Skip to main content Accessibility help
Hostname: page-component-99c86f546-8r8mm Total loading time: 2.256 Render date: 2021-11-28T06:05:13.121Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Part III - Evolution and Neuroscience

Published online by Cambridge University Press:  02 March 2020

Lance Workman
University of South Wales
Will Reader
Sheffield Hallam University
Jerome H. Barkow
Dalhousie University, Nova Scotia
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Cosmides, L., & Tooby, J. (2000). Evolutionary psychology and the emotions. In Lewis, M. & Haviland, J., eds., The Handbook of Emotions, 2nd ed. New York: Guilford, pp. 91116.Google Scholar
Darwin, C. (1859). On The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Kringelbach, M. L., & Berridge, K. C. (2017). The affective core of emotion: Linking pleasure, subjective well-being and optimal metastability in the brain. Emotion Review, 9, 191199.CrossRefGoogle Scholar
Panksepp, J., & Panksepp, J. B. (2000). The seven sins of evolutionary psychology. Evolution and Cognition, 6, 108131.Google Scholar
Stark, E., Vuust, P., & Kringelbach, M. L. (2018). Music, dance, and other art forms: New insights into the link between hedonia (pleasure) and eudaimonia (well-being). Progress in Brain Research, 237, 129152.CrossRefGoogle Scholar
Toates, F. (2014). How Sexual Desire Works: The Enigmatic Urge. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Alexander, B. (2008). The Globalization of Addiction: A Study in Poverty of the Spirit. Oxford: Oxford University Press.Google Scholar
Alexopoulos, G. S., Raue, P. J., Gunning, F., et al. (2016). “Engage” therapy: Behavioral activation and improvement of late-life major depression. American Journal of Geriatric Psychiatry, 24(4), 320326.CrossRefGoogle ScholarPubMed
Angus, D. J., Schutter, D. J., Terburg, D., et al. (2016). A review of social neuroscience research on anger and aggression. In Harmon-Jones, E. & Inzlicht, M., eds., Social Neuroscience: Biological Approaches to Social Psychology. London: Routledge, pp. 223246.CrossRefGoogle Scholar
Anselme, P. (2013). Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behavioural Brain Research, 256, 14.CrossRefGoogle ScholarPubMed
Archer, J. (2004). Sex differences in aggression in real-world settings: A meta-analytic review. Review of General Psychology, 8(4), 291322.CrossRefGoogle Scholar
Archer, J. (2006). Testosterone and human aggression: An evaluation of the challenge hypothesis. Neuroscience & Biobehavioral Reviews, 30(3), 319345.CrossRefGoogle ScholarPubMed
Archer, J. (2009). The nature of human aggression. International Journal of Law and Psychiatry, 32(4), 202208.CrossRefGoogle ScholarPubMed
Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497529.CrossRefGoogle ScholarPubMed
Beck, A. T., & Bredemeier, K. (2016). A unified model of depression integrating clinical, cognitive, biological, and evolutionary perspectives. Clinical Psychological Science, 4, 596619.CrossRefGoogle Scholar
Berkowitz, L., & LePage, A. (1967). Weapons as aggression-eliciting stimuli. Journal of Personality and Social Psychology, 7(2), 202207.CrossRefGoogle Scholar
Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81(2), 179209.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Kringelbach, M. L. (2013). Neuroscience of affect: Brain mechanisms of pleasure and displeasure. Current Opinion in Neurobiology, 23(3), 294303.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646664.CrossRefGoogle Scholar
Berridge, K. C., & Valenstein, E. S. (1991). What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behavioral Neuroscience, 105(1), 314.CrossRefGoogle ScholarPubMed
Bindra, D. (1978). How adaptive behavior is produced: A perceptual–motivational alternative to response reinforcements. Behavioral and Brain Sciences, 1(1), 4152.CrossRefGoogle Scholar
Bjorklund, D. F., & Kipp, K. (1996). Parental investment theory and gender differences in the evolution of inhibition mechanisms. Psychological Bulletin, 120(2), 163188.CrossRefGoogle ScholarPubMed
Blackburn, J. R., Pfaus, J. G., & Phillips, A. G. (1992). Dopamine functions in appetitive and defensive behaviours. Progress in Neurobiology, 39(3), 247279.CrossRefGoogle ScholarPubMed
Blair, R. J. R. (2004). The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain and Cognition, 55(1), 198208.CrossRefGoogle ScholarPubMed
Blair, R. J. R. (2016). The neurobiology of impulsive aggression. Journal of Child and Adolescent Psychopharmacology, 26(1), 49.CrossRefGoogle ScholarPubMed
Bolhuis, J. J., Brown, G. R., Richardson, R. C., et al. (2011). Darwin in mind: New opportunities for evolutionary psychology. PLoS Biology, 9(7), e1001109.CrossRefGoogle Scholar
Bowlby, J. (1982). Attachment and Loss. Vol. 1 Attachment. New York: Basic Books.Google Scholar
Buades-Rotger, M., Brunnlieb, C., Münte, T. F., et al. (2016). Winning is not enough: Ventral striatum connectivity during physical aggression. Brain Imaging and Behavior, 10(1), 105114.CrossRefGoogle Scholar
Buss, D. M. (2016). Evolutionary Psychology: The New Science of the Mind. London: Routledge.Google Scholar
Buss, D. M., & Shackelford, T. K. (1997). Human aggression in evolutionary psychological perspective. Clinical Psychology Review, 17(6), 605619.CrossRefGoogle ScholarPubMed
Cameron, E. L. (2014). Pregnancy and olfaction: A review. Frontiers in Psychology, 5, 67.CrossRefGoogle ScholarPubMed
Campbell, A. (2013). A Mind of Her Own: The Evolutionary Psychology of Women. Oxford: Oxford University Press.CrossRefGoogle Scholar
Carpenter, D., Janssen, E., Graham, C., et al. (2008). Women’s scores on the Sexual Inhibition/Sexual Excitation Scales (SIS/SES): Gender similarities and differences. Journal of Sex Research, 45(1), 3648.CrossRefGoogle ScholarPubMed
Carré, J. M., Geniole, S. N., Ortiz, T. L., et al. (2017). Exogenous testosterone rapidly increases aggressive behavior in dominant and impulsive men. Biological Psychiatry, 82(4), 249256.CrossRefGoogle ScholarPubMed
Carver, C. S., & Harmon-Jones, E. (2009). Anger is an approach-related affect: Evidence and implications. Psychological Bulletin, 135(2), 183204.CrossRefGoogle ScholarPubMed
Carver, C. S., Johnson, S. L., & Joormann, J. (2008). Serotonergic function, two-mode models of self-regulation, and vulnerability to depression: What depression has in common with impulsive aggression. Psychological Bulletin, 134(6), 912943.CrossRefGoogle ScholarPubMed
Chevallier, C., Kohls, G., Troiani, V., et al. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231239.CrossRefGoogle ScholarPubMed
Chiappe, D., & MacDonald, K. (2005). The evolution of domain-general mechanisms in intelligence and learning. The Journal of General Psychology, 132(1), 540.CrossRefGoogle Scholar
Cosmides, L., & Tooby, J. (1995). From evolution to adaptations to behavior: Toward an integrated evolutionary psychology. In Wong, R., ed., Biological Perspectives on Motivated Activities. Norwood, NJ: Ablex, pp. 1174.Google Scholar
Crabb, P. B. (2000). The material culture of homicidal fantasies. Aggressive Behavior, 26(3), 225234.3.0.CO;2-R>CrossRefGoogle Scholar
Cross, C. P., Copping, L. T., & Campbell, A. (2011). Sex differences in impulsivity: A meta-analysis. Psychological Bulletin, 137(1), 976130.CrossRefGoogle ScholarPubMed
Davis, C. (2014). Evolutionary and neuropsychological perspectives on addictive behaviors and addictive substances: relevance to the “food addiction” construct. Substance Abuse and Rehabilitation, 5, 129137.CrossRefGoogle ScholarPubMed
Daw, N. D., O’Doherty, J. P., Dayan, P., et al. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876879.CrossRefGoogle ScholarPubMed
Denson, T. F., Schofield, T. P., & Fabiansson, E. C. (2015). Aggressive desires. In Hofmann, W. & Nordgren, L. F., eds., The Psychology of Desire. New York: Guilford Press, pp. 369389.Google Scholar
De Quervain, D. J., Fischbacher, U., Treyer, V., et al. (2004). The neural basis of altruistic punishment. Science, 305(5688), 12541258.CrossRefGoogle ScholarPubMed
Dreher, J. C., Dunne, S., Pazderska, A., et al. (2016). Testosterone causes both prosocial and antisocial status-enhancing behaviors in human males. Proceedings of the National Academy of Sciences, 113(41), 1163311638.CrossRefGoogle ScholarPubMed
Duchaine, B., Cosmides, L., & Tooby, J. (2001). Evolutionary psychology and the brain. Current Opinion in Neurobiology, 11(2), 225230.CrossRefGoogle Scholar
Durisko, Z., Mulsant, B. H., & Andrews, P. W. (2015). An adaptationist perspective on the etiology of depression. Journal of Affective Disorders, 172, 315323.CrossRefGoogle Scholar
Fehr, E., & Camerer, C. F. (2007). Social neuroeconomics: The neural circuitry of social preferences. Trends in Cognitive Sciences, 11(10), 419427.CrossRefGoogle ScholarPubMed
