kersbergen, K. J., de Reus, M. A., Keunen, K., Kahn, R. S., Groenendaal, F., … Benders, M. J. (2014). The neonatal connectome during preterm brain development. Cerebral Cortex, 25(9), 30003013.CrossRefGoogle ScholarPubMed
van der Meer, A. L. (1997). Keeping the arm in the limelight: Advanced visual control of arm movements in neonates. European Journal of Paediatric Neurology, 1(4), 103108.CrossRefGoogle ScholarPubMed
Varela, F. J., Rosch, E., & Thompson, E. (1992). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.Google Scholar
Vauclair, J. (2012). Developpment du jeune enfant, Motriref, Perception, Cognition. Paris: Belin.Google Scholar
von Hofsten, C. (1982). Eye–hand coordination in the newborn. Developmental Psychology, 18(3), 450.CrossRefGoogle Scholar
von Hofsten, C. (2007). Action in development. Developmental Science, 10(1), 5460.CrossRefGoogle ScholarPubMed
Waldmeier, S., Grunt, S., Delgado-Eckert, E., Latzin, P., Steinlin, M., Fuhrer, K., & Frey, U. (2013). Correlation properties of spontaneous motor activity in healthy infants: A new computer-assisted method to evaluate neurological maturation. Experimental Brain Research, 227(4), 433446.Google ScholarPubMed
Wallin, L., & Eriksson, M. (2009). Newborn individual development care and assessment program (NIDCAP): A systematic review of the literature. Worldviews on Evidence-Based Nursing, 6(2), 5469.CrossRefGoogle ScholarPubMed
Warp, E., Agarwal, G., Wyart, C., Friedmann, D., Oldfield, C. S., Conner, A., … Isacoff, E. Y. (2012). Emergence of patterned activity in the developing zebrafish spinal cord. Current Biology, 22(2), 93102.CrossRefGoogle ScholarPubMed
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440.CrossRefGoogle ScholarPubMed
Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., & Thelen, E. (2001). Autonomous mental development by robots and animals. Science, 291(5504), 599600.CrossRefGoogle ScholarPubMed
White, L. E., Coppola, D. M., & Fitzpatrick, D. (2001). The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature, 411(6841), 1049.CrossRefGoogle ScholarPubMed
Yamada, Y., Fujii, K., & Kuniyoshi, Y. (2013). Impacts of environment, nervous system and movements of preterms on body map development: Fetus simulation with spiking neural network. Paper presented at the Development and Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint International Conference, Osaka, Japan.CrossRefGoogle Scholar
Yamada, Y., Kanazawa, H., Iwasaki, S., Tsukahara, Y., Iwata, O., Yamada, S., & Kuniyoshi, Y. (2016). An embodied brain model of the human foetus. Scientific Reports, 6, 27893.CrossRefGoogle ScholarPubMed
Yamada, Y., & Kuniyoshi, Y. (2012a). Embodiment guides motor and spinal circuit development in vertebrate embryo and fetus. Paper presented at the Development and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International Conference, San Diego, California.CrossRefGoogle Scholar
Yamada, Y., & Kuniyoshi, Y. (2012b). Emergent spontaneous movements based on embodiment: Toward a general principle for early development. Paper presented at the Post-Graduate Conference on Robotics and Development of Cognition, Lausanne, Switzerland.Google Scholar
Yvert, B., Branchereau, P., & Meyrand, P. (2004). Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window. Journal of Neurophysiology, 91(5), 21012109.CrossRefGoogle ScholarPubMed
Zoia, S., Blason, L., D’Ottavio, G., Bulgheroni, M., Pezzetta, E., Scabar, A., & Castiello, U. (2007). Evidence of early development of action planning in the human foetus: a kinematic study. Experimental Brain Research, 176(2), 217226.CrossRefGoogle ScholarPubMed
Adair, L. S., Fall, C. H. D., Osmond, C., Stein, A. D., Martorell, R., Ramirez-Zea, M., … COHORTS Group (2013). Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: Findings from five birth cohort studies. Lancet, 382(9891), 525534.CrossRefGoogle ScholarPubMed
Adolph, K. E., & Franchak, J. M. (2017). The development of motor behavior. Wiley Interdisciplinary Reviews. Cognitive Science, 8 (12).Google ScholarPubMed
Adolph, K. E., & Robinson, S. R. (2015). Motor development. In Liben, L. S. & Muller, U. (Eds.), Handbook of child psychology and developmental science (7th ed., Vol. 2: Cognitive processes pp. 114157). New York, NY: Wiley.Google Scholar
Akaboshi, I., Kitano, A., Kan, H., Haraguchi, Y., & Mizumoto, Y. (2012). Chest circumference in infancy predicts obesity in 3-year-old children. Asia Pacific Journal of Clinical Nutrition, 21(4), 495501.Google ScholarPubMed
American Academy of Pediatrics (2014). Study on helmet therapy suffers from several weaknesses. AAP News, 35(11), 55.Google Scholar
American Academy of Pediatrics (2016). Systematic review and evidence-based guidelines for the management of patients with positional plagiocephaly. Pediatrics, 138(5), e20162802.CrossRefGoogle Scholar
Amiel-Tison, C., Gosselin, J., & Infante-Rivard, C. (2002). Head growth and cranial assessment at neurological examination in infancy. Developmental Medicine and Child Neurology, 44(9), 643648.CrossRefGoogle ScholarPubMed
Arner, P. (2018). Fat tissue growth and development in humans. Nestle Nutrition Institute Workshop Series, 89, 3745.CrossRefGoogle ScholarPubMed
Avan, B., Richter, L. M., Ramchandani, P. G., Norris, S. A., & Stein, A. (2010). Maternal postnatal depression and children’s growth and behaviour during the early years of life: exploring the interaction between physical and mental health. Archives of Disease in Childhood, 95(9), 690695.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1995). Fetal origins of coronary heart disease. British Medical Journal, 311(6998), 171174.CrossRefGoogle ScholarPubMed
Bartholomeusz, H. H., Courchesne, E., & Karns, C. M. (2002). Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics, 33(5), 239241.Google ScholarPubMed
Bastir, M., García Martínez, D., Recheis, W., Barash, A., Coquerelle, M., Rios, L., … O’Higgins, P. (2013). Differential growth and development of the upper and lower human thorax. PLoS ONE, 8(9), e75128.CrossRefGoogle ScholarPubMed
Bell, K. A., Wagner, C. L., Perng, W., Feldman, H. A., Shypailo, R. J., & Belfort, M. B. (2018). Validity of body mass index as a measure of adiposity in infancy. Journal of Pediatrics, 196, 168174.CrossRefGoogle ScholarPubMed
Bhardwaj, R. D., Curtis, M. A., Spalding, K. L., Buchholz, B. A., Fink, D., Björk-Eriksson, T., … Frisén, J. (2006). Neocortical neurogenesis in humans is restricted to development. Proceedings of the National Academy of Sciences, 103(33), 1256412568.CrossRefGoogle ScholarPubMed
Braude, P., Bolton, V., & Moore, S. (1988). Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature, 332(6163), 459461.CrossRefGoogle ScholarPubMed
Bray, P. F., Shields, W. D., Wolcott, G. J., & Madsen, J. A. (1969). Occipitofrontal head circumference: An accurate measure of intracranial volume. Journal of Pediatrics, 75(2), 303305.CrossRefGoogle ScholarPubMed
Brei, C., Much, D., Heimberg, E., Schulte, V., Brunner, S., Stecher, L., … Hauner, H. (2015). Sonographic assessment of abdominal fat distribution during the first year of infancy. Pediatric Research, 78(3), 342350.CrossRefGoogle ScholarPubMed
Breij, L. M., Abrahamse-Berkeveld, M., Acton, D., de Lucia Rolfe, E., Ong, K. K., & Hokken-Koelega, A. C. S. (2017). Impact of early infant growth, duration of breastfeeding and maternal factors on total body fat mass and visceral fat at 3 and 6 months of age. Annals of Nutrition & Metabolism, 71(3–4), 203210.CrossRefGoogle ScholarPubMed
Breij, L. M., Kerkhof, G. F., de Lucia Rolfe, E., Ong, K. K., Abrahamse-Berkeveld, M., Acton, D., … Hokken-Koelega, A. C. S. (2017). Longitudinal fat mass and visceral fat during the first 6months after birth in healthy infants: Support for a critical window for adiposity in early life. Pediatric Obesity, 12(4), 286294.CrossRefGoogle Scholar
