Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-dkqnh Total loading time: 2.192 Render date: 2021-10-18T09:13:51.643Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Part IV - Action

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access
Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 467 - 576
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolph, K. E. (1997). Learning in the development of infant locomotion. Monographs of the Society for Research in Child Development, 62(3, Serial No. 251), 1140.CrossRefGoogle ScholarPubMed
Adolph, K. E. (2000). Specificity of learning: Why infants fall over a veritable cliff. Psychological Science, 11, 290295.CrossRefGoogle Scholar
Adolph, K. E., & Avolio, A. M. (2000). Walking infants adapt locomotion to changing body dimensions. Journal of Experimental Psychology: Human Perception and Performance, 26, 11481166.Google ScholarPubMed
Adolph, K. E., & Berger, S. E. (2006). Motor development. In Kuhn, D. & Siegler, R. S. (Eds.), Handbook of child psychology. Vol. 2: Cognition, perception, and language (6th ed., pp. 161213). New York, NY: Wiley.Google Scholar
Adolph, K. E., (2015). Physical and motor development. In Bornstein, M. H. & Lamb, M. E. (Eds.), Development science: An advanced textbook (7th ed., pp. 261333). New York, NY: Psychology Press.Google Scholar
Adolph, K. E., Berger, S. E., & Leo, A. J. (2011). Developmental continuity? Crawling, cruising, and walking. Developmental Science, 14, 306318.CrossRefGoogle ScholarPubMed
Adolph, K. E., Cole, W. G., Komati, M., Garciaguirre, J. S., Badaly, D., Lingeman, J. M., … Sotsky, R. B. (2012). How do you learn to walk? Thousands of steps and dozens of falls per day. Psychological Science, 23, 13871394.CrossRefGoogle Scholar
Adolph, K. E., Cole, W. G., & Vereijken, B. (2015). Intraindividual variability in the development of motor skills in childhood. In Diehl, M., Hooker, K., & Sliwinski, M. (Eds.), Handbook of intraindividual variability across the lifespan (pp. 5983). New York, NY: Routledge.Google Scholar
Adolph, K. E., & Franchak, J. M. (2016). The development of motor behavior. Wiley Interdisciplinary Reviews: Cognitive Science (WIREs), 8(1–2).Google ScholarPubMed
Adolph, K. E., & Hoch, J. E. (2019). Motor development: Embodied, embedded, enculturated, and enabling. Annual Review of Psychology, 70, 141164.CrossRefGoogle ScholarPubMed
Adolph, K. E., Hoch, J. E., & Cole, W. G. (2018). Development (of walking): 15 suggestions. Trends in Cognitive Sciences, 22(699711).CrossRefGoogle ScholarPubMed
Adolph, K. E., Karasik, L. B., & Tamis-LeMonda, C. S. (2010a). Motor skills. In Bornstein, M. H. (Ed.), Handbook of cultural development science. Vol. 1. Domains of development across cultures (pp. 6188). New York, NY: Taylor & Francis.Google Scholar
Adolph, K. E., Karasik, L. B., (2010b). Using social information to guide action: Infants’ locomotion over slippery slopes. Neural Networks, 23, 10331042.CrossRefGoogle ScholarPubMed
Adolph, K. E., & Robinson, S. R. (2013). The road to walking: What learning to walk tells us about development. In Zelazo, P. (Ed.), Oxford handbook of developmental psychology (pp. 403443). New York, NY: Oxford University Press.Google Scholar
Adolph, K. E., (2015). Motor development. In Liben, L. & Muller, U. (Eds.), Handbook of child psychology and developmental science. Vol. 2: Cognitive processes (7th ed., pp. 113157). New York, NY: Wiley.Google Scholar
Adolph, K. E., Vereijken, B., & Denny, M. A. (1998). Learning to crawl. Child Development, 69, 12991312.CrossRefGoogle ScholarPubMed
Adolph, K. E., Vereijken, B., & Shrout, P. E. (2003). What changes in infant walking and why. Child Development, 74, 474497.CrossRefGoogle Scholar
Assaiante, C., & Amblard, B. (1995). An ontogenetic model for the sensorimotor organization of balance control in humans. Human Movement Science, 14, 1343.CrossRefGoogle Scholar
Atun-Einy, O., Berger, S. E., & Scher, A. (2012). Pulling to stand: Common trajectories and individual differences. Developmental Psychobiology, 54, 187198.CrossRefGoogle ScholarPubMed
Atun-Einy, O., Berger, S. E., (2013). Assessing motivation to move and its relationship to motor development in infancy. Infant Behavior and Development, 36, 457469.CrossRefGoogle ScholarPubMed
Atun-Einy, O., Cohen, D., Samuel, M., & Scher, A. (2013). Season of birth, crawling onset, and motor development in 7-month-old infants. Journal of Reproductive and Infant Psychology, 31(4), 342351.CrossRefGoogle Scholar
Bailey, D. B., Hebbeler, K., Scarborough, A., Spiker, D., & Mallik, S. (2004). First experiences with early intervention: A national perspective. Pediatrics, 113, 887896.CrossRefGoogle ScholarPubMed
Barrett, T. M., & Needham, A. W. (2008). Developmental differences in infants’ use of an object’s shape to grasp it securely. Developmental Psychobiology, 50(1), 97106.CrossRefGoogle ScholarPubMed
Bastien, G. J., Willems, P. A., Schepens, B., & Heglund, N. C. (2016). The mechanics of head-supported load carriage by Nepalese porters. Journal of Experimental Biology, 219, 36263634.CrossRefGoogle ScholarPubMed
Bayley, N. (1936). The development of motor abilities during the first three years: A study of 61 infants tested repeatedly. Monographs of the Society for Research in Child Development, 1, 126.CrossRefGoogle Scholar
Bayley, N. (2006). Bayley scales of infant and toddler development: Bayley-III (3rd ed. Vol. 7). San Antonio, TX: Harcourt Assessment, Psychological Corporation.Google Scholar
Benson, J. B. (1993). Season of birth and onset of locomotion: Theoretical and methodological implications. Infant Behavior and Development, 16, 6981.CrossRefGoogle Scholar
Berger, S. E., Adolph, K. E., & Lobo, S. A. (2005). Out of the toolbox: Toddlers differentiate wobbly and wooden handrails. Child Development, 76, 12941307.CrossRefGoogle ScholarPubMed
Berger, S. E., Chan, G., & Adolph, K. E. (2014). What cruising infants understand about support for locomotion. Infancy, 19, 117137.CrossRefGoogle ScholarPubMed
Bernstein, N. A. (1996). On dexterity and its development. In Latash, M. L. & Turvey, M. T. (Eds.), Dexterity and its development (pp. 3244). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Bertenthal, B. I., & Bai, D. L. (1989). Infants’ sensitivity to optical flow for controlling posture. Developmental Psychology, 25, 936945.CrossRefGoogle Scholar
Berthier, N. E., & Keen, R. E. (2006). Development of reaching in infancy. Experimental Brain Research, 169, 507518.CrossRefGoogle ScholarPubMed
Bhat, A. N., & Galloway, J. C. (2006). Toy-oriented changes during early arm movements: Hand kinematics. Infant Behavior and Development, 29, 358372.CrossRefGoogle ScholarPubMed
Bisi, M. C., & Stagni, R. (2015). Evaluation of toddler different strategies during the first six-months of independent walking: A longitudinal study. Gait and Posture, 41, 574579.CrossRefGoogle ScholarPubMed
Bobath, K., & Bobath, B. (1984). The neuro-developmental treatment. In Scrutton, D. (Ed.), Management of the motor disorders of children with cerebral palsy (pp. 618). London: Spastics International Medical Publications.Google Scholar
Bourgeois, K. S., Khawar, A. W., Neal, S. A., & Lockman, J. J. (2005). Infant manual exploration of objects, surfaces, and their interrelations. Infancy, 8, 233252.CrossRefGoogle Scholar
Bril, B., & Sabatier, C. (1986). The cultural context of motor development: Postural manipulations in the daily life of Bambara babies (Mali). International Journal of Behavioral Development, 9, 439453.CrossRefGoogle Scholar
Chang, C. L., Kubo, M., Buzzi, U., & Ulrich, B. (2006). Early changes in muscle activation patterns of toddlers during walking. Infant Behavior and Development, 29, 175188.CrossRefGoogle ScholarPubMed
Chinn, L. K., Noonan, C. F., Hoffman, M., & Lockman, J. J. (2019). Development of infant reaching strategies to tactile targets on the face. Frontiers in Psychology, 10, 9.CrossRefGoogle ScholarPubMed
Clifton, R. K., Muir, D. W., Ashmead, D. H., & Clarkson, M. G. (1993). Is visually guided reaching in early infancy a myth? Child Development, 64, 10991110.CrossRefGoogle ScholarPubMed
Cole, W. G., Lingeman, J. M., & Adolph, K. E. (2012). Go naked: Diapers affect infant walking. Developmental Science, 15, 783790.CrossRefGoogle ScholarPubMed
Connolly, K. J., & Dalgleish, M. (1989). The emergence of a tool-using skill in infancy. Developmental Psychology, 25, 894912.CrossRefGoogle Scholar
Cunha, A. B., Lobo, M. A., Kokkoni, E., Galloway, J. C., & Tudella, E. (2015). Effect of short-term training on reaching behavior in infants: A randomized controlled clinical trial. Journal of Motor Behavior, 48, 132142.CrossRefGoogle ScholarPubMed
Davis, B. E., Moon, R. Y., Sachs, H. C., & Ottolini, M. C. (1998). Effects of sleep position on infant motor development. Pediatrics, 102, 11351140.CrossRefGoogle ScholarPubMed
de Vries, J. I. P., Visser, G. H. A., & Prechtl, H. F. R. (1982). The emergence of fetal behaviour. I: Qualitative aspects. Early Human Development, 7, 301322.CrossRefGoogle ScholarPubMed
Devine, J. (1985). The versatility of human locomotion. American Anthropologist, 87, 550570.CrossRefGoogle Scholar
Dudek-Shriber, L., & Zelazy, S. (2007). The effects of prone positioning on the quality and acquisition of developmental milestones in four-month-old infants. Pediatric Physical Therapy, 19, 4855.CrossRefGoogle ScholarPubMed
Fagard, J. (2000). Linked proximal and distal changes in the reaching behavior of 5- to 12-month-old human infants grasping objects of different sizes. Infant Behavior and Development, 23, 317329.CrossRefGoogle Scholar
Fang, H. S. Y., & Yu, F. Y. K. (1960). Foot binding in Chinese women. Canadian Journal of Surgery, 293, 195202.Google Scholar
Fetters, L. (2010). Perspective on variability in the development of human action. Physical Therapy, 90, 18601867.CrossRefGoogle ScholarPubMed
Fontenelle, S. A., Kahrs, B. A., Neal, S. A., Newton, A. T., & Lockman, J. J. (2007). Infant manual exploration of composite substrates. Journal of Experimental Child Psychology, 98, 153167.CrossRefGoogle ScholarPubMed
Geber, M. (1961). Longitudinal study and psycho-motor development among Baganda children. In Nielson, G. (Ed.), Proceedings of the XIV International Congress of Applied Psychology (Vol. 3, pp. 5060). Oxford: Munksgaard.Google Scholar
Gesell, A. (1929). Infancy and human growth. New York, NY: Macmillan.Google Scholar
Gesell, A. (1946). The ontogenesis of infant behavior. In Carmichael, L. (Ed.), Manual of child psychology (pp. 295331). New York, NY: John Wiley.CrossRefGoogle Scholar
Gesell, A., & Armatruda, C. S. (1945). The embryology of behavior: The beginnings of the human mind. New York, NY: Harper & Brothers.Google Scholar
Gibson, E. J. (1988). Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annual Review of Psychology, 39, 141.CrossRefGoogle Scholar
Gibson, E. J., & Schmuckler, M. A. (1989). Going somewhere: An ecological and experimental approach to development of mobility. Ecological Psychology, 1, 325.CrossRefGoogle Scholar
Gill, S. V., Adolph, K. E., & Vereijken, B. (2009). Change in action: How infants learn to walk down slopes. Developmental Science, 12, 888902.CrossRefGoogle ScholarPubMed
Hallemans, A., de Clercq, D., Otten, B., & Aerts, P. (2005). 3D joint dynamics of walking in toddlers: A cross-sectional study spanning the first rapid development phase of walking. Gait and Posture, 22, 107118.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The organization of behavior. New York, NY: Wiley.Google Scholar