Gan, G., Preston-Campbell, R. N., Moeller, S. J., et al. (2016). Reward vs. retaliation – The role of the mesocorticolimbic salience network in human reactive aggression. Frontiers in Behavioral Neuroscience, 10, 179.CrossRefGoogle ScholarPubMed
Gard, D. E., Kring, A. M., Gard, M. G., et al. (2007). Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophrenia Research, 93(1), 253260.CrossRefGoogle ScholarPubMed
Glenn, A. L., & Raine, A. (2009). Psychopathy and instrumental aggression: Evolutionary, neurobiological, and legal perspectives. International Journal of Law and Psychiatry, 32(4), 253258.CrossRefGoogle ScholarPubMed
Groppe, S. E., Gossen, A., Rademacher, L., et al. (2013). Oxytocin influences processing of socially relevant cues in the ventral tegmental area of the human brain. Biological Psychiatry, 74(3), 172179.CrossRefGoogle ScholarPubMed
Gunaydin, L. A., & Deisseroth, K. (2014). Dopaminergic dynamics contributing to social behavior. Cold Spring Harbor Symposia on Quantitative Biology, 79, 221227.CrossRefGoogle ScholarPubMed
Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neuroscience and Biobehavioral Reviews, 12(2), 123137.CrossRefGoogle ScholarPubMed
Hartlage, S., Alloy, L. B., Vázquez, C., et al. (1993). Automatic and effortful processing in depression. Psychological Bulletin, 113(2), 247278.CrossRefGoogle ScholarPubMed
Hein, G., Engelmann, J. B., Vollberg, M. C., et al. (2016). How learning shapes the empathic brain. Proceedings of the National Academy of Sciences, 113(1), 8085.CrossRefGoogle ScholarPubMed
Itoga, C. A., Berridge, K. C., & Aldridge, J. W. (2016). Ventral pallidal coding of a learned taste aversion. Behavioural Brain Research, 300, 175183.CrossRefGoogle ScholarPubMed
Jepma, M., Verdonschot, R. G., Van Steenbergen, H., et al. (2012). Neural mechanisms underlying the induction and relief of perceptual curiosity. Frontiers in Behavioral Neuroscience, 6, 5.CrossRefGoogle ScholarPubMed
Johnson, S. L., Edge, M. D., Holmes, M. K., et al. (2012). The behavioral activation system and mania. Annual Review of Clinical Psychology, 8, 243267.CrossRefGoogle ScholarPubMed
Kim, P., Strathearn, L., & Swain, J. E. (2016). The maternal brain and its plasticity in humans. Hormones and Behavior, 77, 113123.CrossRefGoogle ScholarPubMed
Kohls, G., Perino, M. T., Taylor, J. M., et al. (2013). The nucleus accumbens is involved in both the pursuit of social reward and the avoidance of social punishment. Neuropsychologia, 51(11), 20622069.CrossRefGoogle ScholarPubMed
Krebs, J. R., & Davies, N. B. (1978). Behavioural Ecology: An Evolutionary Approach. Oxford: Blackwell Science.Google Scholar
Kringelbach, M. L., Lehtonen, A., Squire, S., et al. (2008). A specific and rapid neural signature for parental instinct. PLoS ONE, 3(2), e1664.CrossRefGoogle ScholarPubMed
Lambert, K. G. (2006). Rising rates of depression in today’s society: Consideration of the roles of effort-based rewards and enhanced resilience in day-to-day functioning. Neuroscience and Biobehavioral Reviews, 30(4), 497510.CrossRefGoogle ScholarPubMed
Litman, J. (2005). Curiosity and the pleasures of learning: Wanting and liking new information. Cognition and Emotion, 19(6), 793814.CrossRefGoogle Scholar
Lopez, R. B., Wagner, D. D., & Heatherton, T. F. (2015). Neuroscience of desire regulation. In Hofmann, W. & Nordgren, L. F., eds., The Psychology of Desire. New York: Guilford Press, pp. 146160.Google Scholar
Lorenz, K. Z. (1981). The Foundations of Ethology. New York: Springer-Verlag.CrossRefGoogle Scholar
MacDonald, G., & Leary, M. R. (2005). Why does social exclusion hurt? The relationship between social and physical pain. Psychological Bulletin, 131(2), 202223.CrossRefGoogle ScholarPubMed
MacLean, P. D. (1990). The Triune Brain in Evolution. New York: Plenum Press.Google Scholar
Mazur, A., & Booth, A. (1998). Testosterone and dominance in men. Behavioral and Brain Sciences, 21(3), 353363.CrossRefGoogle ScholarPubMed
Nesse, R. M. (2001). Motivation and melancholy: A Darwinian perspective. Nebraska Symposium on Motivation, 47, 179203.Google ScholarPubMed
Nesse, R. M., & Berridge, K. C. (1997). Psychoactive drug use in evolutionary perspective. Science, 278(5335), 6366.CrossRefGoogle ScholarPubMed
Nettle, D. (2004). Evolutionary origins of depression: A review and reformulation. Journal of Affective Disorders, 81(2), 91102.CrossRefGoogle ScholarPubMed
Over, H. (2016). The origins of belonging: social motivation in infants and young children. Philosophical Transactions of the Royal Society B, 371(1686), 20150072.CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective Neuroscience: The Foundations of Human and Animal Emotions. Oxford: Oxford University Press.Google Scholar
Panksepp, J. (2014). Seeking and loss in the ancestral genesis of resilience, depression, and addiction. In Kent, M, Davis, M. C, & Reich, J. W, eds., The Resilience Handbook: Approaches to Stress and Trauma. New York: Routledge, pp. 314.Google Scholar
Panksepp, J., & Panksepp, J. B. (2000). The seven sins of evolutionary psychology. Evolution and Cognition, 6(2), 108131.Google Scholar
Papageorgiou, G. K., Baudonnat, M., Cucca, F., et al. (2016). Mesolimbic dopamine encodes prediction errors in a state-dependent manner. Cell Reports, 15(2), 221228.CrossRefGoogle Scholar
Patil, C. L., Abrams, E. T., Steinmetz, A. R., et al. (2012). Appetite sensations and nausea and vomiting in pregnancy: An overview of the explanations. Ecology of Food and Nutrition, 51(5), 394417.CrossRefGoogle ScholarPubMed
Pinker, S. (2011). The Better Angels of our Nature: The Decline of Violence in History and its Causes. London: Penguin.Google Scholar
Price, J., Sloman, L., Gardner, R., et al. (1994). The social competition hypothesis of depression. British Journal of Psychiatry, 164(3), 309315.CrossRefGoogle Scholar
Profet, M. (1992) Pregnancy sickness as adaptation: A deterrent to maternal ingestion of teratogens. In Barkow, J. H., Cosmides, L., & Tooby, J., eds., The Adapted Mind: Evolutionary Psychology and the Generation of Culture. New York: Oxford University Press, pp. 327365.Google Scholar
Radke, S., Seidel, E. M., Eickhoff, S. B., et al. (2016). When opportunity meets motivation: Neural engagement during social approach is linked to high approach motivation. NeuroImage, 127, 267276.CrossRefGoogle ScholarPubMed
Raichlen, D. A., Foster, A. D., Seillier, A., et al. (2013). Exercise-induced endocannabinoid signaling is modulated by intensity. European Journal of Applied Physiology, 113(4), 869875.CrossRefGoogle ScholarPubMed
Ramírez, J. M., Bonniot-Cabanac, M. C., & Cabanac, M. (2005). Can impulsive aggression provide pleasure? European Psychologist, 10(2), 136145.CrossRefGoogle Scholar
Ray, W. J. (2013). Evolutionary psychology: Neuroscience Perspectives Concerning Human Behavior and Experience. Los Angeles, CA: Sage.Google Scholar
Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247291.CrossRefGoogle Scholar
Rolls, E. T., Murzi, E., Yaxley, S., et al. (1986). Sensory-specific satiety: Food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Research, 368(1), 7986.CrossRefGoogle ScholarPubMed
Rosell, D. R., & Siever, L. J. (2015). The neurobiology of aggression and violence. CNS Spectrums, 20(3), 254279.CrossRefGoogle ScholarPubMed
Rupp, H. A., James, T. W., Ketterson, E. D., et al. (2009). The role of the anterior cingulate cortex in women’s sexual decision making. Neuroscience Letters, 449(1), 4247.CrossRefGoogle ScholarPubMed
Salamone, J. D., Correa, M., Farrar, A., et al. (2007). Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 191(3), 461482.CrossRefGoogle ScholarPubMed
Schulkin, J. (2016). Evolutionary basis of human running and its impact on neural function. Frontiers in Systems Neuroscience, 10, 59.CrossRefGoogle ScholarPubMed
Spreckelmeyer, K. N., Krach, S., Kohls, G., et al. (2009). Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women. Social Cognitive and Affective Neuroscience, 4(2), 158165.CrossRefGoogle ScholarPubMed
Stice, E., & Yokum, S. (2016). Neural vulnerability factors that increase risk for future weight gain. Psychological Bulletin, 142(5), 447471.CrossRefGoogle ScholarPubMed
Stockhorst, U., Enck, P., & Klosterhalfen, S. (2007). Role of classical conditioning in learning gastrointestinal symptoms. World Journal of Gastroenterology, 13(25), 34303437.CrossRefGoogle ScholarPubMed
Temple, J. L. (2016). Behavioral sensitization of the reinforcing value of food: What food and drugs have in common. Preventive Medicine, 92, 9099.CrossRefGoogle ScholarPubMed
Toates, F. (1986). Motivational Systems. Cambridge, UK: Cambridge University Press.Google Scholar
Toates, F. (1998). The interaction of cognitive and stimulus–response processes in the control of behaviour. Neuroscience & Biobehavioral Reviews, 22(1), 5983.CrossRefGoogle ScholarPubMed
Toates, F. (2005). Evolutionary psychology – Towards a more integrative model. Biology and Philosophy, 20(2–3), 305328.CrossRefGoogle Scholar