Buschang, P. H. (1982). Differential long bone growth of children between two months and eleven years of age. American Journal of Physical Anthropology, 58(3), 291295.CrossRefGoogle ScholarPubMed
Butte, N. F., Hopkinson, J. M., Wong, W. W., Smith, E. O., & Ellis, K. J. (2000). Body composition during the first 2 years of life: An updated reference. Pediatric Research, 47(5), 578585.Google ScholarPubMed
Cameron, N. (1984). The measurement of human growth. London: Routledge.Google Scholar
Cameron, N., Preece, M. A., & Cole, T. J. (2005). Catch-up growth or regression to the mean? Recovery from stunting revisited. American Journal of Human Biology, 17(4), 412417.Google ScholarPubMed
Chen, H., Wang, J., Uddin, L. Q., Wang, X., Gui, X., Lu, F., … Wu, L. (2018). Aberrant functional connectivity of neural circuits associated with social and sensorimotor deficits in young children with autism spectrum disorder. Autism Research, 11(12), 16431652.CrossRefGoogle ScholarPubMed
Chen, L., Wang, D., Wu, Z., Ma, L., & Daley, G. Q. (2010). Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Research, 20(9), 982993.CrossRefGoogle ScholarPubMed
Chester, V. L., & Jensen, R. K. (2005). Changes in infant segment inertias during the first three months of independent walking. Dynamic Medicine, 4(1), 9.Google ScholarPubMed
Collett, B. R., Starr, J. R., Kartin, D., Heike, C. L., Berg, J., Cunningham, M. L., & Speltz, M. L. (2011). Development in toddlers with and without deformational plagiocephaly. Archives of Pediatrics & Adolescent Medicine, 165(7), 653658.CrossRefGoogle ScholarPubMed
Conkle, J., Suchdev, P. S., Alexander, E., Flores-Ayala, R., Ramakrishnan, U., & Martorell, R. (2018). Accuracy and reliability of a low-cost, handheld 3D imaging system for child anthropometry. PloS One, 13(10), e0205320.CrossRefGoogle ScholarPubMed
Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., … Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245254.CrossRefGoogle Scholar
Courchesne, E., Pramparo, T., Gazestani, V. H., Lombardo, M. V., Pierce, K., & Lewis, N. E. (2018). The ASD living biology: From cell proliferation to clinical phenotype. Molecular Psychiatry, 24(1), 88107.CrossRefGoogle ScholarPubMed
Day, N. L., Richardson, G., Robles, N., Sambamoorthi, U., Taylor, P., Scher, M., … Cornelius, M. 1990). Effect of prenatal alcohol exposure on growth and morphology of offspring at 8 months of age. Pediatrics, 85(5), 748752.Google ScholarPubMed
Davis, T. A., & Fiorotto, M. L. (2009). Regulation of muscle growth in neonates. Current Opinion in Clinical Nutrition and Metabolic Care, 12(1), 7885.CrossRefGoogle ScholarPubMed
de Araújo, T. V. B., Rodrigues, L. C., de Alencar Ximenes, R., de Barros Miranda-Filho, D., Ramos Montarroyos, U., Lopes de Melo, A. P., … Turchi Martelli, C. M. (2016). Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: Preliminary report of a case-control study. Lancet: Infectious Diseases, 16(12), 13561363.CrossRefGoogle ScholarPubMed
de Brito, M. L., Nunes, M., Bernardi, J. R., Bosa, V. L., Goldani, M. Z., & da Silva, C. H. (2017). Somatic growth in the first six months of life of infants exposed to maternal smoking in pregnancy. BMC Pediatrics, 17(1), 67.CrossRefGoogle ScholarPubMed
de Cunto, A., Paviotti, G., Ronfani, L., Travan, L., Bua, J., Cont, G., & Demarini, S. (2014). Can body mass index accurately predict adiposity in newborns? Archives of Disease in Childhood: Fetal and Neonatal Edition, 99(3), F238–239.Google ScholarPubMed
de Onis, M., de, Onyango, A. W., Borghi, E., Garza, C., & Yang, H. (2006). Child growth standards and the National Center for Health Statistics/WHO international growth reference: Implications for child health programmes. Public Health Nutrition, 9(7), 942947.CrossRefGoogle ScholarPubMed
Demerath, E. W., Choh, A. C., Czerwinski, S. A., Lee, M., Sun, S. S., Chumlea, W. C., … Towne, B. (2007). Genetic and environmental influences on infant weight and weight changes: The Fels Longitudinal Study. American Journal of Human Biology, 19, 692702.CrossRefGoogle Scholar
Demerath, E. W., & Fields, D. A. (2014). Body composition assessment in the infant. American Journal of Human Biology, 26(3), 291304.CrossRefGoogle ScholarPubMed
Dingwall, E. J. (1931). Artificial cranial deformation: A contribution to the study of ethnic mutilations. London: J. Bale & Danielsson.Google Scholar
Dobrova-Krol, N. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Cyr, C., & Juffer, F. (2008). Physical growth delays and stress dysregulation in stunted and non-stunted Ukrainian institution-reared children. Infant Behavior & Development, 31(3), 539553.CrossRefGoogle ScholarPubMed
Dupont, C., Castellanos-Ryan, N., Séguin, J. R., Muckle, G., Simard, M. -N., Shapiro, G. D., … Lippé, S. (2018). The predictive value of head circumference growth during the first year of life on early child traits. Scientific Reports, 8(1), 9828.CrossRefGoogle ScholarPubMed
Eveleth, P. B., & Tanner, J. M. (1990). Worldwide variation in human growth. Cambridge, UK: Cambridge University Press.Google Scholar
Fabiansen, C., Yaméogo, C. W., Devi, S., Friis, H., Kurpad, A., & Wells, J. C. (2017). Deuterium dilution technique for body composition assessment: Resolving methodological issues in children with moderate acute malnutrition. Isotopes in Environmental and Health Studies, 53(4), 344355.CrossRefGoogle ScholarPubMed
Fields, D. A., Demerath, E. W., Pietrobelli, A., & Chandler-Laney, P. C. (2012). Body composition at 6 months of life: Comparison of air displacement plethysmography and dual-energy X-ray absorptiometry. Obesity, 20(11), 23022306.Google ScholarPubMed
Fiorotto, M. L., & Davis, T. A. (2018). Critical windows for the programming effects of early-life nutrition on skeletal muscle mass. Nestle Nutrition Institute Workshop Series, 89, 2535.CrossRefGoogle ScholarPubMed
Fleming, T. P., Kwong, W. Y., Porter, R., Ursell, E., Fesenko, I., Wilkins, A., … Eckert, J. J. (2004). The embryo and its future. Biology of Reproduction, 71(4), 10461054.CrossRefGoogle ScholarPubMed
Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: Causes and consequences. Lancet, 391(10132), 18421852.CrossRefGoogle ScholarPubMed
Goto, E. (2011). Meta-analysis: Identification of low birthweight by other anthropometric measurements at birth in developing countries. Journal of Epidemiology, 21(5), 354362.CrossRefGoogle ScholarPubMed
Hadush, M. Y., Berhe, A. H., & Medhanyie, A. A. (2017). Foot length, chest and head circumference measurements in detection of low birth weight neonates in Mekelle, Ethiopia: A hospital based cross sectional study. BMC Pediatrics, 17(1), 111.CrossRefGoogle ScholarPubMed
Hamill, P. V., Drizd, T. A., Johnson, C. L., Reed, R. B., & Roche, A. F. (1977). NCHS growth curves for children birth–18 years: United States. Vital and Health Statistics Series 11: Data from the National Health Survey, 165(i–iv), 174.Google Scholar
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., … Piven, J. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348351.CrossRefGoogle ScholarPubMed
Helgeland, O., Vaudel, M., Juliusson, P. B., Holmen, O. L., Juodakis, J., Bacelis, J., … Njølstad, R. (2018). Genome-wide association study reveals a dynamic role of common genetic variation in infant and early childhood growth. bioRxiv, November 25. http://dx.doi.org/0.110/478255.Google Scholar
Himes, J. H. (2006). Long-term longitudinal studies and implications for the development of an international growth reference for children and adolescents. Food and Nutrition Bulletin, 27(Suppl. 4), S199–211.CrossRefGoogle ScholarPubMed