Hebbeler, K., Spiker, D., Bailey, D. B., Scarborough, A., Mallik, S., Simeonsson, R., … Nelson, L. (2007). Early intervention for infants and toddlers with disabilities and their families: participants, services, and outcomes: Final report of the National Early Intervention Longitudinal Study (NEILS). Retrieved from www.sri.com/publication/national-early-intervention-longitudinal-study-neils-final-report.Google Scholar
Hedberg, A., Carlberg, E. B., Forssberg, H., & Hadders-Algra, M. (2005). Development of postural adjustments in sitting position during the first half year of life. Developmental Medicine and Child Neurology, 47, 312320.CrossRefGoogle ScholarPubMed
Hewes, G. W. (1955). World distribution of certain postural habits. American Anthropologist, 57, 234244.CrossRefGoogle Scholar
Hoch, J. E., O’Grady, S. M., & Adolph, K. E. (2018). It’s the journey, not the destination: Locomotor exploration in infants. Developmental Science, 22(2), e12740.Google Scholar
Hopkins, B., & Westra, T. (1988). Maternal handling and motor development: An intracultural study. Genetic, Social and General Psychology Monographs, 114, 379408.Google ScholarPubMed
Hopkins, B., (1990). Motor development, maternal expectations, and the role of handling. Infant Behavior and Development, 13, 117122.CrossRefGoogle Scholar
Huang, H., Ellis, T. D., Wagenaar, R. C., & Fetters, L. (2013). The impact of body-scaled information on reaching. Physical Therapy, 93, 4149.CrossRefGoogle ScholarPubMed
Ivanenko, Y. P., Dominici, N., Cappellini, G., Dan, B., Cheron, G., & Lacquaniti, F. (2004). Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers. Journal of Experimental Biology, 207, 37973810.CrossRefGoogle ScholarPubMed
Jacquet, A. Y., Esseily, R., Rider, D., & Fagard, J. (2012). Handedness for grasping objects and declarative pointing: A longitudinal study. Developmental Psychobiology, 54, 3646.CrossRefGoogle ScholarPubMed
Jayaraman, S., Fausey, C. M., & Smith, L. B. (2017). Why are faces denser in the visual experiences of younger than older infants? Developmental Psychology, 53, 3849.CrossRefGoogle ScholarPubMed
Karasik, L. B., Adolph, K. E., Tamis-LeMonda, C. S., & Zuckerman, A. (2012). Carry on: Spontaneous object carrying in 13-month-old crawling and walking infants. Developmental Psychology, 48, 389397.CrossRefGoogle ScholarPubMed
Karasik, L. B., Tamis-LeMonda, C. S., & Adolph, K. E. (2011). Transition from crawling to walking and infants’ actions with objects and people. Child Development, 82, 11991209.CrossRefGoogle ScholarPubMed
Karasik, L. B., Tamis-LeMonda, C. S., Adolph, K. E., & Bornstein, M. H. (2015). Places and postures: A cross-cultural comparison of sitting in 5-month-olds. Journal of Cross-Cultural Psychology, 46, 10231038.CrossRefGoogle ScholarPubMed
Karasik, L. B., Tamis-LeMonda, C. S., Ossmy, O., & Adolph, K. E. (2018). The ties that bind: Cradling in Tajikistan. PLoS ONE, 13, e0204428.CrossRefGoogle ScholarPubMed
Kattwinkel, J., Hauck, F. R., Keenan, M. E., Malloy, M., & Moon, R. Y. (2005). The changing concept of sudden infant death syndrome: Diagnostic coding shifts, controversies regarding the sleeping environment, and new variables to consider in reducing risk. Pediatrics, 116, 12451255.Google Scholar
Keen, R. (2011). The development of problem solving in young children: A critical cognitive skill. Annual Review of Psychology, 62, 121.CrossRefGoogle ScholarPubMed
Kokkoni, E., Haworth, J. L., Harbourne, R. T., Stergiou, N., & Kyvelidou, A. (2017). Infant sitting postural control appears robust across changes in surface context. Somatosensory and Motor Research, 34, 265272.CrossRefGoogle ScholarPubMed
Konczak, J., Borutta, M., Topka, H., & Dichgans, J. (1995). The development of goal-directed reaching in infants: Hand trajectory formation and joint torque control. Experimental Brain Research, 106, 156168.CrossRefGoogle ScholarPubMed
Konner, M. J. (1972). Aspects of the developmental ethology of a foraging people. In Blurton-Jones, N. (Ed.), Ethological studies of child behavior (pp. 285304). Cambridge, UK: Cambridge University Press.Google Scholar
Kretch, K. S., & Adolph, K. E. (2013a). Cliff or step? Posture-specific learning at the edge of a drop-off. Child Development, 84, 226240.CrossRefGoogle ScholarPubMed
Kretch, K. S., (2013b). No bridge too high: Infants decide whether to cross based on the probability of falling not the severity of the potential fall. Developmental Science, 16, 336351.CrossRefGoogle Scholar
Kretch, K. S., (2015). Active vision in passive locomotion: Real-world free viewing in infants and adults. Developmental Science, 18, 736750.CrossRefGoogle ScholarPubMed
Lagerspetz, K., Nygard, M., & Strandvik, C. (1971). The effects of training in crawling on the motor and mental development of infants. Scandinavian Journal of Psychology, 12, 192197.CrossRefGoogle Scholar
Lampl, M., Veldhuis, J. D., & Johnson, M. L. (1992). Saltation and stasis: A model of human growth. Science, 258, 801803.CrossRefGoogle Scholar
Lee, D. K., Cole, W. G., Golenia, L., & Adolph, K. E. (2018). The cost of simplifying complex developmental phenomena: A new perspective on learning to walk. Developmental Science, 21, e12615.CrossRefGoogle Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19, 10581066.CrossRefGoogle ScholarPubMed
Libertus, K., & Needham, A. W. (2010). Teach to reach: The effects of active vs. passive reaching experiences on action and perception. Vision Research, 50, 27502757.CrossRefGoogle ScholarPubMed
Liebenberg, L. (2006). Persistence hunting by modern hunter-gatherers. Current Anthropology, 47, 10171025.CrossRefGoogle Scholar
Lobo, M. A., & Galloway, J. C. (2012). Enhanced handling and positioning in early infancy advances development throughout the first year. Child Development, 83, 12901302.CrossRefGoogle ScholarPubMed
Lockman, J. J., Ashmead, D. H., & Bushnell, E. W. (1984). The development of anticipatory hand orientation during infancy. Journal of Experimental Child Psychology, 37, 176186.CrossRefGoogle ScholarPubMed
Lockman, J. J., & Kahrs, B. A. (2017). New insights into the development of human tool use. Current Directions in Psychological Science, 26, 330334.CrossRefGoogle ScholarPubMed
Logan, S. W., Schreiber, M. A., Lobo, M. A., Pritchard, B., George, L., & Galloway, J. C. (2015). Real-world performance: Physical activity, play, and object-related behaviors of toddlers with and without disabilities. Pediatric Physical Therapy, 27, 433441.CrossRefGoogle ScholarPubMed
Martorell, R., Onis, M., Martines, J., Black, M., Onyango, A., & Dewey, K. G. (2006). WHO motor development study: Windows of achievement for six gross motor development milestones. Acta Paediatrica, 95 (S450), 8695.Google Scholar
McCarty, M. E., Clifton, R. K., & Collard, R. R. (2001). The beginnings of tool use by infants and toddlers. Infancy, 2, 233256.CrossRefGoogle Scholar
McGraw, M. B. (1932). From reflex to muscular control in the assumption of an erect posture and ambulation in the human infant. Child Development, 3, 291297.CrossRefGoogle Scholar
McGraw, M. B. (1940). Neuromuscular development of the human infant as exemplified in the achievement of erect locomotion. Journal of Pediatrics, 17, 747771.CrossRefGoogle Scholar
McGraw, M. B. (1941a). Development of neuro-muscular mechanisms as reflected in the crawling and creeping behavior of the human infant. Journal of Genetic Psychology, 58, 83111.Google Scholar
McGraw, M. B. (1941b). Neuro-motor maturation of anti-gravity functions as reflected in the development of a sitting posture. Journal of Genetic Psychology, 59, 155175.Google Scholar
McGraw, M. B. (1945). The neuromuscular maturation of the human infant. New York, NY: Columbia University Press.Google Scholar
McGraw, M. B., & Breeze, K. W. (1941). Quantitative studies in the development of erect locomotion. Child Development, 12, 267303.Google Scholar
Mei, J. (1994). The Northern Chinese custom of rearing babies in sandbags: Implications for motor and intellectual development. In van Rossum, J. H. A. & Laszlo, J. I. (Eds.), Motor development: Aspects of normal and delayed development (pp. 4148). Amsterdam, the Netherlands: VU Uitgeverij.Google Scholar
Minetti, A. E., Formenti, F., & Ardigo, L. P. (2006). Himalayan porter’s specialization: Metabolic power, economy, efficiency, and skill. Proceedings of the Royal Society of London B: Biological Sciences, 273, 27912797.Google Scholar
Morgan, C., Darrah, J., Gordon, A. M., Harbourne, R. T., Spittle, A., Johnson, R., & Fetters, L. (2016). Effectiveness of motor interventions in infants with cerebral palsy: A systematic review. Developmental Medicine and Child Neurology, 58, 900909.CrossRefGoogle ScholarPubMed
Mutlu, A., Krosschell, K., & Gaebler-Spira, D. (2009). Treadmill training with partial body-weight support in children with cerebral palsy. Developmental Medicine and Child Neurology, 51, 268275.CrossRefGoogle ScholarPubMed
Needham, A. W., Barrett, T., & Peterman, K. (2002). A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using “sticky” mittens enhances young infants’ object exploration skills. Infant Behavior and Development, 25, 279295.CrossRefGoogle Scholar
Ossmy, O., Hoch, J. E., MacAlpine, P., Hasan, S., Stone, P., & Adolph, K. E. (2018). Variety wins: Soccer-playing robots and infant walking. Frontiers in Neurorobotics, 12, 19.CrossRefGoogle ScholarPubMed
Patrick, S. K., Noah, J. A., & Yang, J. F. (2012). Developmental constraints of quadrupedal coordination across crawling styles in human infants. Journal of Neurophysiology, 107, 30503061.CrossRefGoogle ScholarPubMed
Piek, J. P., & Carman, R. (1994). Developmental profiles of spontaneous movements in infants. Early Human Development, 39, 109126.CrossRefGoogle ScholarPubMed
Pin, T., Eldridge, B., & Galea, M. P. (2007). A review of the effects of sleep position, play position, and equipment use on motor development in infants. Developmental Medicine and Child Neurology, 49, 858867.CrossRefGoogle ScholarPubMed
Piper, M. C., & Darrah, J. (1994). Motor assessment of the developing infant. Philadelphia, PA: WB Saunders.Google Scholar
Rachwani, J., Golenia, L., Herzberg, O., & Adolph, K. E. (2019). Postural, visual, and manual coordination in the development of prehension. Child Development, 90, 1559–1568.CrossRefGoogle ScholarPubMed
Rachwani, J., Santamaria, V., Saavedra, S., & Woollacott, M. H. (2015). The development of trunk control and its relation to reaching in infancy: A longitudinal study. Frontiers in Human Neuroscience, 9, 112.Google ScholarPubMed
Rachwani, J., Soska, K. C., & Adolph, K. E. (2017). Behavioral flexibility in learning to sit. Developmental Psychobiology, 59, 937948.CrossRefGoogle Scholar
Reissland, N., Francis, B., Aydin, E., Mason, J., & Schaal, B. (2014). The development of anticipation in the fetus: A longitudinal account of human fetal mouth movements in reaction to and anticipation of touch. Developmental Psychobiology, 56, 955963.CrossRefGoogle Scholar
Robson, P. (1984). Prewalking locomotor movements and their use in predicting standing and walking. Child Care, Health, and Development, 10, 317330.CrossRefGoogle ScholarPubMed
Rochat, P. (1989). Object manipulation and exploration in 2- to 5-month-old infants. Developmental Psychology, 25, 871884.CrossRefGoogle Scholar