Toates, F. (2014). How Sexual Desire Works: The Enigmatic Urge. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Toates, F. M., & Archer, J. (1978). A comparative review of motivational systems using classical control theory. Animal Behaviour, 26, 368380.CrossRefGoogle Scholar
Treadway, M. T. (2015). Liking little, wanting less. In Hofmann, W. & Nordgren, L. F., eds., The Psychology of Desire. New York: Guilford Press, pp. 307320.Google Scholar
Wagner, D. D., & Heatherton, T. F. (2015). Self-regulation and its failure: The seven deadly threats to self-regulation. In Mikulincer, M. & Shaver, P.R., eds., APA Handbook of Personality and Social Psychology: Vol. 1. Attitudes and Social Cognition. Washington, DC: American Psychological Association, pp. 805842.Google Scholar
White, S. F., Brislin, S. J., Sinclair, S., et al. (2014). Punishing unfairness: Rewarding or the organization of a reactively aggressive response? Human Brain Mapping, 35(5), 21372147.CrossRefGoogle ScholarPubMed
Williams, K. D. (2007). Ostracism. Annual Review of Psychology, 58(1), 425452.CrossRefGoogle ScholarPubMed
Wittmann, B. C., Daw, N. D., Seymour, B., et al. (2008). Striatal activity underlies novelty-based choice in humans. Neuron, 58(6), 967973.CrossRefGoogle ScholarPubMed
Wittman, D. (2014). Darwinian depression. Journal of Affective Disorders, 168, 142150.CrossRefGoogle ScholarPubMed
Wondra, J. D., & Ellsworth, P. C. (2015). An appraisal theory of empathy and other vicarious emotional experiences. Psychological Review, 122(3), 411428.CrossRefGoogle ScholarPubMed
Zeeland, S. V., Ashley, A., Dapretto, M., et al. (2010). Reward processing in autism. Autism Research, 3(2), 5367.Google Scholar
Aristotle (350 BCE/1976). The Nicomachean Ethics, Book 10, trans. by Thomson, J. A. K.. London: Penguin Books.Google Scholar
Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews, 20, 125.CrossRefGoogle Scholar
Berridge, K. C. (2000). Measuring hedonic impact in animals and infants: Microstructure of affective taste reactivity patterns. Neuroscience and Biobehavioral Reviews, 24, 173198.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2007). Brain reward systems for food incentives and hedonics in normal appetite and eating disorders. In Kirkham, T. C & Cooper, S. J, eds., Appetite and Body Weight. New York: Academic Press, pp. 191216CrossRefGoogle Scholar
Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199, 457480.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Kringelbach, M. L. (2011). Building a neuroscience of pleasure and well-being. Psychology of Well-Being, 1(1), 13.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86, 646664.CrossRefGoogle Scholar
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26, 507513.CrossRefGoogle ScholarPubMed
Biswal, B., Yetkin, F., Haughton, V., & Hyde, J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537541.CrossRefGoogle ScholarPubMed
Cabanac, M., & Lafrance, L. (1990). Postingestive alliesthesia: The rat tells the same story. Physiology and Behavior, 47, 539543.CrossRefGoogle ScholarPubMed
Cabral, J., Kringelbach, M. L., & Deco, G. (2014). Exploring the network dynamics underlying brain activity during rest. Progress in Neurobiology, 114, 102131.CrossRefGoogle Scholar
Castro, D. C., & Berridge, K. C. (2017). Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proceedings of the National Academy of Sciences, 114, E9125E9134.CrossRefGoogle ScholarPubMed
Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564583.CrossRefGoogle ScholarPubMed
Crisp, R., & Kringelbach, M. L. (2018). Higher and lower pleasures revisited: Evidence from neuroscience. Neuroethics, 11, 211215.CrossRefGoogle ScholarPubMed
Diener, E., Lucas, R. E., & Scollon, C. N. (2006). Beyond the hedonic treadmill: Revising the adaptation theory of well-being. American Psychologist, 61, 305314.CrossRefGoogle ScholarPubMed
Drevets, W. C., Price, J. L., Simpson, J. R. Jr., et al. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386, 824827.CrossRefGoogle ScholarPubMed
Fervaha, G., Graff-Guerrero, A., Zakzanis, K. K., et al. (2013). Incentive motivation deficits in schizophrenia reflect effort computation impairments during cost–benefit decision-making. Journal of Psychiatric Research, 47, 15901596.CrossRefGoogle ScholarPubMed
Frijda, N. (2010). On the nature and function of pleasure. In Kringelbach, M. L. & Berridge, K. C, eds., Pleasures of the Brain. New York: Oxford University Press, pp. 99112.Google Scholar
Gold, J. M., Strauss, G. P., Waltz, J. A., et al. (2013). Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biological Psychiatry, 74, 130136.CrossRefGoogle ScholarPubMed
Grill, H. J., & Norgren, R. (1978). The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Research, 143, 263279.CrossRefGoogle ScholarPubMed
Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685694.CrossRefGoogle ScholarPubMed
Kahneman, D. (1999). Objective happiness. In Kahneman, D., Diener, E., & Schwartz, N., eds., Well-being: The Foundation of Hedonic Psychology. New York: Russell Sage Foundation, pp. 325.Google Scholar
Kaplan, J. M., Roitman, M., & Grill, H. J. (2000). Food deprivation does not potentiate glucose taste reactivity responses of chronic decerebrate rats. Brain Research, 870, 102108.CrossRefGoogle Scholar
Kringelbach, M. L. (2004a). Emotion. In Gregory, R. L, ed., The Oxford Companion to the Mind, 2nd ed. Oxford: Oxford University Press, pp. 287290.Google Scholar
Kringelbach, M. L. (2004b). Learning to change. PLoS Biology, 2, E140.CrossRefGoogle Scholar
Kringelbach, M. L. (2005a). The human orbitofrontal cortex: linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691702.CrossRefGoogle ScholarPubMed
Kringelbach, M. L. (2005b). The orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691702.CrossRefGoogle ScholarPubMed
Kringelbach, M. L. (2009). The Pleasure Center: Trust Your Animal Instincts. New York: Oxford University Press.Google Scholar
Kringelbach, M. L. (2010). The hedonic brain: A functional neuroanatomy of human pleasure. In Kringelbach, M. L. & Berridge, K. C, eds., Pleasures of the Brain. Oxford: Oxford University Press, pp. 202221.Google Scholar
Kringelbach, M. L., & Berridge, K. C. (2009). Towards a functional neuroanatomy of pleasure and happiness in the brain. Trends in Cognitive Sciences, 13, 479487.CrossRefGoogle Scholar
Kringelbach, M. L., & Berridge, K. C. (2017). The affective core of emotion: linking pleasure, subjective well-being and optimal metastability in the brain. Emotion Review, 9, 191199.CrossRefGoogle Scholar
Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341372.CrossRefGoogle ScholarPubMed
Kringelbach, M. L., McIntosh, A. R., Ritter, P., Jirsa, V. K., & Deco, G. (2015). The rediscovery of slowness: Exploring the timing of cognition. Trends in Cognitive Sciences, 19, 616628.CrossRefGoogle ScholarPubMed
Lou, H. C., Kjaer, T. W., Friberg, L., et al. (1999). A 15O–H2O PET study of meditation and the resting state of normal consciousness. Human Brain Mapping, 7, 98105.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
McFarland, B. R., & Klein, D. N. (2009). Emotional reactivity in depression: Diminished responsiveness to anticipated reward but not to anticipated punishment or to nonreward or avoidance. Depression and Anxiety, 26, 117122.CrossRefGoogle ScholarPubMed
O’Doherty, J., Rolls, E. T., Francis, S., Bowtell, R., & McGlone, F. (2001). Representation of pleasant and aversive taste in the human brain. Journal of Neurophysiology, 85, 13151321.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task. Journal of Psychiatric Research, 43, 7687.CrossRefGoogle ScholarPubMed
Rømer Thomsen, K., Whybrow, P. C., & Kringelbach, M. L. (2015). Reconceptualising anhedonia: Novel perspectives on balancing the pleasure networks in the human brain. Frontiers in Behavioral Neuroscience, 9, 49.Google Scholar
Sato, W., Kochiyama, T., Uono, S., et al. (2015). The structural neural substrate of subjective happiness. Scientific Reports, 5, 16891.CrossRefGoogle ScholarPubMed
Seligman, M. E., Steen, T. A., Park, N., & Peterson, C. (2005). Positive psychology progress: Empirical validation of interventions. American Psychologist, 60, 410421.CrossRefGoogle ScholarPubMed
Smith, K. S., Mahler, S. V., Pecina, S., & Berridge, K. C. (2010). Hedonic hotspots: Generating sensory pleasure in the brain. In Kringelbach, M. L & Berridge, K. C, eds., Pleasures of the Brain. New York: Oxford University Press, pp. 2749.Google Scholar
Steiner, J. E. (1973). The gustofacial response: Observation on normal and anencephalic newborn infants. Symposium on Oral Sensation and Perception, 4, 254278.Google Scholar
Steiner, J. E., Glaser, D., Hawilo, M. E., & Berridge, K. C. (2001). Comparative expression of hedonic impact: Affective reactions to taste by human infants and other primates. Neuroscience and Biobehavioral Reviews, 25, 5374.CrossRefGoogle ScholarPubMed
