Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-23T15:03:28.515Z Has data issue: false hasContentIssue false

Part II - Science and Math

Published online by Cambridge University Press:  08 February 2019

John Dunlosky
Affiliation:
Kent State University, Ohio
Katherine A. Rawson
Affiliation:
Kent State University, Ohio
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abrami, P. C., Bernard, R. M., Borokhovski, E., Wade, A., Surkes, M. A., Tamim, R., & Zhang, D. (2008). Instructional interventions affecting critical thinking skills and dispositions: A Stage 1 meta-analysis. Review of Educational Research, 78, 11021134.Google Scholar
Arum, R. (2011). A Lack of Rigor Leaves Students “Adrift” in College. NPR. February 9, 2011. www.npr.org/2011/02/09/133310978/in-college-a-lack-of-rigor-leaves-students-adriftGoogle Scholar
Arum, R. & Roksa, J. (2010). Academically adrift. Chicago, IL: University of Chicago Press.Google Scholar
Bangert-Drowns, R. L. & Bankert, E. (1990). Meta-analysis of effects of explicit instruction for critical thinking. ERIC, Collection of Educational Resources. http://eric.ed.gov/?id=ED328614Google Scholar
Butler, H. A. (2012). Halpern Critical Thinking Assessment predicts real-world outcomes of critical thinking. Applied Cognitive Psychology, 26, 721729. https://doi.org/10.1002/acp.2851Google Scholar
Butler, H. A., Dwyer, C. P., Hogan, M. J. et al. (2012). Halpern Critical Thinking Assessment and real-world outcomes: Cross-national applications. Thinking Skills and Creativity, 7, 112121. https://doi.org/10.1016/j.tsc.2012.04.001Google Scholar
Butler, H. A., Pentoney, C., & Bong, M. (2017). Predicting real-world outcomes: Critical thinking ability is a better predictor of life decisions than intelligence. Thinking Skills and Creativity, 25, 3846.Google Scholar
De Bie, H., Wilhelm, P., & Van der Meij, H. (2015). The Halpern Critical Thinking Assessment: Toward a Dutch appraisal of critical thinking. Thinking Skills and Creativity, 17, 3344.Google Scholar
De Bruin, W. B., Parker, B., & Fischhoff, A. M. (2007). Individual differences in adult decision-making competence. Journal of Personality and Social Psychology, 92(5), 938956.Google Scholar
Dewey, J. (1933). How we think. Boston: Heath.Google Scholar
Facione, P., Facione, N., & Giancarlo, C. (2000). The disposition toward critical thinking: Its character, measurement, and relationship to critical thinking skill. Informal Logic, 20(1), 6184.Google Scholar
Flat Earth Society. (2016). The Flat Earth Society (website). www.theflatearthsociety.org/home/index.phpGoogle Scholar
Forsyth, C .M., Graesser, A. C., Walker, B. et al. (2013). Didactic galactic: Acquiring knowledge learned in a serious game. In Lane, H. C., Yacef, K., Mostow, J., & Pavlik, P. (eds.), Proceedings of the International Conference on Artificial Intelligence in Education: 16th International Conference (AIED 2013) (pp. 832835). Berlin: Springer Verlag.Google Scholar
Forsyth, C. M., Pavlik, P., Graesser, A. C., Cai, Z., Germany, M., Millis, K., Butler, H., Halpern, D. F., & Dolan, R. (2012). Learning gains for core concepts in a serious game on scientific reasoning. In Yacef, K., Zaïane, O., Hershkovitz, H., Yudelson, M., & Stamper, J. (eds.), Proceedings of the 5th International Conference on Educational Data Mining (pp. 172175). Chania: International Educational Data Mining Society.Google Scholar
Franco, A. H. R., Butler, H. A., & Halpern, D. F. (2015). Teaching critical thinking to promote learning. In Dunn, D. S. (ed.), The Oxford handbook of psychology education (pp. 6574). New York: Oxford University Press. https://doi.org/0.1093/oxfordhb/9780199933815.013.007Google Scholar
Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19, 2542. https://doi.org/10.1257/089533005775196732Google Scholar
Furnham, A. & Monsen, J. (2009). Personality traits and intelligence predicts academic school grades. Learning and Individual Differences, 19, 2833.Google Scholar
Grossmann, I., Varnum, M. E. W., Na, J., Kitayama, S., & Nisbett, R. E. (2013). A route to well-being: Intelligence versus wise reasoning. Journal of Experimental Psychology: General, 142, 944953.Google Scholar