Saavedra, S. L., van Donkelaar, P., & Woollacott, M. H. (2012). Learning about gravity: Segmental assessment of upright control as infants develop independent sitting. Journal of Neurophysiology, 108, 22152229.CrossRefGoogle ScholarPubMed
Santrock, J. (2006). Life-span development (10th ed.). New York, NY: McGraw Hill.Google Scholar
Schum, N., Jovanovic, B., & Schwarzer, G. (2011). Ten- and twelve-month-olds’ visual anticipation of orientation and size during grasping. Journal of Experimental Child Psychology, 109, 218231.CrossRefGoogle ScholarPubMed
Shirley, M. M. (1931). The first two years: A study of twenty-five babies. Postural and locomotor development (Vol. 1). Minneapolis: University of Minnesota Press.Google Scholar
Siegler, R., Deloache, J., Eisenberg, N. (2006). How children develop (2nd ed.). New York, NY: Worth.Google Scholar
Sigmundsson, H., Loras, H. W., & Haga, M. (2017). Exploring task-specific independent standing in 3- to 5-month-old infants. Frontiers in Psychology, 8, 657.CrossRefGoogle ScholarPubMed
Snapp-Childs, W., & Corbetta, D. (2009). Evidence of early strategies in learning to walk. Infancy, 14, 101116.CrossRefGoogle Scholar
Soska, K. C., & Adolph, K. E. (2014). Postural position constrains multimodal object exploration in infants. Infancy, 19, 138161.CrossRefGoogle ScholarPubMed
Sparling, J. W., van Tol, J., & Chescheir, N. C. (1999). Fetal and neonatal hand movement. Physical Therapy, 79, 2439.CrossRefGoogle ScholarPubMed
Super, C. M. (1976). Environmental effects on motor development: The case of “African infant precocity”. Developmental Medicine and Child Neurology, 18, 561567.CrossRefGoogle ScholarPubMed
Thelen, E. (1979). Rhythmical stereotypies in normal human infants. Animal Behavior, 27, 699715.CrossRefGoogle ScholarPubMed
Thelen, E., Corbetta, D., Kamm, K., Spencer, J. P., Schneider, K., & Zernicke, R. F. (1993). The transition to reaching: Mapping intention and intrinsic dynamics. Child Development, 64, 10581098.CrossRefGoogle ScholarPubMed
Thelen, E., Corbetta, D., & Spencer, J. P. (1996). Development of reaching during the first year: Role of movement speed. Journal of Experimental Psychology: Human Perception and Performance, 22, 10591076. doi:10.1037/0096-1523.22.5.1059Google ScholarPubMed
Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.Google Scholar
Theveniau, N., Boisgontier, M. P., Verieras, S., & Olivier, I. (2014). The effects of clothes on independent walking in toddlers. Gait and Posture, 39, 659661.CrossRefGoogle ScholarPubMed
Trettien, A. W. (1900). Creeping and walking. American Journal of Psychology, 12, 157.CrossRefGoogle Scholar
Ulrich, B. D. (2010). Opportunities for early intervention based on theory, basic neuroscience, and clinical science. Physical Therapy, 90, 18681880.CrossRefGoogle ScholarPubMed
van Wermeskerken, M., van der Kamp, J., & Savelsbergh, G. J. P. (2011). On the relation between action selection and movement control in 5- to 8-month-old infants. Experimental Brain Research, 211, 5162.CrossRefGoogle Scholar
Vereijken, B. (2010). The complexity of childhood development: Variability in perspective. Physical Therapy, 90, 18501859.CrossRefGoogle Scholar
von Hofsten, C. (1991). Structuring of early reaching movements: A longitudinal study. Journal of Motor Behavior, 23, 280292.CrossRefGoogle ScholarPubMed
von Hofsten, C., Vishton, P. M., Spelke, E. S., Feng, Q., & Rosander, K. (1998). Predictive action in infancy: Tracking and reaching for moving objects. Cognition, 67, 255285.CrossRefGoogle ScholarPubMed
Wijnhoven, T. M. A., de Onis, M., Onyango, A. W., Wang, T., Bjoerneboe, G. A., Bhandari, N., … Rashidi, B. (2004). Assessment of gross motor development in the WHO Multicentre Growth Reference Study. Food and Nutrition Bulletin, 25, S37S45.CrossRefGoogle ScholarPubMed
Witherington, D. C. (2005). The development of prospective grasping control between 5 and 7 months: A longitudinal study. Infancy, 7, 143161.CrossRefGoogle Scholar
Zelazo, P. R., Zelazo, N. A., & Kolb, S. (1972). “Walking” in the newborn. Science, 176, 314315.CrossRefGoogle ScholarPubMed
Arbib, M. A., & Mundhenk, T. N. (2005). Schizophrenia and the mirror system: An essay. Neuropsychologia, 43(2), 268280. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2004.11.013CrossRefGoogle Scholar
Avenanti, A., Paracampo, R., Annella, L., Tidoni, E., & Aglioti, S. M. (2018). Boosting and decreasing action prediction abilities through excitatory and inhibitory tDCS of inferior frontal cortex. Cerebral Cortex, 28(4), 12821296. https://doi.org/10.1093/cercor/bhx041CrossRefGoogle ScholarPubMed
Bernier, R., Aaronson, B., & McPartland, J. (2013). The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain and Cognition, 82(1), 6975. https://doi.org/10.1016/J.BANDC.2013.02.008CrossRefGoogle ScholarPubMed
Bernier, R., Dawson, G., Webb, S., & Murias, M. (2007). EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain and Cognition, 64(3), 228237. https://doi.org/10.1016/J.BANDC.2007.03.004CrossRefGoogle ScholarPubMed
Bhat, A. N., Galloway, J. C., & Landa, R. J. (2012). Relation between early motor delay and later communication delay in infants at risk for Autism. Infant Behavior and Development, 35(4), 838846. https://doi.org/10.1016/J.INFBEH.2012.07.019CrossRefGoogle ScholarPubMed
Biondi, M., Boas, D. A., & Wilcox, T. (2016). On the other hand: Increased cortical activation to human versus mechanical hands in infants. NeuroImage, 141, 143153. https://doi.org/10.1016/J.NEUROIMAGE.2016.07.021CrossRefGoogle ScholarPubMed
Blakemore, S., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561567. https://doi.org/10.1038/35086023CrossRefGoogle ScholarPubMed
Brian, J., Bryson, S. E., Garon, N., Roberts, W., Smith, I. M., Szatmari, P., & Zwaigenbaum, L. (2008). Clinical assessment of autism in high-risk 18-month-olds. Autism, 12(5), 433456. https://doi.org/10.1177/1362361308094500CrossRefGoogle ScholarPubMed
Bridgeman, B. (2005). Action planning supplements mirror systems in language evolution. Behavioral and Brain Sciences, 28(2), 129130. https://doi.org/10.1017/S0140525X0526003XCrossRefGoogle Scholar
Brooks, R., & Meltzoff, A. N. (2008). Infant gaze following and pointing predict accelerated vocabulary growth through two years of age: A longitudinal, growth curve modeling study. Journal of Child Language, 35, 207220. https://doi.org/10.1017/S030500090700829XCrossRefGoogle ScholarPubMed
Brooks, R., (2015). Connecting the dots from infancy to childhood: A longitudinal study connecting gaze following, language, and explicit theory of mind. Journal of Experimental Child Psychology, 130, 6778. https://doi.org/10.1016/j.jecp.2014.09.010CrossRefGoogle ScholarPubMed
Cannon, E. N., Simpson, E. A., Fox, N. A., Vanderwert, R. E., Woodward, A. L., & Ferrari, P. F. (2016). Relations between infants’ emerging reach-grasp competence and event-related desynchronization in EEG. Developmental Science, 19(1), 5062. https://doi.org/10.1111/desc.12295CrossRefGoogle ScholarPubMed
Cannon, E. N., Yoo, K. H., Vanderwert, R. E., Ferrari, P. F., Woodward, A. L., & Fox, N. A. (2014). Action experience, more than observation, influences mu rhythm desynchronization. PloS ONE, 9(3), e92002. https://doi.org/10.1371/journal.pone.0092002CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 11481167. https://doi.org/10.1016/j.neuroimage.2009.12.112CrossRefGoogle ScholarPubMed
Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cerebral Cortex, 20(9), 22522258. https://doi.org/10.1093/cercor/bhp291CrossRefGoogle ScholarPubMed
Cavallo, A., Lungu, O., Becchio, C., Ansuini, C., Rustichini, A., & Fadiga, L. (2015). When gaze opens the channel for communication: Integrative role of IFG and MPFC. NeuroImage, 119, 6369. https://doi.org/10.1016/j.neuroimage.2015.06.025CrossRefGoogle ScholarPubMed
Charman, T., Baron-Cohen, S., Swettenham, J., Baird, G., Cox, A., & Drew, A. (2000). Testing joint attention, imitation, and play as infancy precursors to language and theory of mind. Cognitive Development, 15(4), 481498. https://doi.org/10.1016/S0885-2014(01)00037-5CrossRefGoogle Scholar
Charman, T., Swettenham, J., Baron-Cohen, S., Cox, A., Baird, G., & Drew, A. (1997). Infants with autism: An investigation of empathy, pretend play, joint attention, and imitation. Developmental Psychology, 33(5), 781789. https://doi.org/10.1037/0012-1649.33.5.781CrossRefGoogle ScholarPubMed
Cochin, S., Barthelemy, C., Roux, S., & Martineau, J. (1999). Observation and execution of movement: Similarities demonstrated by quantified electroencephalography. European Journal of Neuroscience, 11(5), 18391842. https://doi.org/10.1046/j.1460-9568.1999.00598.xCrossRefGoogle ScholarPubMed
Cossu, G., Boria, S., Copioli, C., Bracceschi, R., Giuberti, V., Santelli, E., & Gallese, V. (2012). Motor representation of actions in children with autism. PLoS ONE, 7(9), e44779. https://doi.org/10.1371/journal.pone.0044779CrossRefGoogle ScholarPubMed
Cuevas, K., Cannon, E. N., Yoo, K. H., & Fox, N. A. (2014). The infant EEG mu rhythm: Methodological considerations and best practices. Developmental Review, 34(1), 2643. https://doi.org/10.1016/j.dr.2013.12.001CrossRefGoogle ScholarPubMed
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 2830. https://doi.org/10.1038/nn1611CrossRefGoogle ScholarPubMed
de Klerk, C. C. J. M., Johnson, M. H., Heyes, C. M., & Southgate, V. (2015). Baby steps: Investigating the development of perceptual-motor couplings in infancy. Developmental Science, 18(2), 270280. https://doi.org/10.1111/desc.12226CrossRefGoogle ScholarPubMed
de Klerk, C. C. J. M., Southgate, V., & Csibra, G. (2016). Predictive action tracking without motor experience in 8-month-old infants. Brain and Cognition, 109, 131139. https://doi.org/10.1016/j.bandc.2016.09.010CrossRefGoogle ScholarPubMed
Debnath, R., Salo, V. C., Buzzell, G. A., Yoo, K. H., & Fox, N. A. (2019). Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. NeuroImage, 184, 496507. https://doi.org/10.1016/j.neuroimage.2018.09.053CrossRefGoogle ScholarPubMed
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180. https://doi.org/10.1007/BF00230027CrossRefGoogle ScholarPubMed
Dumas, G., Soussignan, R., Hugueville, L., Martinerie, J., & Nadel, J. (2014). Revisiting mu suppression in autism spectrum disorder. Brain Research, 1585, 108119. https://doi.org/10.1016/J.BRAINRES.2014.08.035CrossRefGoogle ScholarPubMed
Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202209. https://doi.org/10.1016/j.tics.2013.03.006CrossRefGoogle ScholarPubMed
Fan, Y. -T., Decety, J., Yang, C. -Y., Liu, J. -L., & Cheng, Y. (2010). Unbroken mirror neurons in autism spectrum disorders. Journal of Child Psychology and Psychiatry, 51(9), 981988. https://doi.org/10.1111/j.1469-7610.2010.02269.xCrossRefGoogle ScholarPubMed
Ferrari, P. F., Gerbella, M., Coudé, G., & Rozzi, S. (2017). Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways. Neuroscience, 358(45), 300315. https://doi.org/10.1016/j.neuroscience.2017.06.052CrossRefGoogle ScholarPubMed
Ferrari, P. F., Tramacere, A., Simpson, E. A., & Iriki, A. (2013). Mirror neurons through the lens of epigenetics. Trends in Cognitive Sciences, 17(9), 450457. https://doi.org/10.1016/j.tics.2013.07.003CrossRefGoogle ScholarPubMed
Filippi, C. A., Cannon, E. N., Fox, N. A., Thorpe, S. G., Ferrari, P. F., & Woodward, A. L. (2016). Motor system activation predicts goal imitation in 7-month-old infants. Psychological Science, 27(5), 675684. https://doi.org/10.1177/0956797616632231CrossRefGoogle ScholarPubMed