Holzhauer, S., Zwijsen, R. M. L., Jaddoe, V. W. V., Boehm, G., Moll, H. A., Mulder, P. G., … Witteman, J. C. M. (2009). Sonographic assessment of abdominal fat distribution in infancy. European Journal of Epidemiology, 24(9), 521529.CrossRefGoogle ScholarPubMed
Idriz, S., Patel, J. H., Renani, S. A., Allan, R. A., & Vlahos, I. (2015). CT of normal developmental and variant anatomy of the pediatric skull: Distinguishing trauma from normality. Radiographics, 35(5), 15851601.CrossRefGoogle ScholarPubMed
Illingworth, R. S., & Lutz, W. (1965). Head circumference of infants related to body weight. Archives of Disease in Childhood, 40(214), 672676.CrossRefGoogle ScholarPubMed
Janssen, P. A., Thiessen, P., Klein, M. C., Whitfield, M. F., Macnab, Y. C., & Cullis-Kuhl, S. C. (2007). Standards for the measurement of birth weight, length and head circumference at term in neonates of European, Chinese and South Asian ancestry. Open Medicine, 1(2), e74–288.Google ScholarPubMed
Jensen, R. K. (1981). The effect of a 12-month growth period on the body moments of inertia of children. Medicine and Science in Sports and Exercise, 13(4), 238242.CrossRefGoogle ScholarPubMed
Johnson, L., Llewellyn, C. H., van Jaarsveld, C. H. M., Cole, T. J., & Wardle, J. (2011). Genetic and environmental influences on infant growth: Prospective analysis of the Gemini twin birth cohort. PloS One, 6(5), e19918.CrossRefGoogle ScholarPubMed
Johnson, T. S., Engstrom, J. L., & Gelhar, D. K. (1997). Intra- and interexaminer reliability of anthropometric measurements of term infants. Journal of Pediatric Gastroenterology and Nutrition, 24(5), 497505.CrossRefGoogle ScholarPubMed
Jukic, A. M., Baird, D. D., Weinberg, C. R., McConnaughey, D. R., & Wilcox, A. J. (2013). Length of human pregnancy and contributors to its natural variation. Human Reproduction, 28(10), 28482855.CrossRefGoogle ScholarPubMed
Kabir, N., & Forsum, E. (1993). Estimation of total body fat and subcutaneous adipose tissue in full-term infants less than 3 months old. Pediatric Research, 34(4), 448454.CrossRefGoogle ScholarPubMed
Karasik, L. B., Tamis-LeMonda, C. S., Ossmy, O., & Adolph, K. E. (2018). The ties that bind: Cradling in Tajikistan. PLOS ONE, 13(10), e0204428.CrossRefGoogle ScholarPubMed
Karsenty, G. (2017). Update on the biology of osteocalcin. Endocrine Practice, 23(10), 12701274.CrossRefGoogle ScholarPubMed
Kelly, K. M., Joganic, E. F., Beals, S. P., Riggs, J. A., McGuire, M. K., & Littlefield, T. R. (2018). Helmet treatment of infants with deformational brachycephaly. Global Pediatric Health, 5. https://doi.org/10.1177/2333794X18805618.CrossRefGoogle ScholarPubMed
Kleijkers, S. H. M., van Montfoort, A. P. A., Smits, L. J. M., Viechtbauer, W., Roseboom, T. J., Nelissen, E. C., … Dumoulin, J. C. (2014). IVF culture medium affects post-natal weight in humans during the first 2 years of life. Human Reproduction, 29(4), 661669.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., … Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28(47), 1217612182.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C., Wang, J., Zhu, H., Geng, X., Woolson, S., Hamer, R. M., … Gilmore, J. H. (2014). Impact of sex and gonadal steroids on neonatal brain structure. Cerebral Cortex, 24(10), 27212731.CrossRefGoogle ScholarPubMed
Knittle, J. L., Timmers, K., Ginsberg-Fellner, F., Brown, R. E., & Katz, D. P. (1979). The growth of adipose tissue in children and adolescents: Cross-sectional and longitudinal studies of adipose cell number and size. Journal of Clinical Investigation, 63(2), 239246.CrossRefGoogle ScholarPubMed
Kuczmarski, R. J., Ogden, C. L., Guo, S. S., Grummer-Strawn, L. M., Flegal, K. M., Mei, Z., … Johnson, C. L. (2002). 2000 CDC growth charts for the United States: methods and development. Vital and Health Statistics Series 11: Data from the National Health Survey, 246, 1190.Google Scholar
La Berge, A. F. (1991). Mothers and infants, nurses and nursing: Alfred Donné and the medicalization of child care in nineteenth-century France. Journal of the History of Medicine and Allied Sciences, 46(1), 2043.CrossRefGoogle ScholarPubMed
Lam, S., Luerssen, T. G., Hadley, C., Daniels, B., Strickland, B. A., Brookshire, J., & Pan, I. W. (2017). The health belief model and factors associated with adherence to treatment recommendations for positional plagiocephaly. Journal of Neurosurgery Pediatrics, 19(3), 282288.CrossRefGoogle ScholarPubMed
Lampl, M., & Johnson, M. L. (2011a). Infant growth in length follows prolonged sleep and increased naps. Sleep, 34(5), 641650.CrossRefGoogle ScholarPubMed
Lampl, M., (2011b). Infant head circumference growth is saltatory and coupled to length growth. Early Human Development, 87(5), 361368.CrossRefGoogle ScholarPubMed
Lampl, M., Mummert, A., & Schoen, M. (2016). Promoting healthy growth or feeding obesity? The need for evidence-based oversight of infant nutritional supplement claims. Healthcare, 4(4), 84. https://doi.org/10.3390/healthcare4040084CrossRefGoogle ScholarPubMed
Lampl, M., & Schoen, M. (2017). How long bones grow children: Mechanistic paths to variation in human height growth. American Journal of Human Biology, 29(2), e22983.CrossRefGoogle ScholarPubMed
Lampl, M., & Thompson, A. L. (2007). Growth chart curves do not describe individual growth biology. American Journal of Human Biology, 19(5), 643653.CrossRefGoogle Scholar
Lampl, M., Veldhuis, J. D., & Johnson, M. L. (1992). Saltation and stasis: A model of human growth. Science, 258(5083), 801803.CrossRefGoogle Scholar
Laughlin, J., Luerssen, T. G., Dias, M. S., & American Academy of Pediatrics Committee on Practice and Ambulatory Medicine (2011). Prevention and management of positional skull deformities in infants. Pediatrics, 128(6), 12361241.CrossRefGoogle ScholarPubMed
Lee, H. S., Kim, S. J., & Kwon, J. -Y. (2018). Parents’ perspectives and clinical effectiveness of cranial-molding orthoses in infants with plagiocephaly. Annals of Rehabilitation Medicine, 42 5), 737747.CrossRefGoogle ScholarPubMed
Lindley, A. A., Benson, J. E., Grimes, C., Cole, T. M., & Herman, A. A. (1999). The relationship in neonates between clinically measured head circumference and brain volume estimated from head CT-scans. Early Human Development, 56(1), 1729.CrossRefGoogle ScholarPubMed
Lipira, A. B., Gordon, S., Darvann, T. A., Hermann, N. V., van Pelt, A. E., Naidoo, S. D., … Kane, A. A. (2010). Helmet versus active repositioning for plagiocephaly: A three-dimensional analysis. Pediatrics, 126(4), e936–945.CrossRefGoogle ScholarPubMed
Livshits, G., Peter, I., Vainder, M., & Hauspie, R. (2000) Genetic analysis of growth curve parameters of body weight, height and head circumference. Annals Human Biology, 27(3):299312.Google ScholarPubMed
Martínez-Abadías, N., Esparza, M., Sjøvold, T., González-José, R., Santos, M., & Hernández, M. (2009). Heritability of human cranial dimensions: Comparing the evolvability of different cranial regions. Journal of Anatomy, 214(1), 1935.Google ScholarPubMed
Martini, M., Klausing, A., Lüchters, G., Heim, N., & Messing-Jünger, M. (2018). Head circumference: A useful single parameter for skull volume development in cranial growth analysis? Head & Face Medicine, 14(1), 3.CrossRefGoogle ScholarPubMed
Martorell, R. (2017). Improved nutrition in the first 1000 days and adult human capital and health. American Journal of Human Biology, 29(2). doi: 10.1002/ajhb.22952.CrossRefGoogle ScholarPubMed
McCammon, R. W. (1970). Human growth and development. Oxford: Charles C. Thomas.Google Scholar
Mehta, A., & Hindmarsh, P. C. (2002). The use of somatropin (recombinant growth hormone). in children of short stature. Paediatric Drugs, 4(1), 3747.CrossRefGoogle ScholarPubMed