Halpern, D. F. (1998). Teaching critical thinking for transfer across domains: Dispositions, skills, structure training, and metacognitive monitoring. American Psychologist, 53, 449455.Google Scholar
Halpern, D. F. (2012). “Halpern Critical Thinking Assessment.” SCHUHFRIED (Vienna Test System) (website).https://www.schuhfried.com/test/HCTAGoogle Scholar
Halpern, D. F. (2014). Thought and knowledge: An introduction to critical thinking, 5th edn. New York: Routledge.Google Scholar
Halpern, D. F. & Hakel, M. D. (2003). Applying the science of learning to the university and beyond: Teaching for long-term retention and transfer. Change, July/August, 213.Google Scholar
Halpern, D. F., Millis, K., Graesser., A., Butler, H., Forsyth, C. & Cai, Z. (2012). Operation ARA: A computerized learning game that teaches critical thinking and scientific reasoning. Thinking Skills and Creativity, 7, 93100.Google Scholar
Hart Research Associates. (2015). Falling short? College learning and career success Washington, DC: Hart Research Associates. www.aacu.org/sites/default/files/files/LEAP/2015employerstudentsurvey.pdfGoogle Scholar
Heijltjes, A., Van, Gog, T., & Paas, F. (2014). Improving students’ critical thinking: Empirical support for explicit instructions combined with practice. Applied Cognitive Psychology, 28, 518530. https://doi.org/10.1002/acp.3025Google Scholar
Huber, C. R. & Kuncel, N. R. (2016). Does college teach critical thinking? A meta-analysis. Review of Educational Research, 86, 431468. https://doi.org/10.3102/0034654315605917Google Scholar
Hunter, J. E. & Schmidt, F. L. (1996). Intelligence and job performance: Economic and social implications. Psychology, Public Policy, and Law, 2, 447472.Google Scholar
Jansen, A., Melchers, K. G., Lievens, F., Kleinmann, M., Brändli, M., Fraefel, L., & König, C. J. (2013). Situation assessment as an ignored factor in the behavioral consistency paradigm underlying the validity of personnel selection procedures. Journal of Applied Psychology, 98, 326341. https://doi.org/10.1037/a0031257Google Scholar
Kahneman, D. (2013). Thinking, fast and slow. New York: Farrar, Straus and Giroux.Google Scholar
Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality and Social Psychology, 86, 148161.Google Scholar
Kuncel, N. R., Ones, D. S., & Sackett, P. R. (2010). Individual differences as predictors of work, educational, and broad life outcomes. Personality and Individual Differences, 49, 331336.Google Scholar
Lubinski, D., Benbow, C. P., Webb, R. M., & Bleske-Rechek, A. (2006). Tracking exceptional human capital over two decades. Psychological Science, 17, 194199. https://doi.org/10.1111/j.1467–9280.2006.01685.xGoogle Scholar
Marin, L. & Halpern, D. F. (2011). Pedagogy for developing critical thinking in adolescents: Explicit instruction produces greatest gains. Thinking Skills and Creativity, 6, 113https://doi.org/10.1016/j.tsc.2010.08Google Scholar
Mosley, D., Miller, J., & Higgins, S. (2003). Thinking skills frameworks for use in education and training. Paper prepared for the Knowledge and Skills for Learning to Learn Seminar. London, UK.Google Scholar
National Center for Health Statistics. (2015). Health, United States, 2015, with special feature on racial and ethnic health disparities. Washington, DC: US Government Printing Office.Google Scholar
Otto, S. (2016). A plan to defend against the war on science. Scientific American. October 9, 2016. www.scientificamerican.com/article/a-plan-to-defend-against-the-war-on-science/Google Scholar
P21 (Partnership for 21st Century Learning). (n.d.). “List of Exemplar Schools” (website). http://www.p21.org/exemplar-program-case-studies/about-the-programGoogle Scholar
Schwartz, J. A., Savolainen, J., Aaltonen, M., Merikukka, M., Paananen, R., & Gissler, M. (2015). Intelligence and criminal behavior in a total birth cohort: An examination of functional form, dimensions of intelligence, and the nature of offending. Intelligence, 51, 109118.Google Scholar
Soars, D. L., Lemos, G. C., Primi, R., & Almeida, L. S. (2015). Learning and Individual Differences, 41, 7378.Google Scholar