Strauss, G. P., & Gold, J. M. (2012). A new perspective on anhedonia in schizophrenia. American Journal of Psychiatry, 169, 364373.CrossRefGoogle Scholar
Treadway, M. T., Bossaller, N. A., Shelton, R. C., & Zald, D. H. (2012). Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. Journal of Abnormal Psychology, 121, 553558.CrossRefGoogle ScholarPubMed
Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal–cortical dysfunction. Biological Psychiatry, 62, 756764.CrossRefGoogle ScholarPubMed
Watson, D., & Naragon-Gainey, K. (2010). On the specificity of positive emotional dysfunction in psychopathology: Evidence from the mood and anxiety disorders and schizophrenia/schizotypy. Clinical Psychology Review, 30, 839848.CrossRefGoogle ScholarPubMed
Whybrow, P. C. (1998). A Mood Apart: The Thinkers Guide to Emotion and its Disorder. New York: Harper Perennial.Google Scholar
Yang, X. H., Huang, J., Zhu, C. Y., et al. (2014). Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Research, 220, 874882.CrossRefGoogle ScholarPubMed
Abel, T., & Zukin, R. S. (2008). Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current Opinion in Pharmacology, 8, 5764.CrossRefGoogle ScholarPubMed
Adhya, D., Swarup, V., Nowosiad, P., et al. (2018). Shared gene co-expression networks in autism from induced pluripotent stem cell (iPSC) neurons. bioRxiv, Scholar
Amenduni, M., De Filippis, R., Cheung, A. Y., et al. (2011). iPS cells to model CDKL5-related disorders. European Journal of Human Genetics, 19, 12461255.CrossRefGoogle ScholarPubMed
Ananiev, G., Williams, E. C., Li, H., & Chang, Q. (2011). Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS ONE, 6, e25255.CrossRefGoogle ScholarPubMed
Angoa-Perez, M., Jiang, H., Rodriguez, A. I., et al. (2006). Estrogen counteracts ozone-induced oxidative stress and nigral neuronal death. Neuroreport, 17, 629633.CrossRefGoogle ScholarPubMed
APA (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing.Google Scholar
Araneda, S., Commin, L., Atlagich, M., et al. (2008). VEGF overexpression in the astroglial cells of rat brainstem following ozone exposure. Neurotoxicology, 29, 920927.CrossRefGoogle ScholarPubMed
Arentsen, T., Raith, H., Qian, Y., Forssberg, H., & Diaz Heijtz, R. (2015). Host microbiota modulates development of social preference in mice. Microbial Ecology in Health and Disease, 26, 29719.CrossRefGoogle ScholarPubMed
Audouze, K., & Grandjean, P. (2011). Application of computational systems biology to explore environmental toxicity hazards. Environmental Health Perspectives, 119, 17541759.CrossRefGoogle ScholarPubMed
Bakulski, K. M., Halladay, A., Hu, V. W., Mill, J., & Fallin, M. D. (2016). Epigenetic research in neuropsychiatric disorders: The “tissue issue”. Current Behavioral Neuroscience Reports, 3, 264274.CrossRefGoogle Scholar
Bal, W., Liang, R., Lukszo, J., et al. (2000). Ni(II) specifically cleaves the C-terminal tail of the major variant of histone H2A and forms an oxidative damage-mediating complex with the cleaved-off octapeptide. Chemical Research in Toxicology, 13, 616624.CrossRefGoogle ScholarPubMed
Bao, A. M., & Swaab, D. F. (2011). Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders. Frontiers in Neuroendocrinology, 32, 214226.CrossRefGoogle ScholarPubMed
Bar-Nur, O., Caspi, I., & Benvenisty, N. (2012). Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. Journal of Molecular Cell Biology, 4, 180183.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Lombardo, M. V., Auyeung, B., et al. (2011). Why are autism spectrum conditions more prevalent in males? PLoS Biology, 9, e1001081.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Auyeung, B., Norgaard-Pedersen, B., et al. (2015). Elevated fetal steroidogenic activity in autism. Molecular Psychiatry, 20, 369376.CrossRefGoogle ScholarPubMed
Basu, S. N., Kollu, R., & Banerjee-Basu, S. (2009). AutDB: A gene reference resource for autism research. Nucleic Acids Researchearch, 37, D832D836.CrossRefGoogle ScholarPubMed
Becerra, T. A., Wilhelm, M., Olsen, J., Cockburn, M., & Ritz, B. (2013). Ambient air pollution and autism in Los Angeles County, California. Environmental Health Perspectives, 121, 380386.CrossRefGoogle ScholarPubMed
Bellavia, A., Urch, B., Speck, M., et al. (2013). DNA hypomethylation, ambient particulate matter, and increased blood pressure: findings from controlled human exposure experiments. Journal of the American Heart Association, 2, e000212.CrossRefGoogle ScholarPubMed
Belton, J. M., McCord, R. P., Gibcus, J. H., et al. (2012). Hi-C: A comprehensive technique to capture the conformation of genomes. Methods, 58, 268276.CrossRefGoogle ScholarPubMed
Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23, 781783.CrossRefGoogle ScholarPubMed
Blanchard, K. S., Palmer, R. F., & Stein, Z. (2011). The value of ecologic studies: Mercury concentration in ambient air and the risk of autism. Reviews in Environmental Health, 26, 111118.CrossRefGoogle ScholarPubMed
Block, M. L., & Calderon-Garciduenas, L. (2009). Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends in Neurosciences, 32, 506516.CrossRefGoogle ScholarPubMed
Bollati, V., & Baccarelli, A. (2010). Environmental epigenetics. Heredity, 105, 105112.CrossRefGoogle ScholarPubMed
Borochov, N., Ausio, J., & Eisenberg, H. (1984). Interaction and conformational changes of chromatin with divalent ions. Nucleic Acids Research, 12, 30893096.CrossRefGoogle ScholarPubMed
Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters, 625, 5663.CrossRefGoogle ScholarPubMed
Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16, 551563.CrossRefGoogle ScholarPubMed
Bravo, J. A., Forsythe, P., Chew, M. V., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108, 1605016055.CrossRefGoogle Scholar
Breton, C. V., Salam, M. T., Wang, X., et al. (2012). Particulate matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. Environmental Health Perspectives, 120, 13201326.CrossRefGoogle ScholarPubMed
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10, 12131218.CrossRefGoogle ScholarPubMed
Byrum, S. D., Raman, A., Taverna, S. D., & Tackett, A. J. (2012). ChAP-MS: A method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Reports, 2, 198205.CrossRefGoogle Scholar
Calderon-Garciduenas, L., Mora-Tiscareno, A., Ontiveros, E., et al. (2008a). Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs. Brain and Cognition, 68, 117127.CrossRefGoogle Scholar
Calderon-Garciduenas, L., Solt, A. C., Henriquez-Roldan, C., et al. (2008b). Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood–brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicologic Pathology, 36, 289310.CrossRefGoogle ScholarPubMed
Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 134, 2536.CrossRefGoogle Scholar
Castel, S. E., & Martienssen, R. A. (2013). RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics, 14, 100112.CrossRefGoogle ScholarPubMed
Chaidez, V., Hansen, R. L., & Hertz-Picciotto, I. (2014). Gastrointestinal problems in children with autism, developmental delays or typical development. Journal of Autism and Developmental Disorders, 44, 11171127.CrossRefGoogle ScholarPubMed
Chambers, S. M., Fasano, C. A., Papapetrou, E. P., et al. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275280.CrossRefGoogle ScholarPubMed
Chen, H., Ke, Q., Kluz, T., Yan, Y., & Costa, M. (2006). Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Molecular and Cellular Biology, 26, 37283737.CrossRefGoogle ScholarPubMed
Cheung, A. Y., Horvath, L. M., Grafodatskaya, D., et al. (2011). Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Human Molecular Genetics, 20, 21032115.CrossRefGoogle ScholarPubMed
Choi, G. B., Yim, Y. S., Wong, H., et al. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 351, 933939.CrossRefGoogle ScholarPubMed
Clarke, G., O’Mahony, S. M., Dinan, T. G., & Cryan, J. F. (2014). Priming for health: Gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatrica, 103, 812819.CrossRefGoogle ScholarPubMed
Coiro, P., Padmashri, R., Suresh, A., et al. (2015). Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders. Brain, Behavior, and Immunity, 50, 249258.CrossRefGoogle Scholar
Coleman, M. (1976). The Autistic Syndromes. Amsterdam: North-Holland Publishing Company.Google Scholar
Cooper, G. S., Martin, S. A., Longnecker, M. P., Sandler, D. P., & Germolec, D. R. (2004). Associations between plasma DDE levels and immunologic measures in African-American farmers in North Carolina. Environmental Health Perspectives, 112, 10801084.CrossRefGoogle ScholarPubMed
Corsini, E., Liesivuori, J., Vergieva, T., Van Loveren, H., & Colosio, C. (2008). Effects of pesticide exposure on the human immune system. Human & Experimental Toxicology, 27, 671680.CrossRefGoogle ScholarPubMed