Mei, Z., Grummer-Strawn, L. M., Thompson, D., & Dietz, W. H. (2004). Shifts in percentiles of growth during early childhood: Analysis of longitudinal data from the California Child Health and Development Study. Pediatrics, 113(6), e617–627.CrossRefGoogle ScholarPubMed
Montgomery, S., Bartley, M., & Wilkinson, R. (1997). Family conflict and slow growth. Archives of Disease in Childhood, 77(4), 326330.CrossRefGoogle ScholarPubMed
Natale, V., & Rajagopalan, A. (2014). Worldwide variation in human growth and the World Health Organization growth standards: A systematic review. British Medical Journal: Open, 4(1), e003735.Google ScholarPubMed
Newell, K. M., & Wade, M. G. (2018). Physical growth, body scale, and perceptual-motor development. Advances in Child Development and Behavior, 55, 205243.CrossRefGoogle ScholarPubMed
Obri, A., Khrimian, L., Karsenty, G., & Oury, F. (2018). Osteocalcin in the brain: From embryonic development to age-related decline in cognition. Nature Reviews. Endocrinology, 14(3), 174182.CrossRefGoogle ScholarPubMed
Oury, F., Khrimian, L., Denny, C. A., Gardin, A., Chaouni, A., Goedden, N., … Karsenty, G. (2013). Maternal and offspring pools of osteocalcin influence brain development and functions. Cell, 155(1), 228241.CrossRefGoogle ScholarPubMed
Persing, J., James, H., Swanson, J., Kattwinkel, J., & American Academy of Pediatrics Committee on Practice and Ambulatory Medicine (2003). Prevention and management of positional skull deformities in infants. Pediatrics, 112(1), 199202.CrossRefGoogle ScholarPubMed
Pindrik, J., Ye, X., Ji, B.G., Pendleton, C., & Ahn, E. S. (2014). Anterior fontanelle closure and size in full-term children based on head computed tomography. Clinical Pediatrics, 53(12), 11491157.CrossRefGoogle ScholarPubMed
Piven, J., Elison, J. T., & Zylka, M. J. (2018). Toward a conceptual framework for early brain and behavior development in autism. Molecular Psychiatry, 23(1), 165.CrossRefGoogle Scholar
Pomeroy, E., Stock, J. T., Cole, T. J., O’Callaghan, M., & Wells, J. C. K. (2014). Relationships between neonatal weight, limb lengths, skinfold thicknesses, body breadths and circumferences in an Australian cohort. PLOS One, 9(8), e105108.CrossRefGoogle Scholar
Ramanathan, C., Xu, H., Khan, S. K., Shen, Y., Gitis, P. J., Welsh, D. K., … Liu, A. C. (2014) Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models. PLoS Genet, 10(4), e1004244. doi:10.1371/journal.pgen.1004244.CrossRefGoogle ScholarPubMed
Raymond, G. V., & Holmes, L. B. (1994). Head circumference standards in neonates. Journal of Child Neurology, 9(1), 6366.CrossRefGoogle ScholarPubMed
Roche, A. F., & Guo, S. (1992). Development of reference data for increments in variables related to growth. American Journal of Human Biology, 4(3), 365371.CrossRefGoogle Scholar
Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Critical Reviews in Environmental Science and Technology, 45(17), 18271879.CrossRefGoogle ScholarPubMed
Roy, S. M., Fields, D. A., Mitchell, J. A., Hawkes, C. P., Kelly, A., Wu, G. D., … McCormack, S. E. (2019). Body mass index is a better indicator of body composition than weight-for-length at age 1 month. Journal of Pediatrics, 204, 7783.CrossRefGoogle ScholarPubMed
Scerri, E. M. L., Thomas, M. G., Manica, A., Gunz, P., Stock, J. T., Stringer, C., … Chikhl, L. (2018). Did our species evolve in subdivided populations across Africa, and why does it matter? Trends in Ecology and Evolution, 33(8), 582594.CrossRefGoogle ScholarPubMed
Schneider, K., Zernicke, R. F., Ulrich, B. D., Jensen, J. L., & Thelen, E. (1990). Understanding movement control in infants through the analysis of limb intersegmental dynamics. Journal of Motor Behavior, 22(4), 493520.CrossRefGoogle ScholarPubMed
Smit, D. J. A., Luciano, M., Bartels, M., van Beijsterveldt, C. E. M., Wright, M. J., Hansell, N. K., … Boomsma, D. I. (2010). Heritability of head size in Dutch and Australian twin families at ages 0–50 years. Twin Research and Human Genetics, 13(4), 370380.CrossRefGoogle ScholarPubMed
Smith, D. W., Truog, W., Rogers, J. E., Greitzer, L. J., Skinner, A. L., McCann, J. J., & Harvey, M. A. (1976). Shifting linear growth during infancy: Illustration of genetic factors in growth from fetal life through infancy. Journal of Pediatrics, 89(2), 225230.CrossRefGoogle ScholarPubMed
Teager, S. J., Constantine, S., Lottering, N., & Anderson, P. J. (2018). Physiologic closure time of the metopic suture in South Australian infants from 3D CT scans. Child’s Nervous System, 35(2), 329335.CrossRefGoogle ScholarPubMed
Treit, S., Zhou, D., Chudley, A. E., Andrew, G., Rasmussen, C., Nikkel, S. M., … Beaulieu, C. (2016). Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PloS One, 11(2), e0150370.CrossRefGoogle ScholarPubMed
Tubbs, R. S., Salter, E. G., & Oakes, W.J. (2006). Artificial deformation of the human skull: A review. Clinical Anatomy, 19(4), 372377.CrossRefGoogle ScholarPubMed
Velazquez, M. A., Sheth, B., Smith, S. J., Eckert, J. J., Osmond, C., & Fleming, T. P. (2018). Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1864(2), 590600.CrossRefGoogle ScholarPubMed
van der Linden, V. (2016). Description of 13 infants born during October 2015–January 2016 with congenital Zika virus infection without microcephaly at birth. Morbidity and Mortality Weekly Report, 65(47), 13431348.CrossRefGoogle ScholarPubMed
van Dommelen, P., de Gunst, M. C., van der Vaart, A. W., & Boomsma, D. I. (2004). Genetic study of the height and weight process during infancy. Twin Research, 7(6), 607616.CrossRefGoogle ScholarPubMed
van Dyck, L. I., & Morrow, E. M. (2017). Genetic control of postnatal human brain growth. Current Opinion in Neurology, 30(1), 114124.CrossRefGoogle ScholarPubMed
van Vlimmeren, L. A., Engelbert, R. H., Pelsma, M., Groenewoud, H. M., Boere-Boonekamp, M. M., & van der Sanden, M. ( 2017). The course of skull deformation from birth to 5 years of age: A prospective cohort study. European Journal of Pediatrics, 176(1), 1121.CrossRefGoogle ScholarPubMed
van Wijk, R. M., van Vlimmeren, L. A., Groothuis-Oudshoorn, C. G. M., van der Ploeg, C. P. B., Ijzerman, M. J., & Boore-Boonekamp, M. M. (2014). Helmet therapy in infants with positional skull deformation: Randomised controlled trial. British Medical Journal, 348, g2741.CrossRefGoogle ScholarPubMed
Wagner, D. R. (2013). Ultrasound as a tool to assess body fat. Journal of Obesity, 2013, 19.CrossRefGoogle ScholarPubMed
Weaver, D. D., & Christian, J. C. (1980). Familial variation of head size and adjustment for parental head circumference. Journal of Pediatrics, 96(6), 990994.CrossRefGoogle ScholarPubMed
World Health Organization (2006). WHO child growth standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva: WHO.Google Scholar
Wright, C. M., & Emond, A. (2015). Head growth and neurocognitive outcomes. Pediatrics, 135(6), e1393–1398.CrossRefGoogle ScholarPubMed
Almas, A. N., Degnan, K. A., Radulescu, A., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2012). Effects of early intervention and the moderating effects of brain activity on institutionalized children’s social skills at age 8. Proceedings of the National Academy of Sciences of the United States of America, 109(Suppl. 2), 1722817231. https://doi.org/10.1073/pnas.1121256109CrossRefGoogle ScholarPubMed
Baccarelli, A., & Bollati, V. (2009). Epigenetics and environmental chemicals. Current Opinion in Pediatrics, 21(2), 243251.CrossRefGoogle ScholarPubMed
Baedke, J. (2013). The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4, Part B), 756773. https://doi.org/10.1016/j.shpsc.2013.06.001CrossRefGoogle ScholarPubMed
Ben Maamar, M., Sadler-Riggleman, I., Beck, D., McBirney, M., Nilsson, E., Klukovich, R., … Skinner, M. K. (2018). Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 4(2), dvy010. https://doi.org/10.1093/eep/dvy010CrossRefGoogle ScholarPubMed