Foglia, L., & Wilson, R. A. (2013). Embodied cognition. WIREs Cognitive Science, 4(3), 319325. https://doi.org/10.1002/wcs.1226CrossRefGoogle ScholarPubMed
Fox, N. A., Bakermans-Kranenburg, M. J., Yoo, K. H., Bowman, L. C., Cannon, E. N., Vanderwert, R. E., … van IJzendoorn, M. H. (2016). Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin, 142(3), 291313. https://doi.org/10.1037/bul0000031CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609. https://doi.org/10.1093/brain/119.2.593CrossRefGoogle ScholarPubMed
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493501. https://doi.org/10.1016/S1364-6613(98)01262-5CrossRefGoogle ScholarPubMed
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396403. https://doi.org/10.1016/j.tics.2004.07.002CrossRefGoogle ScholarPubMed
Gernsbacher, M. A., Sauer, E. A., Geye, H. M., Schweigert, E. K., & Goldsmith, H. H. (2008). Infant and toddler oral- and manual-motor skills predict later speech fluency in Autism. Journal of Child Psychology and Psychiatry, 49(1), 4350. https://doi.org/10.1111/j.1469-7610.2007.01820.xCrossRefGoogle ScholarPubMed
Green, D., Li, Q., Lockman, J. J., & Gredebäck, G. (2016). Culture influences action understanding in infancy: Prediction of actions performed with chopsticks and spoons in Chinese and Swedish infants. Child Development, 87(3), 736746. https://doi.org/10.1111/cdev.12500CrossRefGoogle ScholarPubMed
Grossmann, T., Johnson, M. H., Lloyd-Fox, S., Blasi, A., Deligianni, F., Elwell, C., & Csibra, G. (2008). Early cortical specialization for face-to-face communication in human infants. Proceedings. Biological Sciences, 275(1653), 28032811. https://doi.org/10.1098/rspb.2008.0986Google ScholarPubMed
Hamilton, A. F. (2013). Reflecting on the mirror neuron system in autism: A systematic review of current theories. Developmental Cognitive Neuroscience, 3, 91105. https://doi.org/10.1016/J.DCN.2012.09.008CrossRefGoogle ScholarPubMed
Hari, R. (2006). Action–perception connection and the cortical mu rhythm. Progress in Brain Research, 159, 253260. https://doi.org/10.1016/S0079-6123(06)59017-XCrossRefGoogle ScholarPubMed
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience & Biobehavioral Reviews, 34(4), 575583. https://doi.org/10.1016/j.neubiorev.2009.11.007CrossRefGoogle Scholar
Heyes, C. (2013). A new approach to mirror neurons: Developmental history, system-level theory and intervention experiments. Cortex, 49(10), 29462948. https://doi.org/10.1016/j.cortex.2013.07.002CrossRefGoogle ScholarPubMed
Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21(7), 12291243. https://doi.org/10.1162/jocn.2009.21189CrossRefGoogle ScholarPubMed
Hobson, H. M., & Bishop, D. V. M. (2016). Mu suppression: A good measure of the human mirror neuron system? Cortex, 82, 290310. https://doi.org/10.1016/j.cortex.2016.03.019CrossRefGoogle ScholarPubMed
Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60(1), 653670. https://doi.org/10.1146/annurev.psych.60.110707.163604CrossRefGoogle ScholarPubMed
Ichikawa, H., Kanazawa, S., Yamaguchi, M. K., & Kakigi, R. (2010). Infant brain activity while viewing facial movement of point-light displays as measured by near-infrared spectroscopy (NIRS). Neuroscience Letters, 482(2), 9094. https://doi.org/10.1016/J.NEULET.2010.06.086CrossRefGoogle ScholarPubMed
Iverson, J. M., & Wozniak, R. H. (2007). Variation in vocal-motor development in infant siblings of children with Autism. Journal of Autism and Developmental Disorders, 37(1), 158170. https://doi.org/10.1007/s10803-006-0339-zCrossRefGoogle ScholarPubMed
Lepage, J. -F., & Théoret, H. (2006). EEG evidence for the presence of an action observation-execution matching system in children. European Journal of Neuroscience, 23(9), 25052510. https://doi.org/10.1111/j.1460-9568.2006.04769.xCrossRefGoogle ScholarPubMed
Li, G., Lin, W., Gilmore, J. H., & Shen, D. (2015). Spatial patterns, longitudinal development, and hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age. Journal of Neuroscience, 35(24), 91509162. https://doi.org/10.1523/JNEUROSCI.4107–14.2015CrossRefGoogle ScholarPubMed
Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2013). Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cerebral Cortex, 23(11), 27242733. https://doi.org/10.1093/cercor/bhs265CrossRefGoogle ScholarPubMed
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19(6), 10581066. https://doi.org/10.1111/desc.12370CrossRefGoogle ScholarPubMed
Libertus, K., Sheperd, K. A., Ross, S. W., & Landa, R. J. (2014). Limited fine motor and grasping skills in 6-month-old infants at high risk for Autism. Child Development, 85(6), 22182231. https://doi.org/10.1111/cdev.12262Google ScholarPubMed
Lloyd-Fox, S., Blasi, A., Volein, A., Everdell, N., Elwell, C. E., & Johnson, M. H. (2009). Social perception in infancy: A near infrared spectroscopy study. Child Development, 80(4), 986999. https://doi.org/10.1111/j.1467-8624.2009.01312.xCrossRefGoogle ScholarPubMed
Lloyd-Fox, S., Wu, R., Richards, J. E., Elwell, C. E., & Johnson, M. H. (2015). Cortical activation to action perception is associated with action production abilities in young infants. Cerebral Cortex, 25(2), 289297. https://doi.org/10.1093/cercor/bht207CrossRefGoogle ScholarPubMed
MacDonald, M., Lord, C., & Ulrich, D. (2013). The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders. Research in Autism Spectrum Disorders, 7(11), 13831390. https://doi.org/10.1016/J.RASD.2013.07.020CrossRefGoogle ScholarPubMed
Manshanden, I., de Munck, J. C., Simon, N. R., & Lopes da Silva, F. H. (2002). Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clinical Neurophysiology, 113(12), 19371947. https://doi.org/10.1016/S1388-2457(02)00304-8CrossRefGoogle ScholarPubMed
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 11991208. https://doi.org/10.1016/j.cogpsych.2012.08.001CrossRefGoogle ScholarPubMed
Marshall, P. J., & Meltzoff, A. N. (2011). Neural mirroring systems: Exploring the EEG mu rhythm in human infancy. Developmental Cognitive Neuroscience, 1(2), 110123. https://doi.org/10.1016/j.dcn.2010.09.001CrossRefGoogle ScholarPubMed
Marshall, P. J., (2014). Neural mirroring mechanisms and imitation in human infants. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1644), 2013062020130620. https://doi.org/10.1098/rstb.2013.0620CrossRefGoogle ScholarPubMed
Martineau, J., Cochin, S., Magne, R., & Barthelemy, C. (2008). Impaired cortical activation in autistic children: Is the mirror neuron system involved? International Journal of Psychophysiology, 68(1), 3540. https://doi.org/10.1016/J.IJPSYCHO.2008.01.002CrossRefGoogle ScholarPubMed
McDonald, N. M., & Perdue, K. L. (2018, April 1). The infant brain in the social world: Moving toward interactive social neuroscience with functional near-infrared spectroscopy. Neuroscience and Biobehavioral Reviews, 87, 3849. https://doi.org/10.1016/j.neubiorev.2018.01.007CrossRefGoogle ScholarPubMed
Meltzoff, A. N. (2007). “Like me”: A foundation for social cognition. Developmental Science, 10(1), 126134. https://doi.org/10.1111/j.1467-7687.2007.00574.xCrossRefGoogle Scholar
Meltzoff, A. N., & Gopnik, A. (1993). The role of imitation in understanding persons and developing a theory of mind. In Baron-Cohen, S., Tager-Flusberg, H., & Cohen, D. J. (Eds.), Understanding other minds: Perspectives from Autism (pp. 335366). New York, NY: Oxford University Press.Google Scholar
Mizuhara, H., & Inui, T. (2011). Is mu rhythm an index of the human mirror neuron system? A study of simultaneous fMRI and EEG. In Wang, R. & Gu, F. (Eds.), Advances in cognitive neurodynamics (II): Proceedings of the Second International Conference on Cognitive Neurodynamics (pp. 123127). Dordrecht: Springer Science & Business Media. https://doi.org/10.1007/978-90-481-9695-1_19CrossRefGoogle Scholar
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36(1), 341349. https://doi.org/10.1016/J.NEUBIOREV.2011.07.004CrossRefGoogle ScholarPubMed
Morales, S., Bowman, L. C., Velnoskey, K. R., Fox, N. A., & Redcay, E. (2019). An fMRI study of action observation and action execution in childhood. Developmental Cognitive Neuroscience, 37. https://doi.org/10.1016/j.dcn.2019.100655CrossRefGoogle ScholarPubMed
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750756. https://doi.org/10.1016/j.cub.2010.02.045CrossRefGoogle ScholarPubMed
Muthukumaraswamy, S. D., Johnson, B. W., & McNair, N. A. (2004). Mu rhythm modulation during observation of an object-directed grasp. Cognitive Brain Research, 19(2), 195201. https://doi.org/10.1016/j.cogbrainres.2003.12.001CrossRefGoogle ScholarPubMed
Ng, R., Brown, T. T., Erhart, M., Järvinen, A. M., Korenberg, J. R., Bellugi, U., & Halgren, E. (2016). Morphological differences in the mirror neuron system in Williams syndrome. Social Neuroscience, 11(3), 277288. https://doi.org/10.1080/17470919.2015.1070746CrossRefGoogle ScholarPubMed
Nyström, P. (2008). The infant mirror neuron system studied with high density EEG. Social Neuroscience, 3(3–4), 334347. https://doi.org/10.1080/17470910701563665CrossRefGoogle ScholarPubMed
Nyström, P., Ljunghammar, T., Rosander, K., & von Hofsten, C. (2011). Using mu rhythm desynchronization to measure mirror neuron activity in infants. Developmental Science, 14(2), 327335. https://doi.org/10.1111/j.1467-7687.2010.00979.xCrossRefGoogle ScholarPubMed
Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190198. https://doi.org/10.1016/J.COGBRAINRES.2005.01.014CrossRefGoogle ScholarPubMed
Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46(5), 15581565. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2008.01.010CrossRefGoogle ScholarPubMed
Orgs, G., Dombrowski, J. -H., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alphabeta event-related desynchronization during action observation. European Journal of Neuroscience, 27(12), 33803384. https://doi.org/10.1111/j.1460-9568.2008.06271.xCrossRefGoogle Scholar
Overton, W. F. (2006). Developmental psychology: Philosophy, concepts, methodology. In Damon, W. I. & Lerner, R. M. (Eds.), Handbook of child psychology. Vol. 1: Theoretical models of human development (6th ed., pp. 1888). Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9780470147658.chpsy0102Google Scholar
Paulus, M. (2012). Action mirroring and action understanding: An ideomotor and attentional account. Psychological Research, 76(6), 760767. https://doi.org/10.1007/s00426-011-0385-9CrossRefGoogle ScholarPubMed
Pfurtscheller, G., Neuper, C., Andrew, C., & Edlinger, G. (1997). Foot and hand area mu rhythms. International Journal of Psychophysiology, 26(1–3), 121135. https://doi.org/10.1016/S0167-8760(97)00760-5CrossRefGoogle ScholarPubMed
Piaget, J. (1952). The origins of intelligence in children. New York, NY: Norton.CrossRefGoogle Scholar
Pineda, J. A. (2005). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing.” Brain Research Reviews, 50(1), 5768. https://doi.org/10.1016/j.brainresrev.2005.04.005CrossRefGoogle ScholarPubMed
Raymaekers, R., Wiersema, J. R., & Roeyers, H. (2009). EEG study of the mirror neuron system in children with high functioning autism. Brain Research, 1304, 113121. https://doi.org/10.1016/J.BRAINRES.2009.09.068CrossRefGoogle ScholarPubMed