Corsini, E., Sokooti, M., Galli, C. L., Moretto, A., & Colosio, C. (2013). Pesticide induced immunotoxicity in humans: A comprehensive review of the existing evidence. Toxicology, 307, 123135.CrossRefGoogle ScholarPubMed
Crick, F. (1970). Central dogma of molecular biology. Nature, 227, 561563.CrossRefGoogle ScholarPubMed
Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., et al. (2014). Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology, 42, 207217.CrossRefGoogle ScholarPubMed
Dally, H., & Hartwig, A. (1997). Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells. Carcinogenesis, 18, 10211026.CrossRefGoogle Scholar
Davies, J. O., Oudelaar, A. M., Higgs, D. R., & Hughes, J. R. (2017). How best to identify chromosomal interactions: A comparison of approaches. Nature Methods, 14, 125134.CrossRefGoogle ScholarPubMed
de Theije, C. G., Koelink, P. J., Korte-Bouws, G. A., et al. (2014a). Intestinal inflammation in a murine model of autism spectrum disorders. Brain, Behavior, and Immunity, 37, 240247.CrossRefGoogle Scholar
de Theije, C. G., Wopereis, H., Ramadan, M., et al. (2014b). Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain, Behavior, and Immunity, 37, 197206.CrossRefGoogle Scholar
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., et al. (2014). Microbiota-generated metabolites promote metabolic benefits via gut–brain neural circuits. Cell, 156, 8496.CrossRefGoogle ScholarPubMed
Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Capturing chromosome conformation. Science, 295, 13061311.CrossRefGoogle ScholarPubMed
DeRosa, B. A., Van Baaren, J. M., Dubey, G. K., et al. (2012). Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neuroscience Letters, 516, 914.CrossRefGoogle ScholarPubMed
Desaulniers, D., Xiao, G. H., Lian, H., et al. (2009). Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. International Journal of Toxicology, 28, 294307.CrossRefGoogle ScholarPubMed
Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G., & Cryan, J. F. (2014). Microbiota is essential for social development in the mouse. Molecular Psychiatry, 19, 146148.CrossRefGoogle ScholarPubMed
Diaz Heijtz, R., Wang, S., Anuar, F., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences, 108, 30473052.CrossRefGoogle ScholarPubMed
Ding, H. T., Taur, Y., & Walkup, J. T. (2017). Gut microbiota and autism: Key concepts and findings. Journal of Autism and Developmental Disorders, 47, 480489.CrossRefGoogle ScholarPubMed
Doi, T., Puri, P., McCann, A., Bannigan, J., & Thompson, J. (2011). Epigenetic effect of cadmium on global de novo DNA hypomethylation in the cadmium-induced ventral body wall defect (VBWD) in the chick model. Toxicological Sciences, 120, 475480.CrossRefGoogle ScholarPubMed
El-Ansary, A., & Al-Ayadhi, L. (2014). GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation, 11, 189.CrossRefGoogle ScholarPubMed
Emanuele, E., Orsi, P., Boso, M., et al. (2010). Low-grade endotoxemia in patients with severe autism. Neuroscience Letters, 471, 162165.CrossRefGoogle ScholarPubMed
Favre, M. R., Barkat, T. R., Lamendola, D., et al. (2013). General developmental health in the VPA-rat model of autism. Frontiers in Behavioral Neuroscience, 7, 88.CrossRefGoogle ScholarPubMed
Feil, R., & Fraga, M. F. (2012). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews Genetics, 13, 97109.CrossRefGoogle ScholarPubMed
Finegold, S. M., Molitoris, D., Song, Y., et al. (2002). Gastrointestinal microflora studies in late-onset autism. Clinical Infectious Diseases, 35, S6S16.CrossRefGoogle ScholarPubMed
Foley, K. A., Ossenkopp, K. P., Kavaliers, M., & Macfabe, D. F. (2014). Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner. PLoS ONE, 9, e87072.CrossRefGoogle ScholarPubMed
Fullwood, M. J., & Ruan, Y. (2009). ChIP-based methods for the identification of long-range chromatin interactions. Journal of Cellular Biochemistry, 107, 3039.CrossRefGoogle ScholarPubMed
Fullwood, M. J., Liu, M. H., Pan, Y. F., et al. (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 5864.CrossRefGoogle ScholarPubMed
Galloway, T., & Handy, R. (2003). Immunotoxicity of organophosphorous pesticides. Ecotoxicology, 12, 345363.CrossRefGoogle ScholarPubMed
Gardener, H., Spiegelman, D., & Buka, S. L. (2009). Prenatal risk factors for autism: Comprehensive meta-analysis. British Journal of Psychiatry, 195, 714.CrossRefGoogle ScholarPubMed
Gardener, H., Spiegelman, D., & Buka, S. L. (2011). Perinatal and neonatal risk factors for autism: A comprehensive meta-analysis. Pediatrics, 128, 344355.CrossRefGoogle ScholarPubMed
Garry, V. F., Harkins, M. E., Erickson, L. L., et al. (2002). Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environmental Health Perspectives, 110(Suppl. 3), 441449.CrossRefGoogle ScholarPubMed
Gentile, S. (2014). Risks of neurobehavioral teratogenicity associated with prenatal exposure to valproate monotherapy: A systematic review with regulatory repercussions. CNS Spectrums, 19, 305315.CrossRefGoogle ScholarPubMed
Gerhart, J., & Kirschner, M. (1997). Cells, Embryos, and Evolution: Toward a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability, Malden, MA: Blackwell Science.Google Scholar
Griesi-Oliveira, K., Acab, A., Gupta, A. R., et al. (2015). Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular Psychiatry, 20, 13501365.CrossRefGoogle ScholarPubMed
Gu, H., Smith, Z. D., Bock, C., et al. (2011). Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nature Protocols, 6, 468481.CrossRefGoogle ScholarPubMed
Guevara-Guzman, R., Arriaga, V., Kendrick, K. M., et al. (2009). Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats. Neuroscience, 159, 940950.CrossRefGoogle ScholarPubMed
Guo, H., Zhu, P., Guo, F., et al. (2015). Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nature Protocols, 10, 645659.CrossRefGoogle ScholarPubMed
Gurer, H., & Ercal, N. (2000). Can antioxidants be beneficial in the treatment of lead poisoning? Free Radical Biology and Medicine, 29, 927945.CrossRefGoogle ScholarPubMed
Guzzi, G., & La Porta, C. A. (2008). Molecular mechanisms triggered by mercury. Toxicology, 244, 112.CrossRefGoogle ScholarPubMed
Handy, D. E., Castro, R., & Loscalzo, J. (2011). Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation, 123, 21452156.CrossRefGoogle ScholarPubMed
Hannon, E., Lunnon, K., Schalkwyk, L., & Mill, J. (2015). Interindividual methylomic variation across blood, cortex, and cerebellum: Implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics, 10, 10241032.CrossRefGoogle ScholarPubMed
Hayashi, K. (1975). Distribution of histone F1 on calf thymus nucleohistone DNA. Journal of Molecular Biology, 94, 397408.CrossRefGoogle ScholarPubMed
He, Y., & Ecker, J. R. (2015). Non-CG methylation in the human genome. Annual Review of Genomics Human Genetics, 16, 5577.CrossRefGoogle ScholarPubMed
Henikoff, S., & Shilatifard, A. (2011). Histone modification: Cause or cog? Trends in Genetics, 27, 389396.CrossRefGoogle ScholarPubMed
Hermanowicz, A., & Kossman, S. (1984). Neutrophil function and infectious disease in workers occupationally exposed to phosphoorganic pesticides: Role of mononuclear-derived chemotactic factor for neutrophils. Clinical Immunology and Immunopathology, 33, 1322.CrossRefGoogle ScholarPubMed
Hoffman, D. J., Heinz, G. H., Sileo, L., et al. (2000). Developmental toxicity of lead-contaminated sediment in Canada geese (Branta canadensis). Journal of Toxicology and Environmental Health A, 59, 235252.Google Scholar
Hormanseder, E., Simeone, A., Allen, G. E., et al. (2017). H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell, 21, 135143.e6.CrossRefGoogle ScholarPubMed
Hsiao, E. Y., McBride, S. W., Hsien, S., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155, 14511463.CrossRefGoogle ScholarPubMed
Hsieh, T. S., Fudenberg, G., Goloborodko, A., & Rando, O. J. (2016). Micro-C XL: Assaying chromosome conformation from the nucleosome to the entire genome. Nature Methods, 13, 10091011.CrossRefGoogle ScholarPubMed
Hunaiti, A. A., & Soud, M. (2000). Effect of lead concentration on the level of glutathione, glutathione S-transferase, reductase and peroxidase in human blood. Science of the Total Environment, 248, 4550.CrossRefGoogle ScholarPubMed
Hurwitz, J. (2005). The discovery of RNA polymerase. Journal of Biological Chemistry, 280, 4247742485.CrossRefGoogle ScholarPubMed
Ji, W., Yang, L., Yu, L., et al. (2008). Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis, 29, 12671275.CrossRefGoogle ScholarPubMed
Ji, H., Biagini Myers, J. M., Brandt, E. B., et al. (2016). Air pollution, epigenetics, and asthma. Allergy, Asthma & Clinical Immunology, 12, 51.CrossRefGoogle ScholarPubMed
Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007). Genome-wide mapping of in vivo protein–DNA interactions. Science, 316, 14971502.CrossRefGoogle ScholarPubMed
Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283, 6587.CrossRefGoogle ScholarPubMed