Bernard, K., Frost, A., Bennett, C. B., & Lindhiem, O. (2017). Maltreatment and diurnal cortisol regulation: A meta-analysis. Psychoneuroendocrinology, 78, 5767. https://doi.org/10.1016/j.psyneuen.2017.01.005CrossRefGoogle ScholarPubMed
Bowers, M. E., & Yehuda, R. (2016). Intergenerational transmission of stress in humans. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(1), 232244. https://doi.org/10.1038/npp.2015.247CrossRefGoogle ScholarPubMed
Bowlby, J., & World Health Organization. (1952). Maternal care and mental health : A report prepared on behalf of the World Health Organization as a contribution to the United Nations programme for the welfare of homeless children (2nd ed.). Geneva: World Health Organization.Google Scholar
Braithwaite, E. C., Kundakovic, M., Ramchandani, P. G., Murphy, S. E., & Champagne, F. A. (2015). Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics, 10(5), 408417. https://doi.org/10.1080/15592294.2015.1039221CrossRefGoogle ScholarPubMed
Brody, G. H., Yu, T., Chen, E., Beach, S. R. H., & Miller, G. E. (2016). Family-centered prevention ameliorates the longitudinal association between risky family processes and epigenetic aging. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 57(5), 566574. https://doi.org/10.1111/jcpp.12495CrossRefGoogle ScholarPubMed
Brown, A. S., Gyllenberg, D., Malm, H., McKeague, I. W., Hinkka-Yli-Salomäki, S., Artama, M., … Sourander, A. (2016). Association of selective serotonin reuptake inhibitor exposure during pregnancy with speech, scholastic, and motor disorders in offspring. JAMA Psychiatry, 73(11), 11631170. https://doi.org/10.1001/jamapsychiatry.2016.2594CrossRefGoogle ScholarPubMed
Bush, N. R., Edgar, R. D., Park, M., MacIsaac, J. L., McEwen, L. M., Adler, N. E., … Boyce, W. T. (2018). The biological embedding of early-life socioeconomic status and family adversity in children’s genome-wide DNA methylation. Epigenomics, 10(11), 14451461. https://doi.org/10.2217/epi-2018-0042CrossRefGoogle ScholarPubMed
Busso, D. S., McLaughlin, K. A., Brueck, S., Peverill, M., Gold, A. L., & Sheridan, M. A. (2017). Child abuse, neural structure, and adolescent psychopathology: A longitudinal study. Journal of the American Academy of Child & Adolescent Psychiatry, 56(4), 321–328.e1. https://doi.org/10.1016/j.jaac.2017.01.013Google ScholarPubMed
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 53355340.CrossRefGoogle ScholarPubMed
Cecil, C. A. M., Walton, E., Smith, R. G., Viding, E., McCrory, E. J., Relton, C. L., … Barker, E. D. (2016). DNA methylation and substance-use risk: A prospective, genome-wide study spanning gestation to adolescence. Translational Psychiatry, 6(12), e976. https://doi.org/10.1038/tp.2016.247CrossRefGoogle Scholar
Champagne, F. A. (2008). Epigenetic mechanisms and the transgenerational effects of maternal care. Frontiers in Neuroendocrinology, 29(3), 386397. https://doi.org/10.1016/j.yfrne.2008.03.003CrossRefGoogle ScholarPubMed
Champagne, F. A. (2016). Epigenetic legacy of parental experiences: Dynamic and interactive pathways to inheritance. Development and Psychopathology, 28(4 Pt. 2), 12191228. https://doi.org/10.1017/S0954579416000808Google ScholarPubMed
Champagne, F. A., & Meaney, M. J. (2006). Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biological Psychiatry, 59(12), 12271235. https://doi.org/10.1016/j.biopsych.2005.10.016CrossRefGoogle Scholar
Champagne, F. A., (2007). Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behavioral Neuroscience, 121(6), 13531363. https://doi.org/10.1037/0735-7044.121.6.1353CrossRefGoogle ScholarPubMed
Champagne, F. A., Weaver, I. C. G., Diorio, J., Dymov, S., Szyf, M., & Meaney, M. J. (2006). Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology, 147(6), 29092915. https://doi.org/10.1210/en.2005-1119CrossRefGoogle ScholarPubMed
Cheung, P., Allis, C. D., & Sassone-Corsi, P. (2000). Signaling to chromatin through histone modifications. Cell, 103(2), 263271.CrossRefGoogle ScholarPubMed
Cicchetti, D., Hetzel, S., Rogosch, F. A., Handley, E. D., & Toth, S. L. (2016). Genome-wide DNA methylation in 1-year-old infants of mothers with major depressive disorder. Development and Psychopathology, 28(4 Pt. 2), 14131419. https://doi.org/10.1017/S0954579416000912CrossRefGoogle ScholarPubMed
Cortessis, V. K., Thomas, D. C., Levine, A. J., Breton, C. V., Mack, T. M., Siegmund, K. D., … Laird, P. W. (2012). Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships. Human Genetics, 131(10), 15651589. https://doi.org/10.1007/s00439-012-1189-8CrossRefGoogle ScholarPubMed
Curley, J. P., Mashoodh, R., & Champagne, F. A. (2011). Epigenetics and the origins of paternal effects. Hormones and Behavior, 59(3), 306314. https://doi.org/10.1016/j.yhbeh.2010.06.018CrossRefGoogle ScholarPubMed
Danchin, É., Charmantier, A., Champagne, F. A., Mesoudi, A., Pujol, B., & Blanchet, S. (2011). Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution. Nature Reviews. Genetics, 12(7), 475486. https://doi.org/10.1038/nrg3028CrossRefGoogle ScholarPubMed
D’Elia, A. T. D., Matsuzaka, C. T., Neto, J. B. B., Mello, M. F., Juruena, M. F., & Mello, A. F. (2018). Childhood sexual abuse and indicators of immune activity: A systematic review. Frontiers in Psychiatry, 9, 354. https://doi.org/10.3389/fpsyt.2018.00354CrossRefGoogle ScholarPubMed
Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 8996. https://doi.org/10.1038/nn.3594CrossRefGoogle ScholarPubMed
Dupont, C., Armant, D. R., & Brenner, C. A. (2009). Epigenetics: Definition, mechanisms and clinical perspective. Seminars in Reproductive Medicine, 27(5), 351357. https://doi.org/10.1055/s-0029-1237423CrossRefGoogle ScholarPubMed
Eddy, S. R. (2001). Non–coding RNA genes and the modern RNA world. Nature Reviews Genetics, 2(12), 919929. https://doi.org/10.1038/35103511CrossRefGoogle ScholarPubMed
Fan, Y., Tian, C., Liu, Q., Zhen, X., Zhang, H., Zhou, L., … Zhu, M. (2018). Preconception paternal bisphenol A exposure induces sex-specific anxiety and depression behaviors in adult rats. PloS One, 13(2), e0192434. https://doi.org/10.1371/journal.pone.0192434CrossRefGoogle ScholarPubMed
Fareri, D. S., Gabard-Durnam, L., Goff, B., Flannery, J., Gee, D. G., Lumian, D. S., … Tottenham, N. (2017). Altered ventral striatal-medial prefrontal cortex resting-state connectivity mediates adolescent social problems after early institutional care. Development and Psychopathology, 29(5), 18651876. https://doi.org/10.1017/S0954579417001456CrossRefGoogle ScholarPubMed
Farrell, C., Doolin, K., O’ Leary, N., Jairaj, C., Roddy, D., Tozzi, L., … O’Keane, V. (2018). DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Research, 265, 341348. https://doi.org/10.1016/j.psychres.2018.04.064CrossRefGoogle ScholarPubMed
Feil, R., & Fraga, M. F. (2012). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews. Genetics, 13(2), 97109. https://doi.org/10.1038/nrg3142CrossRefGoogle ScholarPubMed
Fiorito, G., Polidoro, S., Dugué, P. -A., Kivimaki, M., Ponzi, E., Matullo, G., … Vineis, P. (2017). Social adversity and epigenetic aging: A multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Scientific Reports, 7(1), 16266. https://doi.org/10.1038/s41598-017-16391-5CrossRefGoogle Scholar
Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286(5442), 11551158.CrossRefGoogle ScholarPubMed
Franklin, T. B., Russig, H., Weiss, I. C., Gräff, J., Linder, N., Michalon, A., … Mansuy, I. M. (2010). Epigenetic transmission of the impact of early stress across generations. Biological Psychiatry, 68(5), 408415. https://doi.org/10.1016/j.biopsych.2010.05.036CrossRefGoogle Scholar
Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., … Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 17(5), 667669. https://doi.org/10.1038/nn.3695CrossRefGoogle ScholarPubMed