Stanovich, K. E. (2010). What intelligence tests miss: The psychology of rational thought. New Haven, CT: Yale University Press.Google Scholar
Stanovich, K. E. & West, R. F. (2008). On the failure of cognitive ability to predict myside and one-sided thinking biases. Thinking & Reasoning, 14, 129167. https://doi.org/10.1080/13546780701679764Google Scholar
Stanovich, K. E., West, R. F., & Toplak, M. E. (2016). The rationality quotient: Toward a test of rational thinking. Cambridge, MA: MIT Press.Google Scholar
Strauss, V. (2012). Texas GOP rejects “critical thinking” skills. Really. The Washington Post. July 9, 2012. www.washingtonpost.com/blogs/answer-sheet/post/texas-gop-rejects-critical-thinking-skills-really/2012/07/08/gJQAHNpFXW_blog.htmlGoogle Scholar
Tiruneh, D. T., Weldeslassie, A. G., Kassa, A., Tefera, Z., De Cock, M., & Elen, J. (2016). Systematic design of a learning environment for domain-specific and domain-general critical thinking skills. Educational Technology Research and Development, 64(3), 481505. https://doi.org/10.1007/s11423-015–9417-2Google Scholar
Van der Linden, S. (2013). New psychological research helps explain why some see intricate government conspiracies behind events like 9/11 or the Boston bombing. Scientific American. April 30, 2013. www.scientificamerican.com/article/moon-landing-faked-hy-people-believe-conspiracy-theories/Google Scholar
Van der Linden, S. L., Leiserowitz, A. A., Feinberg, G. D., & Maibach, E. W. (2015). The scientific consensus on climate change as a gateway belief: Experimental evidence. PLoS ONE, 10(2): e0118489. https://doi.org/10.1371/journal.pone.0118489Google Scholar

References

AAAS (American Association for the Advancement of Science). (1993). Benchmarks for scientific literacy: A project 2061 report. New York: Oxford University Press.Google Scholar
Adey, P. & Shayer, M. (1990). Accelerating the development of formal thinking in middle and high school students. Journal of Research in Science Teaching, 27, 267285.Google Scholar
Amsel, E. & Brock, S. (1996). The development of evidence evaluation skills. Cognitive Development, 11, 523550.Google Scholar
Bulloch, M. J. & Opfer, J. E. (2009). What makes relational reasoning smart? Revisiting the perceptual‐to‐relational shift in the development of generalization. Developmental Science, 12(1), 114122.Google Scholar
Bullock, M. & Gelman, R. (1979). Preschool children’s assumptions about cause and effect: Temporal ordering. Child Development, 50(1), 8996.Google Scholar
Bullock, M. & Ziegler, A. (1999). Scientific reasoning: Developmental and individual differences. In Weinert, F. E. & Schneider, W. (eds.), Individual development from 3 to 12: Findings from the Munich longitudinal study (pp. 3854). Cambridge: Cambridge University Press.Google Scholar
Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989) “An experiment is when you try it and see if it works”: A study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514529.Google Scholar
Chen, Z. & Klahr, D. (1999). All other things being equal: Children’s acquisition of the control of variables strategy, Child Development, 70(5), 10981120.Google Scholar
Chen, Z. & Klahr, D. (2008). Remote transfer of scientific-reasoning and problem-solving strategies in children. Advances in Child Development and Behavior, 36, 420.Google Scholar
Chi, M. T. (2013). Two kinds and four sub-types of misconceived knowledge, ways to change it, and the learning outcomes. In Vosniadou, S. (ed.), International handbook of research on conceptual change (pp. 4970). New York: Routledge.Google Scholar
Chinn, C. A. & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35, 623654.Google Scholar
Chinn, C. A. & Malhotra, B. A. (2002). Children’s responses to anomalous scientific data: How is conceptual change impeded? Journal of Educational Psychology, 94, 327343.Google Scholar
Chouinard, M. M. (2007). Children’s questions: A mechanism for cognitive development. Monographs of the Society for Research in Child Development, 72, 1129.Google Scholar
Christie, S. & Gentner, D. (2010). Where hypotheses come from: Learning new relations by structural alignment. Journal of Cognition and Development, 11(3), 356373.Google Scholar