Jyonouchi, H., Sun, S., & Le, H. (2001). Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. Journal of Neuroimmunology, 120, 170179.CrossRefGoogle ScholarPubMed
Kalkbrenner, A. E., Daniels, J. L., Chen, J. C., et al. (2010). Perinatal exposure to hazardous air pollutants and autism spectrum disorders at age 8. Epidemiology, 21, 631641.CrossRefGoogle ScholarPubMed
Kang, D. W., Park, J. G., Ilhan, Z. E., et al. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE, 8, e68322.CrossRefGoogle ScholarPubMed
Kanwal, R., Gupta, K., & Gupta, S. (2015). Cancer epigenetics: An introduction. Methods in Molecular Biology, 1238, 325.CrossRefGoogle Scholar
Karaczyn, A. A., Golebiowski, F., & Kasprzak, K. S. (2006). Ni(II) affects ubiquitination of core histones H2B and H2A. Experimental Cell Research, 312, 32523259.CrossRefGoogle ScholarPubMed
Ke, Q., Ellen, T. P., & Costa, M. (2008). Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity. Toxicology and Applied Pharmacology, 228, 190199.CrossRefGoogle ScholarPubMed
Kim, K. C., Choi, C. S., Kim, J. W., et al. (2016). MeCP2 modulates sex differences in the postsynaptic development of the valproate animal model of autism. Molecular Neurobiology, 53, 4056.CrossRefGoogle ScholarPubMed
Kim, K. Y., Hysolli, E., & Park, I. H. (2011). Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proceedings of the National Academy of Sciences, 108, 1416914174.CrossRefGoogle ScholarPubMed
Kinney, D. K., Munir, K. M., Crowley, D. J., & Miller, A. M. (2008). Prenatal stress and risk for autism. Neuroscience & Biobehavioral Reviews, 32, 15191532.CrossRefGoogle ScholarPubMed
Kobayashi, T., Matsuyama, T., Takeuchi, M., & Ito, S. (2016). Autism spectrum disorder and prenatal exposure to selective serotonin reuptake inhibitors: A systematic review and meta-analysis. Reproductive Toxicology, 65, 170178.CrossRefGoogle ScholarPubMed
Kosidou, K., Dalman, C., Widman, L., et al. (2016). Maternal polycystic ovary syndrome and the risk of autism spectrum disorders in the offspring: A population-based nationwide study in Sweden. Molecular Psychiatry, 21, 14411448.CrossRefGoogle ScholarPubMed
Kratsman, N., Getselter, D., & Elliott, E. (2016). Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology, 102, 136145.CrossRefGoogle ScholarPubMed
Krey, J. F., Pasca, S. P., Shcheglovitov, A., et al. (2013). Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nature Neuroscience, 16, 201209.CrossRefGoogle ScholarPubMed
Kuo, H. Y., & Liu, F. C. (2017). Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder. FASEB Journal, 31, 44584472.CrossRefGoogle Scholar
Kuo, M. H., & Allis, C. D. (1999). In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods, 19, 425433.CrossRefGoogle Scholar
Lai, M. C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. Lancet, 383, 896910.CrossRefGoogle ScholarPubMed
Lancaster, M. A., Renner, M., Martin, C. A., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373379.CrossRefGoogle ScholarPubMed
Lancaster, M. A., Corsini, N. S., Wolfinger, S., et al. (2017). Guided self-organization and cortical plate formation in human brain organoids. Nature Biotechnology, 35, 659666.CrossRefGoogle ScholarPubMed
Latchman, D. S. (1997). Transcription factors: An overview. International Journal of Biochemistry & Cell Biology, 29, 13051312.CrossRefGoogle ScholarPubMed
Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11, 204220.CrossRefGoogle ScholarPubMed
Li, Q. (2007). New mechanism of organophosphorus pesticide-induced immunotoxicity. Journal of Nippon Medical School, 74, 7073.CrossRefGoogle ScholarPubMed
Li, Q., Han, Y., Dy, A. B. C., & Hagerman, R. J. (2017). The gut microbiota and autism spectrum disorders. Frontiers in Cellular Neuroscience, 11, 120.CrossRefGoogle ScholarPubMed
Liang, J., Zhu, H., Li, C., et al. (2012). Neonatal exposure to benzo[a]pyrene decreases the levels of serum testosterone and histone H3K14 acetylation of the StAR promoter in the testes of SD rats. Toxicology, 302, 285291.CrossRefGoogle Scholar
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289293.CrossRefGoogle ScholarPubMed
Lin, V. W., Baccarelli, A. A., & Burris, H. H. (2016). Epigenetics – A potential mediator between air pollution and preterm birth. Environmental Epigenetics, 2, dvv008.CrossRefGoogle ScholarPubMed
Ling, Z., Zhu, Y., Tong, C., et al. (2006). Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Experimental Neurology, 199, 499512.CrossRefGoogle ScholarPubMed
Lister, R., Mukamel, E. A., Nery, J. R., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341, 1237905.CrossRefGoogle ScholarPubMed
Long, T. C., Tajuba, J., Sama, P., et al. (2007). Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental Health Perspectives, 115, 16311637.CrossRefGoogle ScholarPubMed
M’Bemba-Meka, P., Lemieux, N., & Chakrabarti, S. K. (2007). Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes. Archives of Toxicology, 81, 8999.CrossRefGoogle ScholarPubMed
Madisen, L., Krumm, A., Hebbes, T. R., & Groudine, M. (1998). The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Molecular and Cellular Biology, 18, 62816292.CrossRefGoogle ScholarPubMed
Madrigano, J., Baccarelli, A., Mittleman, M. A., et al. (2012). Air pollution and DNA methylation: Interaction by psychological factors in the VA Normative Aging Study. American Journal of Epidemiology, 176, 224232.CrossRefGoogle ScholarPubMed
Manousakis, G., Jensen, M. B., Chacon, M. R., Sattin, J. A., & Levine, R. L. (2009). The interface between stroke and infectious disease: Infectious diseases leading to stroke and infections complicating stroke. Current Neurology and Neuroscience Reports, 9, 2834.CrossRefGoogle ScholarPubMed
Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M., & Greenberg, M. E. (1999). Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science, 286, 785790.CrossRefGoogle ScholarPubMed
Marchetto, M. C., Carromeu, C., Acab, A., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143, 527539.CrossRefGoogle Scholar
Marchetto, M. C., Belinson, H., Tian, Y., et al. (2017). Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular Psychiatry, 22, 820835.CrossRefGoogle ScholarPubMed
Mariani, J., Coppola, G., Zhang, P., et al. (2015). FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 162, 375390.CrossRefGoogle ScholarPubMed
Martinez-Zamudio, R., & Ha, H. C. (2011). Environmental epigenetics in metal exposure. Epigenetics, 6, 820827.CrossRefGoogle ScholarPubMed
Mascetti, V. L., & Pedersen, R. A. (2016). Human–mouse chimerism validates human stem cell pluripotency. Cell Stem Cell, 18, 6772.CrossRefGoogle ScholarPubMed
Masi, A., Quintana, D. S., Glozier, N., et al. (2015). Cytokine aberrations in autism spectrum disorder: A systematic review and meta-analysis. Molecular Psychiatry, 20, 440446.CrossRefGoogle ScholarPubMed
McCanlies, E. C., Fekedulegn, D., Mnatsakanova, A., et al. (2012). Parental occupational exposures and autism spectrum disorder. Journal of Autism and Developmental Disorders, 42, 23232334.CrossRefGoogle ScholarPubMed
McCarthy, M. M., & Nugent, B. M. (2013). Epigenetic contributions to hormonally-mediated sexual differentiation of the brain. Journal of Neuroendocrinology, 25, 11331140.CrossRefGoogle ScholarPubMed
McConnachie, P. R., & Zahalsky, A. C. (1992). Immune alterations in humans exposed to the termiticide technical chlordane. Archives of Environmental Health, 47, 295301.CrossRefGoogle ScholarPubMed
McCormick, H., Young, P. E., Hur, S. S. J., et al. (2017). Isogenic mice exhibit sexually-dimorphic DNA methylation patterns across multiple tissues. BMC Genomics, 18, 966.CrossRefGoogle ScholarPubMed
McLachlan, J. A., Simpson, E., & Martin, M. (2006). Endocrine disrupters and female reproductive health. Best Practice & Research: Clinical Endocrinology & Metabolism, 20, 6375.CrossRefGoogle ScholarPubMed
Mills, N. L., Donaldson, K., Hadoke, P. W., et al. (2009). Adverse cardiovascular effects of air pollution. Nature Clinical Practice Cardiovascular Medicine, 6, 3644.CrossRefGoogle ScholarPubMed
Mittal, V. A., Ellman, L. M., & Cannon, T. D. (2008). Gene–environment interaction and covariation in schizophrenia: The role of obstetric complications. Schizophrenia Bulletin, 34, 10831094.CrossRefGoogle ScholarPubMed
Modabbernia, A., Mollon, J., Boffetta, P., & Reichenberg, A. (2016). Impaired gas exchange at birth and risk of intellectual disability and autism: A meta-analysis. Journal of Autism and Developmental Disorders, 46, 18471859.CrossRefGoogle ScholarPubMed
Modabbernia, A., Velthorst, E., & Reichenberg, A. (2017). Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Molecular Autism, 8, 13.CrossRefGoogle ScholarPubMed
Mohle, L., Mattei, D., Heimesaat, M. M., et al. (2016). Ly6 C(Hi) monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Reports, 15, 19451956.CrossRefGoogle Scholar
Muotri, A. R., Marchetto, M. C., Coufal, N. G., et al. (2010). L1 retrotransposition in neurons is modulated by MeCP2. Nature, 468, 443446.CrossRefGoogle ScholarPubMed