Rayson, H., Bonaiuto, J. J., Ferrari, P. F., & Murray, L. (2016). Mu desynchronization during observation and execution of facial expressions in 30-month-old children. Developmental Cognitive Neuroscience, 19, 279287. https://doi.org/10.1016/j.dcn.2016.05.003CrossRefGoogle ScholarPubMed
Reid, V. M., Striano, T., & Iacoboni, M. (2011). Neural correlates of dyadic interaction during infancy. Developmental Cognitive Neuroscience, 1(2), 124130. https://doi.org/10.1016/j.dcn.2011.01.001CrossRefGoogle ScholarPubMed
Reynolds, J. E., Billington, J., Kerrigan, S., Williams, J., Elliott, C., Winsor, A. M., … Licari, M. K. (2017). Mirror neuron system activation in children with developmental coordination disorder: A replication functional MRI study. Research in Developmental Disabilities, 84, 1627. https://doi.org/10.1016/J.RIDD.2017.11.012CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188194.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192. https://doi.org/10.1146/annurev.neuro.27.070203.144230CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141. https://doi.org/10.1016/0926-6410(95)00038-0CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661670. https://doi.org/10.1038/35090060CrossRefGoogle ScholarPubMed
Rogers, S. J., Hepburn, S. L., Stackhouse, T., & Wehner, E. (2003). Imitation performance in toddlers with Autism and those with other developmental disorders. Journal of Child Psychology and Psychiatry, 44(5), 763781. https://doi.org/10.1111/1469–7610.00162CrossRefGoogle ScholarPubMed
Ruysschaert, L., Warreyn, P., Wiersema, J. R., Metin, B., & Roeyers, H. (2013). Neural mirroring during the observation of live and video actions in infants. Clinical Neurophysiology, 124(9), 17651770. https://doi.org/10.1016/j.clinph.2013.04.007CrossRefGoogle ScholarPubMed
Ruysschaert, L., Warreyn, P., Wiersema, J. R., Oostra, A., & Roeyers, H. (2014). Exploring the role of neural mirroring in children with autism spectrum disorder. Autism Research, 7(2), 197206. https://doi.org/10.1002/aur.1339CrossRefGoogle ScholarPubMed
Salmelin, R., Hámáaláinen, M., Kajola, M., & Hari, R. (1995). Functional segregation of movement-related rhythmic activity in the human brain. NeuroImage, 2(4), 237243. https://doi.org/10.1006/NIMG.1995.1031CrossRefGoogle ScholarPubMed
Salmelin, R., & Hari, R. (1994). Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience, 60(2), 537550. https://doi.org/10.1016/0306-4522(94)90263-1CrossRefGoogle ScholarPubMed
Salo, V. C. (2018). Examining the role of the motor system in early communicative development (Unpublished doctoral dissertation). University of Maryland, College Park.Google Scholar
Shapiro, I. (2011). Embodied cognition. New York, NY: Routledge.Google Scholar
Shimada, S., & Hiraki, K. (2006). Infant’s brain responses to live and televised action. NeuroImage, 32(2), 930939. https://doi.org/10.1016/J.NEUROIMAGE.2006.03.044CrossRefGoogle ScholarPubMed
Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136(6), 943974. https://doi.org/10.1037/a0020541CrossRefGoogle ScholarPubMed
Southgate, V., & Hamilton, A. F. (2008). Unbroken mirrors: Challenging a theory of Autism. Trends in Cognitive Sciences, 12(6), 225229. https://doi.org/10.1016/j.tics.2008.03.005CrossRefGoogle ScholarPubMed
Southgate, V., Johnson, M. H., Karoui, I. E., & Csibra, G. (2010). Motor system activation reveals infants’ on-line prediction of others’ goals. Psychological Science, 21(3), 355359. https://doi.org/10.1177/0956797610362058CrossRefGoogle ScholarPubMed
Southgate, V., Johnson, M. H., Osborne, T., & Csibra, G. (2009). Predictive motor activation during action observation in human infants. Biology Letters, 5(6), 769772. https://doi.org/10.1098/rsbl.2009.0474CrossRefGoogle ScholarPubMed
Stadler, W., Ott, D. V. M., Springer, A., Schubotz, R. I., Schütz-Bosbach, S., & Prinz, W. (2012). Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction. Frontiers in Human Neuroscience, 6, 20. https://doi.org/10.3389/fnhum.2012.00020CrossRefGoogle ScholarPubMed
Stapel, J. C., Hunnius, S., van Elk, M., & Bekkering, H. (2010). Motor activation during observation of unusual versus ordinary actions in infancy. Social Neuroscience, 5(5–6), 451460. https://doi.org/10.1080/17470919.2010.490667CrossRefGoogle ScholarPubMed
Sun, P. -P., Tan, F. -L., Zhang, Z., Jiang, Y. -H., Zhao, Y., & Zhu, C. -Z. (2018). Feasibility of functional near-infrared spectroscopy (fNIRS) to investigate the mirror neuron system: An experimental study in a real-life situation. Frontiers in Human Neuroscience, 12, 86. https://doi.org/10.3389/fnhum.2018.00086CrossRefGoogle Scholar
Sutera, S., Pandey, J., Esser, E. L., Rosenthal, M. A., Wilson, L. B., Barton, M., … Fein, D. (2007). Predictors of optimal outcome in toddlers diagnosed with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 98107. https://doi.org/10.1007/s10803-006-0340-6CrossRefGoogle ScholarPubMed
Thorpe, S. G., Cannon, E. N., & Fox, N. A. (2016). Spectral and source structural development of mu and alpha rhythms from infancy through adulthood. Clinical Neurophysiology, 127(1), 254269. https://doi.org/10.1016/j.clinph.2015.03.004CrossRefGoogle ScholarPubMed
Tomasello, M. (1995). Joint attention and social cognition. In Moore, C. & Dunham, P. J. (Eds.), Joint attention: Its origins and role in development (pp. 103130). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675691. https://doi.org/10.1017/S0140525X05000129CrossRefGoogle ScholarPubMed
Tomasello, M., Carpenter, M., & Liszkowski, U. (2007). A new look at infant pointing. Child Development, 78(3), 705722. https://doi.org/10.1111/j.1467-8624.2007.01025.xCrossRefGoogle Scholar
Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16(3), 495. https://doi.org/10.1017/S0140525X0003123XCrossRefGoogle Scholar
Toth, K., Munson, J., Meltzoff, A. N., & Dawson, G. (2006). Early predictors of communication development in young children with autism spectrum disorder: Joint attention, imitation, and toy play. Journal of Autism and Developmental Disorders, 36(8), 9931005. https://doi.org/10.1007/s10803-006-0137-7CrossRefGoogle ScholarPubMed
van Elk, M., van Schie, H. T., Hunnius, S., Vesper, C., & Bekkering, H. (2008). You’ll never crawl alone: Neurophysiological evidence for experience-dependent motor resonance in infancy. NeuroImage, 43(4), 808814. https://doi.org/10.1016/j.neuroimage.2008.07.057CrossRefGoogle ScholarPubMed
van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564584. https://doi.org/10.1016/j.neuroimage.2009.06.009CrossRefGoogle ScholarPubMed
Virji-Babul, N., Moiseev, A., Cheung, T., Weeks, D., Cheyne, D., & Ribary, U. (2008). Changes in mu rhythm during action observation and execution in adults with Down syndrome: Implications for action representation. Neuroscience Letters, 436(2), 177180. https://doi.org/10.1016/J.NEULET.2008.03.022CrossRefGoogle ScholarPubMed
Virji-Babul, N., Rose, A., Moiseeva, N., & Makan, N. (2012). Neural correlates of action understanding in infants: Influence of motor experience. Brain and Behavior, 2(3), 237242. https://doi.org/10.1002/brb3.50CrossRefGoogle ScholarPubMed
Wellman, H. M., Phillips, A. T., Dunphy-Lelii, S., & LaLonde, N. (2004). Infant social attention predicts preschool social cognition. Developmental Science, 7(3), 283288. https://doi.org/10.1111/j.1467-7687.2004.00347.xCrossRefGoogle ScholarPubMed
Woodward, A. L., & Gerson, S. A. (2014). Mirroring and the development of action understanding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1644), 20130181. https://doi.org/10.1098/rstb.2013.0181CrossRefGoogle ScholarPubMed
Yang, J., Andric, M., & Mathew, M. M. (2015). The neural basis of hand gesture comprehension: A meta-analysis of functional magnetic resonance imaging studies. Neuroscience & Biobehavioral Reviews, 57, 88104. https://doi.org/10.1016/j.neubiorev.2015.08.006CrossRefGoogle ScholarPubMed
Yoo, K. H., Cannon, E. N., Thorpe, S. G., & Fox, N. A. (2015). Desynchronization in EEG during perception of means–end actions and relations with infants’ grasping skill. British Journal of Developmental Psychology, 34(1), 2437. https://doi.org/10.1111/bjdp.12115CrossRefGoogle ScholarPubMed
Yoo, K. H., Thorpe, S. G., & Fox, N. A. (2016). Neural correlates of motor learning in infants. Paper presented at the Biennial International Conference on Infant Studies, New Orleans, LA.Google Scholar
Young, G. S., Rogers, S. J., Hutman, T., Rozga, A., Sigman, M., & Ozonoff, S. (2011). Imitation from 12 to 24 months in autism and typical development: A longitudinal Rasch analysis. Developmental Psychology, 47(6), 15651578. https://doi.org/10.1037/a0025418CrossRefGoogle ScholarPubMed
Zwaigenbaum, L., Bauman, M. L., Choueiri, R., Kasari, C., Carter, A., Granpeesheh, D., … Natowicz, M. R. (2015). Early intervention for children with autism spectrum disorder under 3 years of age: Recommendations for practice and research. Pediatrics, 136(Suppl. 1), S60S81. https://doi.org/10.1542/peds.2014-3667ECrossRefGoogle ScholarPubMed
Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 118.CrossRefGoogle Scholar
Barrett, T. M., Davis, E. F., & Needham, A. (2007). Learning about tools in infancy. Developmental Psychology, 43(2), 352368.CrossRefGoogle ScholarPubMed
Barrett, T. M., & Needham, A. (2008). Developmental differences in infants’ use of an object’s shape to grasp it securely. Developmental Psychobiology, 50(1), 97106.CrossRefGoogle ScholarPubMed
Bassok, D., Latham, S., & Rorem, A. (2016). Is kindergarten the new first grade? AERA Open, 1(4), 131.Google Scholar
Belsky, J., & Most, R. K. (1981). From exploration to play: A cross-sectional study of infant free play behavior. Developmental Psychology, 17(5), 630639.CrossRefGoogle Scholar
Bergen, D., Hutchinson, K., Nolan, J. T., & Weber, D. (2009). Effects of infant–parent play with a technology-enhanced toy: Affordance-related actions and communicative interactions. Journal of Research in Childhood Education, 24(1), 117.CrossRefGoogle Scholar
Berthier, N. E., & Carrico, R. L. (2010). Visual information and object size in infant reaching. Infant Behavior and Development, 33(4), 555566.CrossRefGoogle ScholarPubMed
Bodrova, E., & Leong, D. J. (2015). Vygotskian and post-Vygotskian views on children’s play. American Journal of Play, 7(3), 371388.Google Scholar
Bornstein, M. H., & Tamis-LeMonda, C. S. (1995). Parent–child symbolic play: Three theories in search of an effect. Developmental Review, 15(4), 382400.CrossRefGoogle Scholar
Bornstein, M. H., & Tamis-LeMonda, C. S. (2006). Infants at play: Development, partners and functions. In Slater, A. & Lewis, M. (Eds.), Introduction to Infant Development. New York, NY: Oxford University Press.Google Scholar
Bornstein, M. H., Tamis-LeMonda, C. S., Hahn, C. S., & Haynes, O. M. (2008). Maternal responsiveness to young children at three ages: Longitudinal analysis of a multidimensional, modular, and specific parenting construct. Developmental Psychology, 44(3), 867874.CrossRefGoogle ScholarPubMed
Bourgeois, K. S., Khawar, A. W., Neal, S. A., & Lockman, J. J. (2005). Infant manual exploration of objects, surfaces, and their interrelations. Infancy, 8(3), 233252.CrossRefGoogle Scholar
Brand, R. J., Baldwin, D. A., & Ashburn, L. A. (2002). Evidence for “motionese”: Modifications in mothers’ infant-directed action. Developmental Science, 5(1), 7283.CrossRefGoogle Scholar
Bretherton, I. (1984). Representing the social world in symbolic play: Reality and fantasy. In Bretherton, I. (Ed.), Symbolic play: The development of social understanding (pp. 341). Orlando, FL: Academic Press.CrossRefGoogle Scholar