Clement, J. (1982). Students’ preconceptions in introductory mechanics. The American Journal of Physics, 50(1), 6671.Google Scholar
Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 12411257.Google Scholar
Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22, 10411053.Google Scholar
Croker, S. & Buchanan, H. (2011). Scientific reasoning in a real world context: The effect of prior belief and outcome on children’s hypothesis testing strategies. British Journal of Developmental Psychology, 29, 409424.Google Scholar
DeLoache, J. S. (1987). Rapid change in the symbolic functioning of very young children. Science, 238(4833), 15561557.Google Scholar
Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In Sternberg, R. J. & Davidson, J. E. (eds.), The nature of insight (pp. 365395). Cambridge, MA: MIT Press.Google Scholar
Dunbar, K. (1997). How scientists think: On-line creativity and conceptual change in science. In Ward, T. B., Smith, S. M., & Viad, J. (eds.), Creative thought: An investigation of conceptual structures and processes (pp. 461493). Washington, DC: American Psychological Association.Google Scholar
Echevarria, M. (2003). Anomalies as a catalyst for middle school students’ knowledge construction and scientific reasoning during science inquiry. Journal of Educational Psychology, 95, 357374.Google Scholar
Ero-Tolliver, I., Lucas, D., & Schauble, L. (2013). Young children’s thinking about decomposition: Early modeling entrees to complex ideas in science. Research in Science Education, 43, 21372152.Google Scholar
Fay, A. & Klahr, D. (1996). Knowing about guessing and guessing about knowing: Preschoolers’ understanding of indeterminacy. Child Development, 67, 689716.Google Scholar
French, L. A. & Woodring, S. D. (2013). Science education in the early years. In Saracho, O. N. & Spodek, B. (eds.), Handbook of research on the education of young children, 3rd edn (pp. 179196). New York: Routledge.Google Scholar
Gadgil, S. M., Nokes, T. J., & Chi, M. T. H. (2013). Effectiveness of holistic mental model confrontation in driving conceptual change. Learning and Instruction, 22, 4761.Google Scholar
Gelman, S. A., & Coley, J. D. (1990). The importance of knowing a dodo is a bird: Categories and inferences in 2-year-old children. Developmental Psychology, 26(5), 796.Google Scholar
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155170.Google Scholar
Gentner, D. (2010). Bootstrapping the mind: Analogical processes and symbol systems. Cognitive Science, 34, 752775.Google Scholar
Gentner, D., Brem, S., Ferguson, R. W., Markman, A. B., Levidow, B. B., Wolff, P., & Forbus, K. D. (1997). Analogical reasoning and conceptual change: A case study of Johannes Kepler. Journal of the Learning Sciences, 6, 340.Google Scholar
Gick, M. L. & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15(1), 138.Google Scholar
Gobert, J. D. & Clement, J. J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36(1), 3953.Google Scholar
Gopnik, A., Meltzoff, A. N., & Kuhl, P. K. (2000). The scientist in the crib: What early learning tells us about the mind. New York: Harper Collins.Google Scholar
Gopnik, A. & Sobel, D. M. (2000). Detecting blickets: How young children use information about novel causal powers in categorization and induction. Child Development, 71(5), 12051222.Google Scholar
Goswami, U. (1991). Analogical reasoning: What develops? A review of research and theory. Child Development, 62(1), 122.Google Scholar
Greif, M. L., Kemler Nelson, D. G., Keil, F. C., & Gutierrez, F. (2006). What do children want to know about animals and artifacts? Domain-specific requests for information. Psychological Science, 17, 455.Google Scholar
Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799822.Google Scholar
Hadzigeorgiou, Y. (2015). Young children’s ideas about physical science concepts. In Trundle, K. C. & Sackes, M. (eds.), Research in early childhood science education (pp. 6797). Dordrecht: Springer.Google Scholar
Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction. Cambridge, MA: MIT Press.Google Scholar