Nagano, T., Lubling, Y., Stevens, T. J., et al. (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502, 5964.CrossRefGoogle ScholarPubMed
Nardone, S., Sams, D. S., Zito, A., Reuveni, E., & Elliott, E. (2017). Dysregulation of cortical neuron DNA methylation profile in autism spectrum disorder. Cerebral Cortex, 27, 57395754.CrossRefGoogle ScholarPubMed
Naumova, O. Y., Dozier, M., Dobrynin, P. V., et al. (2018). Developmental dynamics of the epigenome: A longitudinal study of three toddlers. Neurotoxicology and Teratology, 66, 125131.CrossRefGoogle ScholarPubMed
Nemmar, A., & Inuwa, I. M. (2008). Diesel exhaust particles in blood trigger systemic and pulmonary morphological alterations. Toxicology Letters, 176, 2030.CrossRefGoogle ScholarPubMed
Nwankwo, D. O., & Wilson, G. G. (1988). Cloning and expression of the MspI restriction and modification genes. Gene, 64, 18.CrossRefGoogle ScholarPubMed
O’Neill, L. A., & Kaltschmidt, C. (1997). NF-kappa B: A crucial transcription factor for glial and neuronal cell function. Trends in Neurosciences, 20, 252258.CrossRefGoogle ScholarPubMed
O’Roak, B. J., Deriziotis, P., Lee, C., et al. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43, 585589.CrossRefGoogle ScholarPubMed
O’Roak, B. J., Vives, L., Girirajan, S., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246250.CrossRefGoogle ScholarPubMed
Oberdorster, G., Sharp, Z., Atudorei, V., et al. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437445.CrossRefGoogle Scholar
Onishchenko, N., Karpova, N., Sabri, F., Castren, E., & Ceccatelli, S. (2008). Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. Journal of Neurochemistry, 106, 13781387.CrossRefGoogle ScholarPubMed
Palmer, R. F., Blanchard, S., Stein, Z., Mandell, D., & Miller, C. (2006). Environmental mercury release, special education rates, and autism disorder: An ecological study of Texas. Health & Place, 12, 203209.CrossRefGoogle ScholarPubMed
Palmer, R. F., Blanchard, S., & Wood, R. (2009). Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health & Place, 15, 1824.CrossRefGoogle ScholarPubMed
Papp, B., & Plath, K. (2013). Epigenetics of reprogramming to induced pluripotency. Cell, 152, 13241343.CrossRefGoogle ScholarPubMed
Parikshak, N. N., Luo, R., Zhang, A., et al. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell, 155, 10081021.CrossRefGoogle ScholarPubMed
Parikshak, N. N., Swarup, V., Belgard, T. G., et al. (2016). Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature, 540, 423427.CrossRefGoogle ScholarPubMed
Parracho, H. M., Bingham, M. O., Gibson, G. R., & McCartney, A. L. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology, 54, 987991.CrossRefGoogle ScholarPubMed
Pasca, A. M., Sloan, S. A., Clarke, L. E., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 12, 671678.CrossRefGoogle ScholarPubMed
Pasca, S. P., Portmann, T., Voineagu, I., et al. (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Medicine, 17, 16571662.CrossRefGoogle ScholarPubMed
Patrick, L. (2006). Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Medicine Review, 11, 114127.Google ScholarPubMed
Pavanello, S., Pesatori, A. C., Dioni, L., et al. (2010). Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis, 31, 216221.CrossRefGoogle ScholarPubMed
Pereyra-Munoz, N., Rugerio-Vargas, C., Angoa-Perez, M., Borgonio-Perez, G., & Rivas-Arancibia, S. (2006). Oxidative damage in substantia nigra and striatum of rats chronically exposed to ozone. Journal of Chemical Neuroanatomy, 31, 114123.CrossRefGoogle Scholar
Perry, V. H., Cunningham, C., & Holmes, C. (2007). Systemic infections and inflammation affect chronic neurodegeneration. Nature Reviews Immunology, 7, 161167.CrossRefGoogle ScholarPubMed
Persico, A. M., & Napolioni, V. (2013). Urinary p-cresol in autism spectrum disorder. Neurotoxicology and Teratology, 36, 8290.CrossRefGoogle ScholarPubMed
Phillips, T. M. (2000). Assessing environmental exposure in children: Immunotoxicology screening. Journal of Exposure Analysis and Environmental Epidemiology, 10, 769775.CrossRefGoogle ScholarPubMed
Pohl, A., Cassidy, S., Auyeung, B., & Baron-Cohen, S. (2014). Uncovering steroidopathy in women with autism: A latent class analysis. Molecular Autism, 5, 27.CrossRefGoogle ScholarPubMed
Price, C. S., Thompson, W. W., Goodson, B., et al. (2010). Prenatal and infant exposure to thimerosal from vaccines and immunoglobulins and risk of autism. Pediatrics, 126, 656664.CrossRefGoogle ScholarPubMed
Price, D. J., & Joshi, J. G. (1983). Ferritin. Binding of beryllium and other divalent metal ions. Journal of Biological Chemistry, 258, 1087310880.Google ScholarPubMed
Qin, L., Wu, X., Block, M. L., et al. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55, 453462.CrossRefGoogle ScholarPubMed
Quadrato, G., Nguyen, T., Macosko, E. Z., et al. (2017). Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 545, 4853.CrossRefGoogle ScholarPubMed
Quigley, E. M. (2016). Leaky gut – Concept or clinical entity? Current Opinion in Gastroenterology, 32, 7479.CrossRefGoogle ScholarPubMed
Ramani, V., Deng, X., Qiu, R., et al. (2017). Massively multiplex single-cell Hi-C. Nature Methods, 14, 263266.CrossRefGoogle ScholarPubMed
Rammes, G., Steckler, T., Kresse, A., et al. (2000). Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrain. European Journal of Neuroscience, 12, 25342546.CrossRefGoogle Scholar
Rauh, V. A., Garfinkel, R., Perera, F. P., et al. (2006). Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics, 118, e1845e1859.CrossRefGoogle ScholarPubMed
Ray, D. E., & Richards, P. G. (2001). The potential for toxic effects of chronic, low-dose exposure to organophosphates. Toxicology Letters, 120, 343351.CrossRefGoogle ScholarPubMed
Reed, A., Dzon, L., Loganathan, B. G., & Whalen, M. M. (2004). Immunomodulation of human natural killer cell cytotoxic function by organochlorine pesticides. Human & Experimental Toxicology, 23, 463471.CrossRefGoogle ScholarPubMed
Repetto, R., & Baliga, S. S. (1997). Pesticides and immunosuppression: The risks to public health. Health Policy and Planning, 12, 97106.CrossRefGoogle ScholarPubMed
Rieder, R., Wisniewski, P. J., Alderman, B. L., & Campbell, S. C. (2017). Microbes and mental health: A review. Brain, Behavior, and Immunity, 66, 917.CrossRefGoogle ScholarPubMed
Rivest, S., Lacroix, S., Vallieres, L., et al. (2000). How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proceedings of the Society for Experimental Biology and Medicine, 223, 2238.CrossRefGoogle ScholarPubMed
Roberts, A. L., Lyall, K., Hart, J. E., et al. (2013). Perinatal air pollutant exposures and autism spectrum disorder in the children of Nurses’ Health Study II participants. Environmental Health Perspectives, 121, 978984.CrossRefGoogle ScholarPubMed
Roberts, E. M., & English, P. B. (2013). Bayesian modeling of time-dependent vulnerability to environmental hazards: An example using autism and pesticide data. Statistics in Medicine, 32, 23082319.CrossRefGoogle ScholarPubMed
Roberts, E. M., English, P. B., Grether, J. K., et al. (2007). Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environmental Health Perspectives, 115, 14821489.CrossRefGoogle ScholarPubMed
Ronald, A., Pennell, C. E., & Whitehouse, A. J. (2010). Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Frontiers in Psychology, 1, 223.Google ScholarPubMed
Rossignol, D. A., Genuis, S. J., & Frye, R. E. (2014). Environmental toxicants and autism spectrum disorders: A systematic review. Translational Psychiatry, 4, e360.CrossRefGoogle ScholarPubMed
Rossnerova, A., Tulupova, E., Tabashidze, N., et al. (2013). Factors affecting the 27 K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutation Research, 741 –742, 1826.CrossRefGoogle Scholar
Rouhani, F., Kumasaka, N., de Brito, M. C., et al. (2014). Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genetics, 10, e1004432.CrossRefGoogle ScholarPubMed
Sanders, S. J., He, X., Willsey, A. J., et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87, 12151233.CrossRefGoogle ScholarPubMed
Sassone-Corsi, P., & Christen, Y. (2015). A Time for Metabolism and Hormones. New York: Springer Berlin Heidelberg.Google Scholar
Schaalan, M. F., Abdelraouf, S. M., Mohamed, W. A., & Hassanein, F. S. (2012). Correlation between maternal milk and infant serum levels of chlorinated pesticides (CP) and the impact of elevated CP on bleeding tendency and immune status in some infants in Egypt. Journal of Immunotoxicology, 9, 1524.CrossRefGoogle ScholarPubMed
Sen, A., Sherr, C. J., & Todaro, G. J. (1976). Specific binding of the type C viral core protein p12 with purified viral RNA. Cell, 7, 2132.CrossRefGoogle ScholarPubMed
Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The central nervous system and the gut microbiome. Cell, 167, 915932.CrossRefGoogle ScholarPubMed