Bretherton, I., O’Connell, B., Shore, C., & Bates, E. (1984). The effect of contextual variation on symbolic play development from 20 to 28 months. In Bretherton, I. (Ed.), Symbolic play: The development of social understanding (pp. 271298). Orlando, FL: Academic Press.CrossRefGoogle Scholar
Bruner, J. (1978). The role of dialogue in language acquisition. In Sinclair, A., Jarville, R. J., & Levelt, W. J. M. (Eds.), The child’s conception of language (pp. 241256). New York, NY: Springer.Google Scholar
Bushnell, E. W., & Boudreau, J. P. (1993). Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Development, 64(4), 10051021.CrossRefGoogle ScholarPubMed
Bushnell, E. W., (1998). Exploring and exploiting objects with the hands during infancy. In Connolly, K. (Ed.), The psychobiology of the hand (pp. 144161). Cambridge, UK: Mac Keith Press.Google Scholar
Campbell, S. B., Mahoney, A. S., Northrup, J., Moore, E. L., Leezenbaum, N. B., & Brownell, C. A. (2018). Developmental changes in pretend play from 22 to 34months in younger siblings of children with autism spectrum disorder. Journal of Abnormal Child Psychology, 46(3), 639654.CrossRefGoogle Scholar
Casasola, M. (2017). Above and beyond objects: The development of infants’ spatial concepts. In Benson, J. B. (Ed.), Advances in child development and behavior (Vol. 54, pp. 87121). San Diego, CA: Elsevier Academic.Google Scholar
Christakis, D. A., Zimmerman, F. J., & Garrison, M. M. (2007). Effect of block play on language acquisition and attention in toddlers: A pilot randomized controlled trial. Archives of Pediatrics & Adolescent Medicine, 161(10), 967971.CrossRefGoogle ScholarPubMed
Clearfield, M. W. (2019). Play for success: An intervention to boost object exploration in infants from low-income households. Infant Behavior and Development, 55, 112122.CrossRefGoogle ScholarPubMed
Clearfield, M. W., Bailey, L. S., Jenne, H. K., Stanger, S. B., & Tacke, N. (2014). Socioeconomic status affects oral and manual exploration across the first year. Infant Mental Health Journal, 35(1), 6369.CrossRefGoogle ScholarPubMed
Corbetta, D., Thelen, E., & Johnson, K. (2000). Motor constraints on the development of perception–action matching in infant reaching. Infant Behavior and Development, 23(3–4), 351374.CrossRefGoogle Scholar
Damast, A. M., Tamis-LeMonda, C. S., & Bornstein, M. H. (1996). Mother–child play: Sequential interactions and the relation between maternal beliefs and behaviors. Child Development, 67(4), 17521766.CrossRefGoogle ScholarPubMed
DeLoache, J. S. (2004). Becoming symbol-minded. Trends in Cognitive Sciences, 8(2), 6670.CrossRefGoogle ScholarPubMed
Dore, R. A., Zosh, J. M., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Plugging into word learning: the role of electronic toys and digital media in language development. In Blumberg, F. C. & Brooks, P. J. (Eds.), Cognitive development in digital contexts (pp. 7591). Orlando, FL: Academic Press.CrossRefGoogle Scholar
Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5), i113.CrossRefGoogle Scholar
Edwards, C. P., & Whiting, B. B. (1993). Mother, older sibling, and me”: The overlapping roles of caregivers and companions in the social world of two- to three-year-olds in Ngeca, Kenya. In MacDonald, K. (Ed.), Parent–child play: Descriptions and implications (pp. 305329). Albany: State University of New York Press.Google Scholar
Fagard, J., & Jacquet, A. Y. (1996). Changes in reaching and grasping objects of different sizes between 7 and 13 months of age. British Journal of Developmental Psychology, 14(1), 6578.CrossRefGoogle Scholar
Farver, J. M., & Howes, C. (1993). Cultural differences in American and Mexican mother–child pretend play. Merrill-Palmer Quarterly (1982–), 39(3), 344358.Google Scholar
Farver, J. A., & Wimbarti, S. (1995). Indonesian children’s play with their mothers and older siblings. Child Development, 66(5), 14931503.CrossRefGoogle Scholar
Fein, G. G. (1981). Pretend play in childhood: An integrative review. Child Development, 52(4), 10951118.CrossRefGoogle Scholar
Fenson, L., & Ramsay, D. S. (1980). Decentration and integration of the child’s play in the second year. Child Development, 51(1), 171178.CrossRefGoogle Scholar
Field, T. (1983). High-risk infants “have less fun” during early interactions. Topics in Early Childhood Special Education, 3(1), 7787.CrossRefGoogle Scholar
Fiese, B. H. (1990). Playful relationships: A contextual analysis of mother–toddler interaction and symbolic play. Child Development, 61(5), 16481656.CrossRefGoogle ScholarPubMed
Fisher, K. R., Hirsh-Pasek, K., Newcombe, N., & Golinkoff, R. M. (2013). Taking shape: Supporting preschoolers’ acquisition of geometric knowledge through guided play. Child Development, 84(6), 18721878.CrossRefGoogle ScholarPubMed
Fogle, L. M., & Mendez, J. L. (2006). Assessing the play beliefs of African American mothers with preschool children. Early Childhood Research Quarterly, 21(4), 507518.CrossRefGoogle Scholar
Fontenelle, S. A., Kahrs, B. A., Neal, S. A., Newton, A. T., & Lockman, J. J. (2007). Infant manual exploration of composite substrates. Journal of Experimental Child Psychology, 98(3), 153167.CrossRefGoogle ScholarPubMed
Garvey, C. (1990). Play (Vol. 27). Cambridge, MA: Harvard University Press.Google Scholar
Gaskins, S., Haight, W., & Lancy, D. F. (2007). The cultural construction of play. In Göncü, A. & Gaskins, S. (Eds.), Play and development: Evolutionary, sociocultural, and functional perspectives (pp. 179202). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Gesell, A., & Thompson, H.(1934). Infant behavior: Its genesis and growth. New York, NY: Greenwood Press.CrossRefGoogle Scholar
Gibson, E. J. (1982). The concept of affordances in development: The renascence of functionalism. In Collins, W. A. (Ed.), The concept of development: The Minnesota symposia on child psychology (Vol. 15, pp. 5581). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Gibson, E. J., & Pick, A. D. (2000). An ecological approach to perceptual learning and development. New York, NY: Oxford University Press.Google Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
Gillespie, A., & Zittoun, T. (2010). Using resources: Conceptualizing the mediation and reflective use of tools and signs. Culture & Psychology, 16(1), 3762.CrossRefGoogle Scholar
Green, D., Li, Q., Lockman, J. J., & Gredebäck, G. (2016). Culture influences action understanding in infancy: Prediction of actions performed with chopsticks and spoons in Chinese and Swedish infants. Child Development, 87(3), 736746.CrossRefGoogle ScholarPubMed
Haight, W. L., & Miller, P. J. (1992). The development of everyday pretend play: A longitudinal study of mothers’ participation. Merrill-Palmer Quarterly (1982–), 38, 331349.Google Scholar
Haight, W. L., (1993). Pretending at home: Early development in a sociocultural context. Albany, NY: State University of New York Press.Google Scholar
Heathcock, J. C., & Lockman, J. J. (2019). Infant and child development: Innovations and foundations for rehabilitation. Physical Therapy, 99, 643646. https://doi.org/10.1093/ptj/pzz067CrossRefGoogle ScholarPubMed
Hoff, E. (2013). Language development. Belmont, CA: Wadsworth Cengage Learning.Google ScholarPubMed
Hopkins, E. J., Smith, E. D., Weisberg, D. S., & Lillard, A. S. (2016). The development of substitute object pretense: The differential importance of form and function. Journal of Cognition and Development, 17(2), 197220.CrossRefGoogle Scholar
Hrdy, S. B. (2009). The woman that never evolved. Cambridge, MA: Harvard University Press.Google Scholar
Jeannerod, M. (1988). The neural and behavioural organization of goal-directed movements. New York, NY: Clarendon Press/Oxford University Press.Google Scholar
Jung, W. P., Kahrs, B. A., & Lockman, J. J. (2015). Manual action, fitting, and spatial planning: Relating objects by young children. Cognition, 134, 128139.CrossRefGoogle ScholarPubMed
Jung, W. P., Kahrs, B. A., (2018). Fitting handled objects into apertures by 17-to 36-month-old children: The dynamics of spatial coordination. Developmental Psychology, 54(2), 228239.CrossRefGoogle ScholarPubMed
Kahrs, B. A., Jung, W. P., & Lockman, J. J. (2013). Motor origins of tool use. Child Development, 84(3), 810816.CrossRefGoogle ScholarPubMed
Kahrs, B. A., Jung, W. P., (2014). When does tool use become distinctively human? Hammering in young children. Child Development, 85(3), 10501061.CrossRefGoogle ScholarPubMed
Kaplan, B., Rachwani, J., Sida, A., Vasa, A., Tamis-LeMonda, C. S., & Adolph, K. E. (2018, June). Perceptual-motor exploration and problem solving: Learning to implement the designed action of Duplo bricks. Paper presented at the International Congress on Infant Studies, Philadelphia, PA.Google Scholar
Karasik, L. B., Schneider, J. L., Kuchirko, Y. A. & Tamis-LeMonda, C. S. (2018, June). Not so WEIRD object play in Tajikistan. Paper presented at the International Congress on Infant Studies, Philadelphia, PA.Google Scholar
Koterba, E. A., & Iverson, J. M. (2009). Investigating motionese: The effect of infant-directed action on infants’ attention and object exploration. Infant Behavior and Development, 32(4), 437444.CrossRefGoogle ScholarPubMed
Kuypers, H. G. (1962). Corticospinal connections: postnatal development in the rhesus monkey. Science, 138(3541), 678680.CrossRefGoogle ScholarPubMed
LaForett, D. R., & Mendez, J. L. (2017). Children’s engagement in play at home: A parent’s role in supporting play opportunities during early childhood. Early Child Development and Care, 187(5–6), 910923.CrossRefGoogle Scholar
Lawrence, D. G., & Hopkins, D. A. (1972). Developmental aspects of pyramidal motor control in the rhesus monkey. Brain Research, 40, 117118.CrossRefGoogle ScholarPubMed
Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19(3), 342368.CrossRefGoogle ScholarPubMed
Leslie, A. M. (1987). Pretense and representation: The origins of “theory of mind.” Psychological Review, 94(4), 412426.CrossRefGoogle Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19(6), 10581066.CrossRefGoogle ScholarPubMed
Lillard, A. S. (1993). Pretend play skills and the child’s theory of mind. Child Development, 64(2), 348371.CrossRefGoogle ScholarPubMed
Lillard, A. S. (2007). Pretend play in toddlers. In Brownell, C. & Kopp, C. (Eds.), Socioemotional development in the toddler years: Transitions and transformations (pp. 149176). New York, NY: Guilford Press.Google Scholar
Lillard, A. S. (2011). Mother–child fantasy play. In Nathan, P. & Pelligrini, A. D. (Eds.), The Oxford handbook of the development of play (pp. 284295). New York, NY: Oxford University Press.Google Scholar
Lillard, A. S. (2013). Playful learning and Montessori education. NAMTA Journal, 38(2), 137174.Google Scholar
Lillard, A. S. (2015). The development of play volume. In Lerner, R. M. (Ed.), Handbook of child psychology and developmental science (7th ed., Vol. 2, pp. 425468). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Lillard, A., Nishida, T., Massaro, D., Vaish, A., Ma, L., & McRoberts, G. (2007). Signs of pretense across age and scenario. Infancy, 11(1), 130.CrossRefGoogle ScholarPubMed
Little, E. E., Carver, L. J., & Legare, C. H. (2016). Cultural variation in triadic infant–caregiver object exploration. Child Development, 87(4), 11301145.CrossRefGoogle ScholarPubMed