Hopkins, E. J., Dore, R. A., & Lillard, A. S. (2015). Do children learn from pretense?, Journal of Experimental Child Psychology, 130, 118. http://doi.org/10.1016/j.jecp.2014.09.004Google Scholar
Horton, C. (2007) Student alternative conceptions in chemistry. California Journal of Science Education, 7(2), 2338.Google Scholar
Inagaki, K. & Hatano, G. (2008). Conceptual change in naïve biology. In Vosniadou, S. (ed.), International handbook of research on conceptual change (pp. 240262). New York: RoutledgeGoogle Scholar
Inhelder, B. & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books.Google Scholar
Jee, B. D., Uttal, D. H., Gentner, D., Manduca, C., Shipley, T. F., & Sageman, B. (2013). Finding faults: Analogical comparison supports spatial concept learning in geoscience. Cognitive Processing, 14(2), 175187.Google Scholar
Jirout, J. & Klahr, D. (2012). Children’s scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32, 125160.Google Scholar
Keil, F. C. (2006). Explanation and understanding. Annual Review of Psychology, 57, 227254.Google Scholar
Keil, F. C., Smith, W. C., Simons, D. J., & Levin, D. T. (1998). Two dogmas of conceptual empiricism: Implications for hybrid models of the structure of knowledge. Cognition, 65(2), 103135.Google Scholar
Keil, F.C. & Wilson, R.A. (eds.) (2000). Explanation and cognition. Cambridge, MA: MIT Press.Google Scholar
Kelemen, D., Emmons, N., Seston, R., & Ganea, P. (2014). Young children can be taught basic natural selection using a picture storybook intervention. Psychological Science, 25, 893902.Google Scholar
King, A. (1991). Effects of training in strategic questioning on children’s problem-solving performance. Journal of Educational Psychology, 83, 307317.Google Scholar
Klahr, D. (1994). Searching for the cognition in cognitive models of science. Psycoloquy, 5(94), 713.Google Scholar
Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge, MA: MIT Press.Google Scholar
Klahr, D. & Carver, S. (1995). Scientific thinking about scientific thinking. Monographs of the Society for Research in Child Development, 60(4), 137151.Google Scholar
Klahr, D. & Dunbar, K. (1988). Dual search space during scientific reasoning. Cognitive Science, 12, 148.Google Scholar
Klahr, D., Fay, A., & Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology, 25, 111146.Google Scholar
Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children’s scientific thinking. Science, 333, 971975.Google Scholar
Koerber, S., Sodian, B., Thoermer, C., & Nett, U. (2005). Scientific reasoning in young children: Preschoolers’ ability to evaluate covariation evidence. Swiss Journal of Psychology, 64, 141152.Google Scholar
Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge, MA: MIT Press.Google Scholar
Koslowski, B. (2012) How explanation makes information evidentially relevant. In Proctor, R. & Capaldi, J. (eds.), The psychology of science: Implicit and explicit processes (pp. 112136). New York: Oxford University Press.Google Scholar
Koslowski, B. (2013). Scientific reasoning: Explanation, confirmation bias, and scientific practice. In Feist, G. & Gorman, M. (eds.), Handbook of the psychology of science (pp. 151192). New York: Springer.Google Scholar
Koslowski, B., Marasia, J., Chelenza, M., & Dublin, R. (2008). Information becomes evidence when an explanation can incorporate it into a causal framework. Cognitive Development, 23, 472487.Google Scholar
Kotovsky, L. & Gentner, D. (1996). Comparison and categorization in the development of relational similarity. Child Development, 67(6), 27972822. https://doi.org/10.2307/1131753Google Scholar
Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96, 674689.Google Scholar
Kuhn, D. (2005). Education for Thinking. Cambridge, MA: Harvard University Press.Google Scholar
Kuhn, D. (2007). Reasoning about multiple variables: Control of variables is not the only challenge. Science Education, 91, 710726.Google Scholar
Kuhn, D. (2011). What is scientific thinking and how does it develop? In Goswami, U. (ed.), Handbook of childhood cognitive development, 2nd edn (pp. 497523). Oxford: Wiley-Blackwell.Google Scholar
Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The development of scientific thinking skills. Orlando, FL: Academic Press.Google Scholar
Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. Cognition and Instruction, 18, 495523.Google Scholar
Kuhn, D. & Dean, D. (2005). Is developing scientific thinking all about learning to control variables?, Psychological Science, 16, 866870.Google Scholar
Kuhn, D., Garcia-Mila, M., Zohar, A., & Andersen, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60, v128Google Scholar
Kurtz, K. J. & Gentner, D. (2013). Detecting anomalous features in complex stimuli: The role of structured comparison. Journal of Experimental Psychology: Applied, 19(3), 219.Google Scholar
Lehrer, R. & Schauble, L. (2000). Developing model-based reasoning in mathematics and science. Journal of Applied Developmental Psychology, 21, 3948.Google Scholar
Lehrer, R. & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41, 635679.Google Scholar
Lehrer, R. & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modeling its foundations. Science Education, 96, 701724.Google Scholar
Lehrer, R., Schauble, L., & Lucas, D. (2008). Supporting development of the epistemology of inquiry. Cognitive Development, 23, 512529.Google Scholar
Lehrer, R., Schauble, L., & Petrosino, A. J. (2001). Reconsidering the role of experiment in science education. In Crowley, K., Schunn, C., & Okada, T. (eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 251277). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Lewis, E. L. & Linn, M. C. (1994). Heat energy and temperature concepts of adolescents, adults, and experts: Implications for curricular improvements. Journal of Research in Science Teaching, 31(6), 657677.Google Scholar
Li, J., Klahr, D., & Siler, S. (2006). What lies beneath the science achievement gap? The challenges of aligning science instruction with standards and tests. Science Educator, 15, 112.Google Scholar
Lilienfeld, S.O., Ammirati, R., & David, M. (2012). Distinguishing science from pseudoscience in school psychology: Science and scientific thinking as safeguards against human error. Journal of School Psychology, 1, 736.Google Scholar
Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116(1), 7598.Google Scholar
Lorch, R.F. Jr., Lorch, E.P., Calderhead, W.J. et al. (2010). Learning the control of variables strategy in higher- and lower-achieving classrooms: Contributions of explicit instruction and experimentation. Journal of Educational Psychology, 1, 90101.Google Scholar
Masnick, A. M., Klahr, D., & Morris, B. J. (2007). Separating signal from noise: Children’s understanding of error and variability in experimental outcomes. In Lovett, M. & Shaw, P. (eds.), Thinking with data (pp. 326). Mahwah, NJ: Erlbaum.Google Scholar
Masnick, A. M., Klahr, D, & Knowles, E. R. (2016). Data-driven belief revision in children and adults. Journal of Cognition and Development, 18(1), 87109.Google Scholar
Masnick, A. M. & Morris, B. J. (2008). Investigating the development of data evaluation: The role of data characteristics. Child Development, 79, 10321048.Google Scholar
Matlen, B.J., Vosniadou, S., Jee, B., & Ptouchkina, M. (2011). Enhancing the comprehension of science text through visual analogies. In Carlson, L., Holscher, C., and Shipley, T. (eds.), Proceedings of the 34th annual conference of the Cognitive Science Society (pp. 29102915).Google Scholar
Matlen, B.J., Gentner, D., & Franconeri, S. (2014). Structure mapping in visual comparison: Embodied correspondence lines? Poster presented at the 37th Annual Conference of the Cognitive Science Society, Pasadena, California, July 22–25.Google Scholar
Matlen, B.J. & Klahr, D. (2013) Sequential effects of high and low instructional guidance on children’s acquisition and transfer of experimentation skills. Instructional Science, 41, 621. https://doi.org/10.1007/s11251-012-9248-zGoogle Scholar
Metz, K. E. (1995). Reassessment of developmental constraints on children’s science instruction. Review of Educational Research, 65, 93127.Google Scholar
Metz, K. E. (1997). On the complex relation between cognitive developmental research and children’s science curricula. Review of Educational Research, 67, 151163.Google Scholar