Garg, E., Chen, L., Nguyen, T. T. T., Pokhvisneva, I., Chen, L. M., Unternaehrer, E., … Mavan Study Team. (2018). The early care environment and DNA methylome variation in childhood. Development and Psychopathology, 30(3), 891903. https://doi.org/10.1017/S0954579418000627CrossRefGoogle ScholarPubMed
Gould, K. L., Coventry, W. L., Olson, R. K., & Byrne, B. (2018). Gene–environment interactions in ADHD: The roles of SES and chaos. Journal of Abnormal Child Psychology, 46(2), 251263. https://doi.org/10.1007/s10802-017-0268-7CrossRefGoogle ScholarPubMed
Guibert, S., & Weber, M. (2013). Functions of DNA methylation and hydroxymethylation in mammalian development. Current Topics in Developmental Biology, 104, 4783. https://doi.org/10.1016/B978-0-12-416027-9.00002-4CrossRefGoogle ScholarPubMed
Gurnot, C., Martin-Subero, I., Mah, S. M., Weikum, W., Goodman, S. J., Brain, U., … Hensch, T. K. (2015). Prenatal antidepressant exposure associated with CYP2E1 DNA methylation change in neonates. Epigenetics, 10(5), 361372. https://doi.org/10.1080/15592294.2015.1026031CrossRefGoogle ScholarPubMed
Hane, A. A., Henderson, H. A., Reeb-Sutherland, B. C., & Fox, N. A. (2010). Ordinary variations in human maternal caregiving in infancy and biobehavioral development in early childhood: A follow-up study. Developmental Psychobiology, 52(6), 558567. https://doi.org/10.1002/dev.20461CrossRefGoogle ScholarPubMed
Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., … Lumey, L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 1704617049. https://doi.org/10.1073/pnas.0806560105CrossRefGoogle ScholarPubMed
Hobel, C. J., Goldstein, A., & Barrett, E. S. (2008). Psychosocial stress and pregnancy outcome. Clinical Obstetrics and Gynecology, 51(2), 333348. https://doi.org/10.1097/GRF.0b013e31816f2709CrossRefGoogle ScholarPubMed
Hodel, A. S., Hunt, R. H., Cowell, R. A., van den Heuvel, S. E., Gunnar, M. R., & Thomas, K. M. (2015). Duration of early adversity and structural brain development in post-institutionalized adolescents. NeuroImage, 105, 112119. https://doi.org/10.1016/j.neuroimage.2014.10.020CrossRefGoogle ScholarPubMed
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115Google ScholarPubMed
Houtepen, L. C., Hardy, R., Maddock, J., Kuh, D., Anderson, E. L., Relton, C. L., … Howe, L. D. (2018). Childhood adversity and DNA methylation in two population-based cohorts. Translational Psychiatry, 8(1), 266. https://doi.org/10.1038/s41398-018-0307-3CrossRefGoogle ScholarPubMed
Hu, F. B., Persky, V., Flay, B. R., Zelli, A., Cooksey, J., & Richardson, J. (1997). Prevalence of asthma and wheezing in public schoolchildren: Association with maternal smoking during pregnancy. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology, 79(1), 8084. https://doi.org/10.1016/S1081-1206(10)63090–6CrossRefGoogle ScholarPubMed
Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12(5), 432442. https://doi.org/10.1038/sj.mp.4001950CrossRefGoogle ScholarPubMed
Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 10741080. https://doi.org/10.1126/science.1063127CrossRefGoogle ScholarPubMed
Jones, P. A. (2012). Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13(7), 484492.CrossRefGoogle ScholarPubMed
Kertes, D. A., Bhatt, S. S., Kamin, H. S., Hughes, D. A., Rodney, N. C., & Mulligan, C. J. (2017). BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma. Clinical Epigenetics, 9, 68. https://doi.org/10.1186/s13148-017-0367-xCrossRefGoogle ScholarPubMed
Kundakovic, M., Gudsnuk, K., Herbstman, J. B., Tang, D., Perera, F. P., & Champagne, F. A. (2015). DNA methylation of BDNF as a biomarker of early-life adversity. Proceedings of the National Academy of Sciences of the United States of America, 112(22), 68076813. https://doi.org/10.1073/pnas.1408355111CrossRefGoogle ScholarPubMed
Labonté, B., Suderman, M., Maussion, G., Navaro, L., Yerko, V., Mahar, I., … Turecki, G. (2012). Genome-wide epigenetic regulation by early-life trauma. Archives of General Psychiatry, 69(7), 722731. https://doi.org/10.1001/archgenpsychiatry.2011.2287CrossRefGoogle ScholarPubMed
Lawn, R. B., Anderson, E. L., Suderman, M., Simpkin, A. J., Gaunt, T. R., Teschendorff, A. E., … Howe, L. D. (2018). Psychosocial adversity and socioeconomic position during childhood and epigenetic age: Analysis of two prospective cohort studies. Human Molecular Genetics, 27(7), 13011308. https://doi.org/10.1093/hmg/ddy036CrossRefGoogle ScholarPubMed
Lester, B. M., Marsit, C. J., Giarraputo, J., Hawes, K., LaGasse, L. L., & Padbury, J. F. (2015). Neurobehavior related to epigenetic differences in preterm infants. Epigenomics, 7(7), 11231136. https://doi.org/10.2217/epi.15.63CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3(8), 799806. https://doi.org/10.1038/77702CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., … Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277(5332), 16591662.CrossRefGoogle ScholarPubMed
Mashoodh, R., Habrylo, I. B., Gudsnuk, K. M., Pelle, G., & Champagne, F. A. (2018). Maternal modulation of paternal effects on offspring development. Proceedings. Biological Sciences, 285(1874). https://doi.org/10.1098/rspb.2018.0118Google ScholarPubMed
McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., … Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342348. https://doi.org/10.1038/nn.2270CrossRefGoogle ScholarPubMed
McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C. T., Hallett, M., Meaney, M. J., & Szyf, M. (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PloS One, 6(2), e14739. https://doi.org/10.1371/journal.pone.0014739CrossRefGoogle ScholarPubMed
McLaughlin, K. A., & Lambert, H. K. (2017). Child trauma exposure and psychopathology: Mechanisms of risk and resilience. Current Opinion in Psychology, 14, 2934. https://doi.org/10.1016/j.copsyc.2016.10.004CrossRefGoogle ScholarPubMed
Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81(1), 4179. https://doi.org/10.1111/j.1467-8624.2009.01381.xCrossRefGoogle ScholarPubMed
Melchior, M., Hersi, R., van der Waerden, J., Larroque, B., Saurel-Cubizolles, M. -J., Chollet, A., … EDEN MotherChild Cohort Study Group. (2015). Maternal tobacco smoking in pregnancy and children’s socio-emotional development at age 5: The EDEN mother–child birth cohort study. European Psychiatry: The Journal of the Association of European Psychiatrists, 30(5), 562568. https://doi.org/10.1016/j.eurpsy.2015.03.005CrossRefGoogle ScholarPubMed
Milaniak, I., Cecil, C. A. M., Barker, E. D., Relton, C. L., Gaunt, T. R., McArdle, W., & Jaffee, S. R. (2017). Variation in DNA methylation of the oxytocin receptor gene predicts children’s resilience to prenatal stress. Development and Psychopathology, 29(5), 16631674. https://doi.org/10.1017/S0954579417001316CrossRefGoogle ScholarPubMed
Millard, S. J., Weston-Green, K., & Newell, K. A. (2017). The effects of maternal antidepressant use on offspring behaviour and brain development: Implications for risk of neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 80, 743765. https://doi.org/10.1016/j.neubiorev.2017.06.008CrossRefGoogle ScholarPubMed
Miller, G. E., Yu, T., Chen, E., & Brody, G. H. (2015). Self-control forecasts better psychosocial outcomes but faster epigenetic aging in low-SES youth. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 1032510330. https://doi.org/10.1073/pnas.1505063112CrossRefGoogle ScholarPubMed
Mitsuya, K., Parker, A. N., Liu, L., Ruan, J., Vissers, M. C. M., & Myatt, L. (2017). Alterations in the placental methylome with maternal obesity and evidence for metabolic regulation. PloS One, 12(10), e0186115. https://doi.org/10.1371/journal.pone.0186115CrossRefGoogle ScholarPubMed