Lobo, M., Hall, M. L., Greenspan, B., Rohloff, P., Prosser, L. A., & Smith, B. A. (2019). Wearables for pediatric rehabilitation: How to optimally design and use products to meet the needs of users. Physical Therapy, 99, 647657. https://doi.org/10.1093/ptj/pzz024CrossRefGoogle ScholarPubMed
Lockman, J. J. (2000). A perception–action perspective on tool use development. Child development, 71(1), 137144.CrossRefGoogle ScholarPubMed
Lockman, J. J., & Ashmead, D. H. (1983). Asynchronies in the development of manual behavior. Advances in Infancy Research, 2, 113136.Google Scholar
Lockman, J. J., Ashmead, D. H., & Bushnell, E. W. (1984). The development of anticipatory hand orientation during infancy. Journal of Experimental Child Psychology, 37(1), 176186.CrossRefGoogle ScholarPubMed
Lockman, J. J., & Kahrs, B. A. (2017). New insights into the development of human tool use. Current Directions in Psychological Science, 26(4), 330334.CrossRefGoogle ScholarPubMed
Lockman, J. J., & McHale, J. P. (1989). Object manipulation in infancy. In Lockman, J. J. & McHale, J. P. (Eds.), Action in social context (pp. 129167). New York, NY: Plenum.CrossRefGoogle Scholar
Martin, J. C. (2005). The corticospinal system: From development to motor control. Neuroscientist, 11, 161173.CrossRefGoogle ScholarPubMed
Marzke, M. W. (1997). Precision grips, hand morphology, and tools. American Journal of Physical Anthropology, 102(1), 91110.3.0.CO;2-G>CrossRefGoogle Scholar
McCarty, M. E., Clifton, R. K., & Collard, R. R. (2001). The beginnings of tool use by infants and toddlers. Infancy, 2(2), 233256.CrossRefGoogle Scholar
McCune, L. (1995). A normative study of representational play in the transition to language. Developmental Psychology, 31(2), 198206. doi:10.1037/0012-1649.31.2.198CrossRefGoogle Scholar
McCune-Nicolich, L. (1981). Toward symbolic functioning: Structure of early pretend games and potential parallels with language. Child Development, 52, 785797. doi:10.2307/1129078CrossRefGoogle Scholar
Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.Google Scholar
Milner, A. D., (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774785.CrossRefGoogle ScholarPubMed
Molina, M., & Jouen, F. (1998). Modulation of the palmar grasp behavior in neonates according to texture property. Infant Behavior and Development, 21(4), 659666.CrossRefGoogle Scholar
Morgante, J. D., & Keen, R. (2008). Vision and action: The effect of visual feedback on infants’ exploratory behaviors. Infant Behavior and Development, 31(4), 729733.CrossRefGoogle ScholarPubMed
Morris, B., Croker, S., Zimmerman, C., Gill, D., & Romig, C. (2013). Gaming science: The “Gamification” of scientific thinking. Frontiers in Psychology, 4, 116.CrossRefGoogle ScholarPubMed
Napier, J. (1962). The evolution of the hand. Scientific American, 207(6), 5665.CrossRefGoogle ScholarPubMed
Needham, A., Barrett, T., & Peterman, K. (2002). A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using “sticky mittens” enhances young infants’ object exploration skills. Infant Behavior and Development, 25(3), 279295.CrossRefGoogle Scholar
O’Connell, B., & Bretherton, I. (1984). Toddler’s play, alone and with mother: The role of maternal guidance. In Bretherton, I. (Ed.), Symbolic play: The development of social understanding (pp. 337368). Orlando, FL: Academic Press.CrossRefGoogle Scholar
Orr, E., & Geva, R. (2015). Symbolic play and language development. Infant Behavior and Development, 38, 147161.CrossRefGoogle ScholarPubMed
Palmer, C. F. (1989). The discriminating nature of infants’ exploratory actions. Developmental Psychology, 25(6), 885893.CrossRefGoogle Scholar
Parish-Morris, J., Mahajan, N., Hirsh-Pasek, K., Golinkoff, R. M., & Collins, M. F. (2013). Once upon a time: Parent–child dialogue and storybook reading in the electronic era. Mind, Brain, and Education, 7(3), 200211.CrossRefGoogle Scholar
Piaget, J. (1945). Play, dreams, and imitation in childhood. New York, NY: Norton.Google Scholar
Piaget, J. (1952). The origins of intelligence in children. New York, NY: W.W. Norton & Co.CrossRefGoogle Scholar
Piaget, J. (1954). The construction of reality in the child (M. Cook, Trans.). New York, NY: Basic Books.CrossRefGoogle Scholar
Power, T. G. (2000). Play and exploration in children and animals. Mahwah NJ: Lawrence Erlbaum Associates.Google Scholar
Quinn, S., Donnelly, S., & Kidd, E. (2018). The relationship between symbolic play and language acquisition: A meta-analytic review. Developmental Review, 49, 121135.CrossRefGoogle Scholar
Quinn, S., & Kidd, E. (2018). Symbolic play promotes non-verbal communicative exchanges in infant–caregiver dyads. British Journal of Developmental Psychology, 37(1), 3350.CrossRefGoogle Scholar
Rachwani, J., Tamis-LeMonda, C. S., Lockman, J. J., Karasik, L. B., & Adolph, K. E. (2020). Learning the designed actions of everyday objects. Journal of Experimental Psychology: General, 149(1), 6778. https://doi.org/10.1037/xge0000631CrossRefGoogle ScholarPubMed
Rips, L. J., & Hespos, S. J. (2015). Divisions of the physical world: Concepts of objects and substances. Psychological Bulletin, 141(4), 786811.CrossRefGoogle ScholarPubMed
Rochat, P. (1989). Object manipulation and exploration in 2- to 5-month-old infants. Developmental Psychology, 25(6), 871884.CrossRefGoogle Scholar
Rogoff, B., Mistry, J., Göncü, A., & Mosier, C. (1991). Cultural variation in the role relations of toddlers and their families. In Bornstein, M. (Ed.), Cultural approaches to parenting (pp. 173183). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rogoff, B., Mistry, J., Göncü, A., Mosier, C., Chavajay, P., & Heath, S. B. (1993). Guided participation in cultural activity by toddlers and caregivers. Monographs of the Society for Research in Child Development, i179.CrossRefGoogle ScholarPubMed
Ruff, H. A. (1984). Infants’ manipulative exploration of objects: Effects of age and object characteristics. Developmental Psychology, 20(1), 920.CrossRefGoogle Scholar
Scarr-Salapatek, S., & Williams, M. L. (1973). The effects of early stimulation on low-birth-weight infants. Child Development, 94101.CrossRefGoogle ScholarPubMed
Schum, N., Jovanovic, B., & Schwarzer, G. (2011). Ten- and twelve-month-olds’ visual anticipation of orientation and size during grasping. Journal of Experimental Child Psychology, 109(2), 218231.CrossRefGoogle ScholarPubMed
Slade, A. (1987). Quality of attachment and early symbolic play. Developmental Psychology, 23(1), 7885.CrossRefGoogle Scholar
Smith, L. B., Street, S., Jones, S. S., & James, K. H. (2014). Using the axis of elongation to align shapes: Developmental changes between 18 and 24 months of age. Journal of Experimental Child Psychology, 123, 1535.CrossRefGoogle ScholarPubMed
Street, S. Y., James, K. H, Jones, S. S., & Smith, L. B. (2011). Vision for action in toddlers: The posting task. Child Development, 82, 20832094.CrossRefGoogle ScholarPubMed
Striano, T., & Bushnell, E. W. (2005). Haptic perception of material properties by 3-month-old infants. Infant Behavior and Development, 28(3), 266289.CrossRefGoogle Scholar
Sutherland, S. L., & Friedman, O. (2013). Just pretending can be really learning: Children use pretend play as a source for acquiring generic knowledge. Developmental Psychology, 49(9), 16601668.CrossRefGoogle ScholarPubMed
Tacke, N. F., Bailey, L. S., & Clearfield, M. W. (2015). Socio-economic status (SES) affects infants’ selective exploration. Infant and Child Development, 24(6), 571586.CrossRefGoogle Scholar
Tamis-LeMonda, C. S., & Bornstein, M. H. (1991). Individual variation, correspondence, stability, and change in mother and toddler play. Infant Behavior and Development, 14(2), 143162.CrossRefGoogle Scholar
Tamis-LeMonda, C. S., & Bornstein, M. H. (1993). Play and its relations to other mental functions in the child. New Directions for Child and Adolescent Development, 1993(59), 1728.CrossRefGoogle Scholar
(1996). Variation in children’s exploratory, nonsymbolic, and symbolic play: An explanatory multidimensional framework. In Rovee-Collier, C. & Lipsitt, L. P. (Ed.), Advances in infancy research (pp. 3778). Westport, CT: Ablex.Google Scholar
Tamis-LeMonda, C. S., Kuchirko, Y., & Tafuro, L. (2013). From action to interaction: Infant object exploration and mothers’ contingent responsiveness. IEEE Transactions on Autonomous Mental Development, 5(3), 202209.CrossRefGoogle Scholar
Tamis-LeMonda, C. S., & Schatz, J. (2019). Learning language in the context of play. In Horst, J., von Koss, J., & Torkildsen, K. (Eds.) International handbook of language development (pp. 442461). New York, NY: Routledge.Google Scholar
Uccelli, P., Hemphill, L., Pan, B. A., & Snow, C. (2006). Conversing with toddlers about the nonpresent: Precursors to narrative development in two genres. In Balter, L. & Tamis-LeMonda, C. S. (Eds.), Child psychology: A handbook of contemporary issues (pp. 215237). New York, NY: Psychology Press.Google Scholar
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. Analysis of visual behavior. In Ingle, D. J. Goodale, M. A., & Mansfield, R. J. W. (Eds.), Analysis of visual behavior (pp. 549586). Cambridge, MA: MIT Press.Google Scholar
von Hofsten, C. (1983). Catching skills in infancy. Journal of Experimental Psychology: Human Perception and Performance, 9(1), 7585.Google ScholarPubMed
von Hofsten, C. (2007). Action in development. Developmental Science, 10(1), 5460.CrossRefGoogle ScholarPubMed
von Hofsten, C., & Fazel-Zandy, S. (1984). Development of visually guided hand orientation in reaching. Journal of Experimental Child Psychology, 38(2), 208219.CrossRefGoogle ScholarPubMed
von Hofsten, C., & Rönnqvist, L. (1988). Preparation for grasping an object: A developmental study. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 610621.Google ScholarPubMed
Vygotsky, L. S. (1967). Play and its role in the mental development of the child. Soviet Psychology, 5(3), 618.CrossRefGoogle Scholar
Weisberg, D. S., Hirsh-Pasek, K., Golinkoff, R. M., Kittredge, A. K., & Klahr, D. (2016). Guided play: Principles and practices. Current Directions in Psychological Science, 25(3), 177182.CrossRefGoogle Scholar
Weisner, T. S. (1987). Socialization for parenthood in sibling caretaking societies. In Altmann, J. (Ed.), Parenting across the life span: Biosocial dimensions (pp. 237270). New York, NY: Routledge.Google Scholar
Welniarz, Q., Delsart, I., & Roze, E. (2017). The corticospinal tract: Evolution, development, and human disorders. Developmental Neurobiology, 77, 810829.CrossRefGoogle ScholarPubMed
Werner, H., & Kaplan, B. (1963). Symbol formation. Oxford: Wiley.Google Scholar
Witherington, D. (2005). The development of prospective grasping control between 5 and 7 months. Infancy, 7, 143161.CrossRefGoogle Scholar
Wolfe, S. W., Crisco, J. J., Orr, C. M., & Marzke, M. W. (2006). The dart-throwing motion of the wrist: is it unique to humans? Journal of Hand Surgery, 31(9), 14291437.CrossRefGoogle ScholarPubMed
Wooldridge, M. B., & Shapka, J. (2012). Playing with technology: Mother–toddler interaction scores lower during play with electronic toys. Journal of Applied Developmental Psychology, 33(5), 211218.CrossRefGoogle Scholar
Yu, C., & Smith, L. (2016). The social origins of sustained attention in 1-year-old human infants. Current Biology, 26(9), R357R359.CrossRefGoogle Scholar
Zosh, J. M., Verdine, B. N., Filipowicz, A., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2015). Talking shape: Parental language with electronic versus traditional shape sorters. Mind, Brain, and Education, 9(3), 136144.CrossRefGoogle Scholar