Minstrell, J. (1992). Facets of students’ knowledge and relevant instruction. In Duit, R., Goldberg, F., & Niedderer, H. (eds.), Research in physics learning: Theoretical issues and empirical studies, proceedings of an international workshop (pp. 110128). Kiel: IPN.Google Scholar
Morris, B. J., Croker, S., Masnick, A. M., & Zimmerman, C. (2012). The emergence of scientific reasoning. In Kloos, H., Morris, B. J., and Amaral, J. L. (eds.), Current topics in children’s learning and cognition (pp. 6182). Rijeka: InTech.Google Scholar
Mynatt, C. R., Doherty, M. E., & Tweney, R. D. (1977). Confirmation bias in a simulated research environment: An experimental study of scientific inference. The Quarterly Journal of Experimental Psychology, 29, 8595.Google Scholar
Mynatt, C. R., Doherty, M. E., & Tweney, R. D. (1978). Consequences of confirmation and disconfirmation in a simulated research environment. The Quarterly Journal of Experimental Psychology, 30, 395406.Google Scholar
NAEYC (National Association for the Education of Young Children). (2012). All criteria document. https://www.naeyc.org/our-work/families/10-naeyc-program-standardsGoogle Scholar
NEGP (National Education Goals Panel). (1993). Promises to keep: Creating high standards for American students. Washington, DC: National Education Goals Panel.Google Scholar
NEGP (National Education Goals Panel) (1995). The 1995 national education goals report: Building a nation of learners. Washington, DC: National Education Goals Panel.Google Scholar
Nersessian, N. J. (2008). Creating scientific concepts. Cambridge MA: MIT Press.Google Scholar
Newell, A. & Simon, H. A. (1972). Human problem solving. New York: Prentice Hall.Google Scholar
NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.Google Scholar
NRC (National Research Council). (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academies Press.Google Scholar
NRC (National Research Council) (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.Google Scholar
NRC (National Research Council) (2008). Ready, Set, SCIENCE! Putting Research to Work in K-8 Science Classrooms. Washington, DC: National Academies Press.Google Scholar
NRC (National Research Council) (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.Google Scholar
NRC (National Research Council) (2015) Reaching students: What research says about effective instruction in undergraduate science and engineering. Washington, DC: National Academies Press. https://doi.org/10.17226/18687Google Scholar
NSTA (National Science Teachers Association). (2007). NSTA position statement: The integral role of laboratory investigations in science instruction. www.nsta.org/about/positions/laboratory.aspx. Accessed March 18, 2013.Google Scholar
Opfer, J. E. & Siegler, R. S. (2004). Revisiting preschoolers’ living things concept: A microgenetic analysis of conceptual change in basic biology. Cognitive Psychology, 49(4), 301332.Google Scholar
Osterhaus, C., Koerber, S., & Sodian, B. (2017). Scientific thinking in elementary school: Children’s social cognition and their epistemological understanding promote experimentation skills. Developmental Psychology, 53(3), 450462.Google Scholar
Penner, D. E., Giles, N. D., Lehrer, R., & Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34(2), 125143.Google Scholar
Penner, D. E. & Klahr, D. (1996a). The interaction of domain-specific knowledge and domain-general discovery strategies: A study with sinking objects. Child Development, 67, 27092727.Google Scholar
Penner, D. E. & Klahr, D. (1996b). When to trust the data: Further investigations of system error in a scientific reasoning task. Memory and Cognition, 24, 655668.Google Scholar
Penner, D. E., Lehrer, R., & Schauble, L. (1998). From physical models to biomechanics: A design-based modeling approach. Journal of the Learning Sciences, 7(3–4), 429449.Google Scholar
Piaget, J. (1929 ). The child’s conception of the world. London: Kegan Paul.Google Scholar
Piaget, J. (1970). Genetic epistemology. New York: Columbia University Press.Google Scholar