Mohn, F., & Schübeler, D. (2009). Genetics and epigenetics: Stability and plasticity during cellular differentiation. Trends in Genetics: TIG, 25(3), 129136. https://doi.org/10.1016/j.tig.2008.12.005CrossRefGoogle ScholarPubMed
Moisiadis, V. G., Constantinof, A., Kostaki, A., Szyf, M., & Matthews, S. G. (2017). Prenatal glucocorticoid exposure modifies endocrine function and behaviour for 3 generations following maternal and paternal transmission. Scientific Reports, 7(1), 11814. https://doi.org/10.1038/s41598-017-11635-wCrossRefGoogle ScholarPubMed
Monk, C., Feng, T., Lee, S., Krupska, I., Champagne, F. A., & Tycko, B. (2016). Distress during pregnancy: Epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. American Journal of Psychiatry, 173(7), 705713. https://doi.org/10.1176/appi.ajp.2015.15091171CrossRefGoogle ScholarPubMed
Monk, C., Spicer, J., & Champagne, F. A. (2012). Linking prenatal maternal adversity to developmental outcomes in infants: The role of epigenetic pathways. Development and Psychopathology, 24(4), 13611376. https://doi.org/10.1017/S0954579412000764CrossRefGoogle ScholarPubMed
Naumova, O. Y., Lee, M., Koposov, R., Szyf, M., Dozier, M., & Grigorenko, E. L. (2012). Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Development and Psychopathology, 24(1), 143155. https://doi.org/10.1017/S0954579411000605CrossRefGoogle ScholarPubMed
Ng, S. -F., Lin, R. C. Y., Laybutt, D. R., Barres, R., Owens, J. A., & Morris, M. J. (2010). Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature, 467(7318), 963966. https://doi.org/10.1038/nature09491CrossRefGoogle ScholarPubMed
Nigg, J., Nikolas, M., & Burt, S. A. (2010). Measured gene-by-environment interaction in relation to attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 49(9), 863873. https://doi.org/10.1016/j.jaac.2010.01.025CrossRefGoogle ScholarPubMed
Nilsson, E. E., Sadler-Riggleman, I., & Skinner, M. K. (2018). Environmentally induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 4(2), dvy016. https://doi.org/10.1093/eep/dvy016CrossRefGoogle ScholarPubMed
Noble, D. (2015). Conrad Waddington and the origin of epigenetics. Journal of Experimental Biology, 218(6), 816818. https://doi.org/10.1242/jeb.120071CrossRefGoogle ScholarPubMed
Non, A. L., Binder, A. M., Kubzansky, L. D., & Michels, K. B. (2014). Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics, 9(7), 964972. https://doi.org/10.4161/epi.28853CrossRefGoogle ScholarPubMed
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3(2), 97106.CrossRefGoogle ScholarPubMed
Papale, L. A., Seltzer, L. J., Madrid, A., Pollak, S. D., & Alisch, R. S. (2018). Differentially methylated genes in saliva are linked to childhood stress. Scientific Reports, 8(1), 10785. https://doi.org/10.1038/s41598-018-29107-0CrossRefGoogle ScholarPubMed
Paquette, A. G., Houseman, E. A., Green, B. B., Lesseur, C., Armstrong, D. A., Lester, B., & Marsit, C. J. (2016). Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics, 11(8), 603613. https://doi.org/10.1080/15592294.2016.1195534CrossRefGoogle ScholarPubMed
Paquette, A. G., Lester, B. M., Koestler, D. C., Lesseur, C., Armstrong, D. A., & Marsit, C. J. (2014). Placental FKBP5 genetic and epigenetic variation is associated with infant neurobehavioral outcomes in the RICHS cohort. PloS One, 9(8), e104913. https://doi.org/10.1371/journal.pone.0104913CrossRefGoogle ScholarPubMed
Parade, S. H., Parent, J., Rabemananjara, K., Seifer, R., Marsit, C. J., Yang, B. -Z., … Tyrka, A. R. (2017). Change in FK506 binding protein 5 (FKBP5) methylation over time among preschoolers with adversity. Development and Psychopathology, 29(5), 16271634. https://doi.org/10.1017/S0954579417001286CrossRefGoogle ScholarPubMed
Parent, C. I., & Meaney, M. J. (2008). The influence of natural variations in maternal care on play fighting in the rat. Developmental Psychobiology, 50(8), 767776. https://doi.org/10.1002/dev.20342CrossRefGoogle ScholarPubMed
Pauwels, S., Ghosh, M., Duca, R. C., Bekaert, B., Freson, K., Huybrechts, I., … Godderis, L. (2016). Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics, 12(1), 110. https://doi.org/10.1080/15592294.2016.1257450CrossRefGoogle ScholarPubMed
Peña, C. J., Neugut, Y. D., & Champagne, F. A. (2013). Developmental timing of the effects of maternal care on gene expression and epigenetic regulation of hormone receptor levels in female rats. Endocrinology, 154(11), 43404351. https://doi.org/10.1210/en.2013-1595CrossRefGoogle ScholarPubMed
Perera, F., Vishnevetsky, J., Herbstman, J. B., Calafat, A. M., Xiong, W., Rauh, V., & Wang, S. (2012). Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environmental Health Perspectives, 120(8), 11901194. https://doi.org/10.1289/ehp.1104492CrossRefGoogle Scholar
Razin, A. (1998). CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO Journal, 17(17), 49054908. https://doi.org/10.1093/emboj/17.17.4905CrossRefGoogle ScholarPubMed
Razin, A., & Riggs, A. D. (1980). DNA methylation and gene function. Science, 210(4470), 604610.CrossRefGoogle ScholarPubMed
Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S., & Bale, T. L. (2013). Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(21), 90039012. https://doi.org/10.1523/JNEUROSCI.0914-13.2013CrossRefGoogle ScholarPubMed
Rogers, C. E., Lean, R. E., Wheelock, M. D., & Smyser, C. D. (2018). Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. Journal of Neurodevelopmental Disorders, 10(1), 38. https://doi.org/10.1186/s11689-018-9253-xCrossRefGoogle ScholarPubMed
Schieve, L. A., Tian, L. H., Rankin, K., Kogan, M. D., Yeargin-Allsopp, M., Visser, S., & Rosenberg, D. (2016). Population impact of preterm birth and low birth weight on developmental disabilities in US children. Annals of Epidemiology, 26(4), 267274. https://doi.org/10.1016/j.annepidem.2016.02.012CrossRefGoogle ScholarPubMed
Sharp, G. C., Salas, L. A., Monnereau, C., Allard, C., Yousefi, P., Everson, T. M., … Relton, C. L. (2017). Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: Findings from the pregnancy and childhood epigenetics (PACE) consortium. Human Molecular Genetics, 26(20), 40674085. https://doi.org/10.1093/hmg/ddx290CrossRefGoogle ScholarPubMed
Shorey-Kendrick, L. E., McEvoy, C. T., Ferguson, B., Burchard, J., Park, B. S., Gao, L., … Spindel, E. R. (2017). Vitamin C prevents offspring DNA methylation changes associated with maternal smoking in pregnancy. American Journal of Respiratory and Critical Care Medicine, 196(6), 745755. https://doi.org/10.1164/rccm.201610-2141OCCrossRefGoogle ScholarPubMed
Simpkin, A. J., Hemani, G., Suderman, M., Gaunt, T. R., Lyttleton, O., Mcardle, W. L., … Smith, G. D. (2016). Prenatal and early life influences on epigenetic age in children: A study of mother–offspring pairs from two cohort studies. Human Molecular Genetics, 25(1), 191201. https://doi.org/10.1093/hmg/ddv456CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. J. S., Kennedy, M., Kumsta, R., Knights, N., Golm, D., Rutter, M., … Kreppner, J. (2017). Child-to-adult neurodevelopmental and mental health trajectories after early life deprivation: The young adult follow-up of the longitudinal English and Romanian Adoptees study. Lancet, 389(10078), 15391548. https://doi.org/10.1016/S0140-6736(17)30045-4CrossRefGoogle Scholar
Stamoulis, C., Vanderwert, R. E., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2017). Neuronal networks in the developing brain are adversely modulated by early psychosocial neglect. Journal of Neurophysiology, 118(4), 22752288. https://doi.org/10.1152/jn.00014.2017CrossRefGoogle ScholarPubMed
Staneva, A., Bogossian, F., Pritchard, M., & Wittkowski, A. (2015). The effects of maternal depression, anxiety, and perceived stress during pregnancy on preterm birth: A systematic review. Women and Birth: Journal of the Australian College of Midwives, 28(3), 179193. https://doi.org/10.1016/j.wombi.2015.02.003CrossRefGoogle ScholarPubMed