Adolph, K., Tamis-LeMonda, C., Gilmore, R. O., & Soska, K. (2018). Play & learning across a year (PLAY) project summit (2018-06-29 Philadelphia). Databrary. Retrieved from http://doi.org/10.17910/B7.724.Google Scholar
Adolphs, R. (2002). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1(1), 2162.CrossRefGoogle ScholarPubMed
Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). An area within human ventral cortex sensitive to “building” stimuli: Evidence and implications. Neuron, 21, 373383.CrossRefGoogle ScholarPubMed
Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401.CrossRefGoogle ScholarPubMed
Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R., & Livingstone, M. S. (2017). Seeing faces is necessary for face-domain formation. Nature Neuroscience, 20(10), 1404.CrossRefGoogle ScholarPubMed
Augustine, E., Jones, S. S., Smith, L. B., & Longfield, E. (2015). Relations among early object recognition skills: Objects and letters. Journal of Cognition and Development, 16(2), 221235.CrossRefGoogle ScholarPubMed
Bambach, S., Crandall, D. J., & Yu, C. (2015). Viewpoint integration for hand-based recognition of social interactions from a first-person view. Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, November, 351354.Google ScholarPubMed
Bechtel, W., & Richardson, R. (1993). Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton, NJ: Princeton University Press.Google Scholar
Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551565.CrossRefGoogle ScholarPubMed
Bergelson, E., Amatuni, A., Dailey, S., Koorathota, S., & Tor, S. (2019). Day by day, hour by hour: Naturalistic language input to infants. Developmental Science, 22(1), e12715.CrossRefGoogle ScholarPubMed
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences, 109(9), 32533258.CrossRefGoogle ScholarPubMed
Bertenthal, B. I., Campos, J. J., & Barrett, K. C. (1984). Self-produced locomotion. In Bertenthal, B. I., Campos, J. J. & Barrett, K. C. (Eds.), Continuities and discontinuities in development (pp. 175210). New York, NY: Springer.CrossRefGoogle Scholar
Blais, C., Jack, R. E., Scheepers, C., Fiset, D., & Caldara, R. (2008). Culture shapes how we look at faces. PloS One, 3(8), e3022.CrossRefGoogle Scholar
Braddick, O., & Atkinson, J. (2011). Development of human visual function. Vision Research, 51(13), 15881609.CrossRefGoogle ScholarPubMed
Brandone, A. C. (2015). Infants’ social and motor experience and the emerging understanding of intentional actions. Developmental Psychology, 51(4), 512.CrossRefGoogle ScholarPubMed
Brockmole, J. R., & Henderson, J. M. (2006). Using real-world scenes as contextual cues for search. Visual Cognition, 13(1), 99108.CrossRefGoogle Scholar
Burling, J. M., & Yoshida, H. (2018). Visual constancies amidst changes in handled objects for 5- to 24-month-old infants. Child Development, 90(2), 452461.CrossRefGoogle ScholarPubMed
Bushnell, E. W., & Boudreau, J. P. (1993). Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Development, 64(4), 10051021.CrossRefGoogle ScholarPubMed
Bushnell, W. (2003). Newborn face recognition. In Pascalis, O. & Slater, A. (Eds.), The development of face processing in infancy and early childhood (pp. 4153) New York, NY: Nova Science.Google Scholar
Byrge, L., Sporns, O., & Smith, L. B. (2014). Developmental process emerges from extended brain–body–behavior networks. Trends in Cognitive Sciences, 18(8), 395403.CrossRefGoogle ScholarPubMed
Cadieu, C. F., Hong, H., Yamins, D. L., Pinto, N., Ardila, D., Solomon, E. A., & DiCarlo, J. J. (2014). Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Computational Biology, 10(12), e1003963.CrossRefGoogle ScholarPubMed
Cameron, C. E., Cottone, E. A., Murrah, W. M., & Grissmer, D. W. (2016). How are motor skills linked to children’s school performance and academic achievement? Child Development Perspectives, 10(2), 9398.CrossRefGoogle Scholar
Carey, S., & Diamond, R. (1994). Are faces perceived as configurations more by adults than by children? Visual Cognition, 1(2–3), 253274.CrossRefGoogle Scholar
Castelhano, M. S., & Witherspoon, R. L. (2016). How you use it matters: Object function guides attention during visual search in scenes. Psychological Science, 27(5), 606621.CrossRefGoogle ScholarPubMed
Chua, H. F., Boland, J. E., & Nisbett, R. E. (2005). Cultural variation in eye movements during scene perception. Proceedings of the National Academy of Sciences, 102(35), 1262912633.CrossRefGoogle ScholarPubMed
Clark, E. V., & Estigarribia, B. (2011). Using speech and gesture to introduce new objects to young children. Gesture, 11(1), 123.CrossRefGoogle Scholar
Clerkin, E. M., Hart, E., Rehg, J. M., Yu, C., & Smith, L. B. (2017). Real-world visual statistics and infants’ first-learned object names. Philosophical Transactions of the Royal Society B, 372(1711), 20160055.CrossRefGoogle ScholarPubMed
Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form area. Neuroimage, 22(1), 466476.CrossRefGoogle ScholarPubMed
Collins, F. S. (2011). Reengineering translational science: The time is right. Science Translational Medicine, 3(90). doi: 10.1126/scitranslmed.3002747.CrossRefGoogle ScholarPubMed
D’Souza, D. E., D’Souza, H., & Karmiloff-Smith, A. (2017). Precursors to language development in typically and atypically developing infants and toddlers: The importance of embracing complexity. Journal of Child Language, 44(3), 591627.CrossRefGoogle ScholarPubMed
DiCarlo, J. J., & Cox, D. D. J. (2007). Untangling invariant object recognition. Trends in Cognitive Science, 11(8), 333341.CrossRefGoogle ScholarPubMed
Dickinson, D. K., Golinkoff, R. M., & Hirsh-Pasek, K. (2010). Speaking out for language: Why language is central to reading development. Educational Researcher, 39(4), 305310.CrossRefGoogle Scholar
Dobson, V., Teller, D. Y., & Belgum, J. J. (1978). Visual acuity in human infants assessed with stationary stripes and phase-alternated checkerboards. Vision Research, 18(9), 12331238.CrossRefGoogle ScholarPubMed
Doherty, M. J., Anderson, J. R., & Howieson, L. (2009). The rapid development of explicit gaze judgment ability at 3 years. Journal of Experimental Child Psychology, 104(3), 296312.CrossRefGoogle ScholarPubMed
Dolgin, E. (2015). The myopia boom. Nature, 519(7543), 276.CrossRefGoogle ScholarPubMed
Duffy, S., Toriyama, R., Itakura, S., & Kitayama, S. (2009). Development of cultural strategies of attention in North American and Japanese children. Journal of Experimental Child Psychology, 102, 351359.CrossRefGoogle ScholarPubMed
Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York, NY: Basic Books.Google Scholar
Falck-Ytter, T., Gredebäck, G., & von Hofsten, C. (2006). Infants predict other people’s action goals. Nature Neuroscience, 9(7), 878.CrossRefGoogle ScholarPubMed
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140(3564), 296297.CrossRefGoogle ScholarPubMed
Farroni, T., Johnson, M. H., Brockbank, M., & Simion, F. (2000). Infants’ use of gaze direction to cue attention: The importance of perceived motion. Visual Cognition, 7(6), 705718.CrossRefGoogle Scholar
Farroni, T., Pividori, D., Simion, F., Massaccesi, S., & Johnson, M. H. (2004). Eye gaze cueing of attention in newborns. Infancy, 5(1), 3960.CrossRefGoogle Scholar
Fathi, A., Ren, X., & Rehg, J. M. (2011). Learning to recognize objects in egocentric activities. Paper presented at the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO.CrossRefGoogle Scholar
Fausey, C. M., Jayaraman, S., & Smith, L. B. (2016). From faces to hands: Changing visual input in the first two years. Cognition, 152, 101107.CrossRefGoogle ScholarPubMed
Fernald, A., & Weisleder, A. (2015). Twenty years after “meaningful differences,” it’s time to reframe the “deficit” debate about the importance of children’s early language experience. Human Development, 58(1), 1.CrossRefGoogle Scholar
Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769.CrossRefGoogle ScholarPubMed
Foody, G. M., McCulloch, M. B., & Yates, W. B. (1995). The effect of training set size and composition on artificial neural network classification. International Journal of Remote Sensing, 16, 17071723CrossRefGoogle Scholar
Foulsham, T., Walker, E., & Kingstone, A. (2011). The where, what and when of gaze allocation in the lab and the natural environment. Vision Research, 51(17), 19201931.CrossRefGoogle ScholarPubMed
Franchak, J. M., & Adolph, K. E. J. (2010). Visually guided navigation: Head-mounted eye-tracking of natural locomotion in children and adults. Vision Research, 50(24), 27662774.CrossRefGoogle ScholarPubMed
Franchak, J. M., Kretch, K. S., & Adolph, K. E. (2018). See and be seen: Infant–caregiver social looking during locomotor free play. Developmental Science, 21(4), e12626.CrossRefGoogle ScholarPubMed
Frank, M. C., Bergelson, E., Bergmann, C., Cristia, A., Floccia, C., Gervain, J., … Lew-Williams, C. (2017). A collaborative approach to infant research: Promoting reproducibility, best practices, and theory-building. Infancy, 22(4), 421435.CrossRefGoogle ScholarPubMed
Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring the face recognition mechanisms. Vision Research, 37(12), 16731682.CrossRefGoogle Scholar
Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annual Review of Psychology, 59, 167192.CrossRefGoogle ScholarPubMed
Gerson, S. A., Meyer, M., Hunnius, S., & Bekkering, H. (2017). Unravelling the contributions of motor experience and conceptual knowledge in action perception: A training study. Scientific Reports, 7, 46761.CrossRefGoogle ScholarPubMed
Gilkerson, J., & Richards, J. A. (2008). The LENA natural language study. Boulder, CO: LENA Foundation.Google Scholar
Gilmore, R. O., Baker, T. J., & Grobman, K. (2004). Stability in young infants’ discrimination of optic flow. Developmental Psychology, 40(2), 259.CrossRefGoogle ScholarPubMed
Gogate, L. J., Bahrick, L. E., & Watson, J. D. (2000). A study of multimodal motherese: The role of temporal synchrony between verbal labels and gestures. Child Development, 71(4), 878894.CrossRefGoogle ScholarPubMed
Goh, J. O. S., Hebrank, A. C., Sutton, B. P., Chee, M. W. L., Sim, S. K. Y., & Park, D. C. (2013). Culture-related differences in default network during visuo-spatial judgments. Social Cognitive and Affective Neuroscience, 8, 134142.CrossRefGoogle ScholarPubMed
Goldin-Meadow, S., & Wagner, S. M. (2005). How our hands help us learn. Trends in Cognitive Sciences, 9(5), 234241.CrossRefGoogle ScholarPubMed
Golinkoff, R. M., Hoff, E., Rowe, M. L., Tamis-LeMonda, C. S., & Hirsh-Pasek, K. (2018). Language matters: Denying the existence of the 30-million-word gap has serious consequences. Child Development, 90(3), 985992.CrossRefGoogle ScholarPubMed
Goren, C. C., Sarty, M., & Wu, P. Y. (1975). Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics, 56(4), 544549.Google ScholarPubMed
Hadad, B. S., Maurer, D., & Lewis, T. L. (2011). Long trajectory for the development of sensitivity to global and biological motion. Developmental Science, 14(6), 13301339.CrossRefGoogle ScholarPubMed
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665.CrossRefGoogle ScholarPubMed
Han, S., & Northoff, G. (2008). Reading direction and culture. Nature Reviews Neuroscience, 9(12), 965.CrossRefGoogle Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Paul H. Brookes.Google Scholar
Haxby, J. V.,