Sheldon, A. L., & Robinson, M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 51, 333355.CrossRefGoogle ScholarPubMed
Sheridan, S. D., Theriault, K. M., Reis, S. A., et al. (2011). Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS ONE, 6, e26203.CrossRefGoogle ScholarPubMed
Shi, L., Fatemi, S. H., Sidwell, R. W., & Patterson, P. H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. Journal of Neuroscience, 23, 297302.CrossRefGoogle ScholarPubMed
Shi, Y., Kirwan, P., & Livesey, F. J. (2012). Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 7, 18361846.CrossRefGoogle ScholarPubMed
Shutoh, Y., Takeda, M., Ohtsuka, R., et al. (2009). Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: Implication of hormesis-like effects. Journal of Toxicological Sciences, 34, 469482.CrossRefGoogle ScholarPubMed
Silveyra, P., & Floros, J. (2012). Air pollution and epigenetics: Effects on SP-A and innate host defence in the lung. Swiss Medical Weekly, 142, w13579.Google ScholarPubMed
Sofer, T., Baccarelli, A., Cantone, L., et al. (2013). Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics, 5, 147154.CrossRefGoogle ScholarPubMed
Somji, S., Garrett, S. H., Toni, C., et al. (2011). Differences in the epigenetic regulation of MT-3 gene expression between parental and Cd+2 or As+3 transformed human urothelial cells. Cancer Cell International, 11, 2.CrossRefGoogle ScholarPubMed
Song, C., Kanthasamy, A., Anantharam, V., Sun, F., & Kanthasamy, A. G. (2010). Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: Relevance to epigenetic mechanisms of neurodegeneration. Molecular Pharmacology, 77, 621632.CrossRefGoogle ScholarPubMed
Song, C., Kanthasamy, A., Jin, H., Anantharam, V., & Kanthasamy, A. G. (2011). Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology, 32, 586595.CrossRefGoogle ScholarPubMed
Song, Y., Liu, C., & Finegold, S. M. (2004). Real-time PCR quantitation of clostridia in feces of autistic children. Applied and Environmental Microbiology, 70, 64596465.CrossRefGoogle ScholarPubMed
Stouder, C., & Paoloni-Giacobino, A. (2011). Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction, 141, 207216.CrossRefGoogle ScholarPubMed
Stroud, H., Su, S. C., Hrvatin, S., et al. (2017). Early-life gene expression in neurons modulates lasting epigenetic states. Cell, 171, 11511164.e16.CrossRefGoogle ScholarPubMed
Sun, W., Poschmann, J., Cruz-Herrera Del Rosario, R., et al. (2016). Histone acetylome-wide association study of autism spectrum disorder. Cell, 167, 13851397.e11.CrossRefGoogle ScholarPubMed
Suzuki, K., Matsuzaki, H., Iwata, K., et al. (2011). Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS ONE, 6, e20470.CrossRefGoogle ScholarPubMed
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663676.CrossRefGoogle ScholarPubMed
Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861872.CrossRefGoogle ScholarPubMed
Takiguchi, M., Achanzar, W. E., Qu, W., Li, G., & Waalkes, M. P. (2003). Effects of cadmium on DNA-(cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Experimental Cell Research, 286, 355365.CrossRefGoogle ScholarPubMed
Tang, S. C., Sheu, G. T., Wong, R. H., et al. (2010). Expression of glutathione S-transferase M2 in stage I/II non-small cell lung cancer and alleviation of DNA damage exposure to benzo[a]pyrene. Toxicology Letters, 192, 316323.CrossRefGoogle Scholar
Thomson, E. M., Kumarathasan, P., Calderon-Garciduenas, L., & Vincent, R. (2007). Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression. Environmental Research, 105, 224233.CrossRefGoogle ScholarPubMed
Tin Tin Win, S., Mitsushima, D., Yamamoto, S., et al. (2008). Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicology and Applied Pharmacology, 226, 192198.CrossRefGoogle Scholar
Tomova, A., Husarova, V., Lakatosova, S., et al. (2015). Gastrointestinal microbiota in children with autism in Slovakia. Physiology & Behavior, 138, 179187.CrossRefGoogle ScholarPubMed
Tsai, H. W., Grant, P. A., & Rissman, E. F. (2009). Sex differences in histone modifications in the neonatal mouse brain. Epigenetics, 4, 4753.CrossRefGoogle ScholarPubMed
Ulahannan, N., & Greally, J. M. (2015). Genome-wide assays that identify and quantify modified cytosines in human disease studies. Epigenetics & Chromatin, 8, 5.CrossRefGoogle ScholarPubMed
Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J., & Ecker, J. R. (2015). MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nature Protocols, 10, 475483.CrossRefGoogle ScholarPubMed
Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science Health, Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 26, 339362.CrossRefGoogle ScholarPubMed
Vardabasso, C., Hasson, D., Ratnakumar, K., et al. (2014). Histone variants: Emerging players in cancer biology. Cellular and Molecular Life Sciences, 71, 379404.CrossRefGoogle ScholarPubMed
Vine, M. F., Stein, L., Weigle, K., et al. (2000). Effects on the immune system associated with living near a pesticide dump site. Environmental Health Perspectives, 108, 11131124.CrossRefGoogle Scholar
Voineagu, I., Wang, X., Johnston, P., et al. (2011). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474, 380384.CrossRefGoogle ScholarPubMed
Volk, H. E., Hertz-Picciotto, I., Delwiche, L., Lurmann, F., & McConnell, R. (2011). Residential proximity to freeways and autism in the CHARGE study. Environmental Health Perspectives, 119, 873877.CrossRefGoogle ScholarPubMed
Volk, H. E., Lurmann, F., Penfold, B., Hertz-Picciotto, I., & McConnell, R. (2013). Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry, 70, 7177.CrossRefGoogle ScholarPubMed
Vuong, H. E., & Hsiao, E. Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biological Psychiatry, 81, 411423.CrossRefGoogle ScholarPubMed
Waalkes, M. P. (2000). Cadmium carcinogenesis in review. Journal of Inorganic Biochemistry, 79, 241244.CrossRefGoogle Scholar
Wang, B., Feng, W. Y., Wang, M., et al. (2007). Transport of intranasally instilled fine Fe2O3 particles into the brain: Micro-distribution, chemical states, and histopathological observation. Biological Trace Element Research, 118, 233243.CrossRefGoogle ScholarPubMed
Wang, J., Liu, Y., Jiao, F., et al. (2008). Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology, 254, 8290.CrossRefGoogle Scholar
Wang, L., Christophersen, C. T., Sorich, M. J., et al. (2012). Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Digestive Diseases and Sciences, 57, 20962102.CrossRefGoogle ScholarPubMed
Wang, L., Christophersen, C. T., Sorich, M. J., et al. (2013). Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Molecular Autism, 4, 42.CrossRefGoogle ScholarPubMed
Warren, N., Caric, D., Pratt, T., et al. (1999). The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cerebral Cortex, 9, 627635.CrossRefGoogle ScholarPubMed
Watjen, W., & Beyersmann, D. (2004). Cadmium-induced apoptosis in C6 glioma cells: Influence of oxidative stress. Biometals, 17, 6578.CrossRefGoogle ScholarPubMed
Wigle, D. T., Arbuckle, T. E., Turner, M. C., et al. (2008). Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 11, 373517.CrossRefGoogle ScholarPubMed
Williams, B. L., Hornig, M., Buie, T., et al. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE, 6, e24585.CrossRefGoogle ScholarPubMed
Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., & Grether, J. K. (2006). Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay Area. Environmental Health Perspectives, 114, 14381444.CrossRefGoogle ScholarPubMed
Wright, R. O., Schwartz, J., Wright, R. J., et al. (2010). Biomarkers of lead exposure and DNA methylation within retrotransposons. Environmental Health Perspectives, 118, 790795.CrossRefGoogle ScholarPubMed
Wu, S., Wu, F., Ding, Y., et al. (2017). Advanced parental age and autism risk in children: A systematic review and meta-analysis. Acta Psychiatrica Scandinavica, 135, 2941.CrossRefGoogle ScholarPubMed
Xu, N., Li, X., & Zhong, Y. (2015). Inflammatory cytokines: Potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators of Inflammation, 2015, 531518.CrossRefGoogle ScholarPubMed
Xu, Q. S., Roberts, R. J., & Guo, H. C. (2005). Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Protein Science, 14, 25902600.CrossRefGoogle ScholarPubMed
Yan, Y., Kluz, T., Zhang, P., Chen, H. B., & Costa, M. (2003). Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicology and Applied Pharmacology, 190, 272277.CrossRefGoogle ScholarPubMed
Ye, F., & Xu, X. C. (2010). Benzo[a]pyrene diol epoxide suppresses retinoic acid receptor-beta2 expression by recruiting DNA (cytosine-5-)-methyltransferase 3A. Molecular Cancer, 9, 93.CrossRefGoogle ScholarPubMed
Yoshimasu, K., Kiyohara, C., Takemura, S., & Nakai, K. (2014). A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood. Neurotoxicology, 44, 121131.CrossRefGoogle ScholarPubMed
Zama, A. M., & Uzumcu, M. (2009). Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology, 150, 46814691.CrossRefGoogle ScholarPubMed