Susser, E. S., & Lin, S. P. (1992). Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Archives of General Psychiatry, 49(12), 983988.CrossRefGoogle ScholarPubMed
Talati, A., Wickramaratne, P. J., Wesselhoeft, R., & Weissman, M. M. (2017). Prenatal tobacco exposure, birthweight, and offspring psychopathology. Psychiatry Research, 252, 346352. https://doi.org/10.1016/j.psychres.2017.03.016CrossRefGoogle ScholarPubMed
Torche, F., & Kleinhaus, K. (2012). Prenatal stress, gestational age and secondary sex ratio: The sex-specific effects of exposure to a natural disaster in early pregnancy. Human Reproduction, 27(2), 558567. https://doi.org/10.1093/humrep/der390CrossRefGoogle ScholarPubMed
Troller-Renfree, S., McDermott, J. M., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2015). The effects of early foster care intervention on attention biases in previously institutionalized children in Romania. Developmental Science, 18(5), 713722. https://doi.org/10.1111/desc.12261CrossRefGoogle ScholarPubMed
Tserga, A., Binder, A. M., & Michels, K. B. (2017). Impact of folic acid intake during pregnancy on genomic imprinting of IGF2/H19 and 1-carbon metabolism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 31(12), 51495158. https://doi.org/10.1096/fj.201601214RRCrossRefGoogle ScholarPubMed
Vassoler, F. M., White, S. L., Schmidt, H. D., Sadri-Vakili, G., & Pierce, R. C. (2013). Epigenetic inheritance of a cocaine-resistance phenotype. Nature Neuroscience, 16(1), 4247. https://doi.org/10.1038/nn.3280CrossRefGoogle ScholarPubMed
Waddington, C. H. (1940). Organisers & genes. Cambridge, UK: Cambridge University Press.Google Scholar
Wadhwa, P. D., Entringer, S., Buss, C., & Lu, M. C. (2011). The contribution of maternal stress to preterm birth: Issues and considerations. Clinics in Perinatology, 38(3), 351384. https://doi.org/10.1016/j.clp.2011.06.007CrossRefGoogle ScholarPubMed
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., … Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847854. https://doi.org/10.1038/nn1276CrossRefGoogle ScholarPubMed
Weinstock, M., Fride, E., & Hertzberg, R. (1988). Prenatal stress effects on functional development of the offspring. Progress in Brain Research, 73, 319331. https://doi.org/10.1016/S0079-6123(08)60513-0CrossRefGoogle ScholarPubMed
Welch, M. G., Firestein, M. R., Austin, J., Hane, A. A., Stark, R. I., Hofer, M. A., … Myers, M. M. (2015). Family nurture intervention in the neonatal intensive care unit improves social-relatedness, attention, and neurodevelopment of preterm infants at 18 months in a randomized controlled trial. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 56(11), 12021211. https://doi.org/10.1111/jcpp.12405CrossRefGoogle Scholar
Welch, M. G., Stark, R. I., Grieve, P. G., Ludwig, R. J., Isler, J. R., Barone, J. L., & Myers, M. M. (2017). Family nurture intervention in preterm infants increases early development of cortical activity and independence of regional power trajectories. Acta Paediatrica, 106(12), 19521960. https://doi.org/10.1111/apa.14050CrossRefGoogle ScholarPubMed
Wilkinson, L. S., Davies, W., & Isles, A. R. (2007). Genomic imprinting effects on brain development and function. Nature Reviews. Neuroscience, 8(11), 832843. https://doi.org/10.1038/nrn2235CrossRefGoogle ScholarPubMed
Wilson, R. D., Davies, G., Désilets, V., Reid, G. J., Summers, A., Wyatt, P., … Genetics Committee and Executive and Council of the Society of Obstetricians and Gynaecologists of Canada (2003). The use of folic acid for the prevention of neural tube defects and other congenital anomalies. Journal of Obstetrics and Gynaecology Canada, 25(11), 959973.Google ScholarPubMed
Winther, G., Eskelund, A., Bay-Richter, C., Elfving, B., Müller, H. K., Lund, S., & Wegener, G. (2019). Grandmaternal high-fat diet primed anxiety-like behaviour in the second-generation female offspring. Behavioural Brain Research, 359, 4755. https://doi.org/10.1016/j.bbr.2018.10.017CrossRefGoogle ScholarPubMed
Balas, B., Westerlund, A., Hung, K., & Nelson III, C. A. (2011). Shape, color and the other-race effect in the infant brain. Developmental Science, 14(4), 892900. doi:10.1111/j.1467-7687.2011.01039.xCrossRefGoogle ScholarPubMed
Baldauf, D., & Desimone, R. (2014). Neural mechanisms of object-based attention. Science, 344(6182), 424427. doi:10.1126/science.1247003CrossRefGoogle ScholarPubMed
Barry, R. J., Clarke, A. R., McCarthy, R., Selikowitz, M., Rushby, J. A., & Ploskova, E. (2004). EEG differences in children as a function of resting-state arousal level. Clinical Neurophysiology, 115, 402408.CrossRefGoogle ScholarPubMed
Bhatt, R., Bertin, E., Hayden, A., & Reed, A. (2005). Face processing in infancy: Developmental changes in the use of different kinds of relational information. Child Development, 76(1), 169181.CrossRefGoogle ScholarPubMed
Bick, J., & Nelson, C. A. (2017). Early experience and brain development. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2), e1387. doi:10.1002/wcs.1387Google ScholarPubMed
Bick, J., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2018). Memory and executive functioning in 12-year-old children with a history of institutional rearing. Child Development, 89(2), 495508. doi:10.1111/cdev.12952CrossRefGoogle ScholarPubMed
Bourgeois, J. P. (1997). Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex. Acta Paediatric Supplement, 422, 2733.CrossRefGoogle ScholarPubMed
Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience, 13(7), 28012820. doi:10.1523/JNEUROSCI.13-07-02801.1993CrossRefGoogle ScholarPubMed
Cantlon, J. F., Pinel, P., Dehaene, S., & Pelphrey, K. A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cerebal Cortex, 21(1), 191199. doi:10.1093/cercor/bhq078CrossRefGoogle ScholarPubMed
Cashon, C. H., & Holt, N. A. (2015). Developmental origins of the face inversion effect. In Janette, B. B. (Ed.), Advances in child development and behaviour (Vol. 48, pp. 117150). Philadelphia, PA: Elsevier.Google Scholar
Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hénaff, M. -A., & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123(2), 291307. doi:10.1093/brain/123.2.291CrossRefGoogle ScholarPubMed
Conel, J. L. (1939–67). Postnatal development of the human cerebral cortex (Vols. 1–8). Cambridge, MA: Harvard University Press.Google Scholar
Conel, J. L. (1951). The postnatal development of the human cerebral cortex. Vol. 6: The cortex of the six-month infant. Cambridge, MA: Harvard University Press.Google Scholar
Conel, J. L. (1967). The postnatal development of the human cerebral cortex. Vol. 8: The cortex of the six-year-old child. Cambridge, MA: Harvard University Press.Google Scholar
Conte, S., & Richards, J. E. (2019). The development of face-sensitive cortical processing in early Infancy. Paper presented at the Society for Research in Child Development, Baltimore, MD.Google Scholar
Conte, S., Richards, J. E., Guy, M. W., Zieber, N., Xie, W., & Roberts, J.E. (2020). Face-sensitive brain responses in the first year of life. NeuroImage, 211, 116602. https://doi.org/10.1016/j.neuroimage.2020.116602CrossRefGoogle Scholar
de Haan, M., Pascalis, O., & Johnson, M. H. (2002). Specialization of neural mechanisms underlying face recognition in human infants. Journal of Cognitive Neuroscience, 14(2), 199209. doi:10.1162/089892902317236849CrossRefGoogle ScholarPubMed
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Travers, B. G., Adluru, N., Alexander, A. L., & Deoni, S. C. L. (2016). Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging. Neuroimage, 132, 225237. doi:10.1016/j.neuroimage.2016.02.040CrossRefGoogle ScholarPubMed
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Lehman, K., Walker, L., … Deoni, S.