Piekny, J. & Maehler, C. (2013). Scientific reasoning in early and middle childhood: The development of domain-general evidence evaluation, experimentation, and hypothesis generation skills. British Journal of Developmental Psychology, 31, 153179.Google Scholar
Quellmalz, E. S., Timms, M. J., Silberglitt, M. D., & Buckley, B. C. (2012). Science assessments for all: Integrating science simulations into balanced state science assessment systems. Journal of Research in Science Teaching, 49, 363393.Google Scholar
Raghavan, K. & Glaser, R. (1995). Model–based analysis and reasoning in science: The MARS curriculum. Science Education, 79(1), 3761.Google Scholar
Rakison, D. H., Lupyan, G., Oakes, L. M., & Walker-Andrews, A. S. (2008). Developing object concepts in infancy: An associative learning perspective [Monograph]. Monographs of the Society for Research in Child Development, 73(1), i127.Google Scholar
Renken, M. D. & Nunez, N. (2010). Evidence for improved conclusion accuracy after reading about rather than conducting a belief-inconsistent simple physics experiment. Applied Cognitive Psychology, 24, 792811.Google Scholar
Richland, L. E. & McDonough, I. M. (2010). Learning by analogy: Discriminating between potential analogsContemporary Educational Psychology, 35(1), 2843.Google Scholar
Ruffman, T., Perner, J., Olson, D. R., & Doherty, M. (1993). Reflecting on scientific thinking: Children’s understanding of the hypothesis-evidence relation. Child Development, 64, 16171636.Google Scholar
Samarapungavan, A., Mantzicopoulos, P., & Patrick, H. (2008). Learning science through inquiry in kindergarten. Science Education, 92, 868908.Google Scholar
Santau, A. O., Maerten-Rivera, J. L., Bovis, S., & Orend, J. (2014). A mile wide or an inch deep? Improving elementary preservice teachers’ science content knowledge within the context of a science methods course. Journal of Science Teacher Education, 25, 953. https://doi.org/10.1007/s10972-014-9402-3Google Scholar
Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32, 102119.Google Scholar
Schuster, D., Cobern, W. W., Adams, B. A., Undreiu, A., & Pleasants, B. (2017). Learning of core disciplinary ideas: Efficacy comparison of two contrasting modes of science instruction. Research in Science Education, 43, 147.Google Scholar
Schwichow, M., Croker, S., Zimmerman, C., Höffler, T., & Härtig, H. (2016). The control-of-variables strategy: A meta-analysis. Developmental Review, 39, 3763.Google Scholar
Schwichow, M., Zimmerman, C., Croker, S., & Härtig, H. (2016). What students learn from hands-on activities. Journal of Research in Science Teaching, 53, 9801002.Google Scholar
Shtulman, A. (2017). Scienceblind: Why our intuitive theories about the world are so often wrong. New York: Basic Books.Google Scholar
Siler, S. & Klahr, D. (2012). Detecting, classifying and remediating children’s explicit and implicit misconceptions about experimental design. In Proctor, R. W. & Capaldi, E. J. (eds.), Psychology of science: Implicit and explicit processes (pp. 137180). New York: Oxford University Press.Google Scholar
Siler, S., Klahr, D., & Matlen, B. (2013). Conceptual change in experimental design: From engineering goal to science goals. In Vosniadau, S. (ed.), Handbook of research on conceptual change, 2nd edn. New York: Routledge.Google Scholar
Singer, S. R., Nielsen, N. R. & Schweingruber, H. A. (eds.) (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. Washington, DC: National Academies Press.Google Scholar
Sloutsky, V. M. & Fisher, A. V. (2004). Induction and categorization in young children: A similarity-based model. Journal of Experimental Psychology: General, 133(2), 166188.Google Scholar
Smith, L. B., Jones, S. S., & Landau, B. (1996). Naming in young children: A dumb attentional mechanism? Cognition, 60(2), 143171.Google Scholar
Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children’s differentiation of hypothetical beliefs from evidence. Child Development, 62, 753766.Google Scholar
Sutherland, S. L. & Friedman, O. (2013). Just pretending can be really learning: Children use pretend play as a source for acquiring generic knowledge. Developmental Psychology, 49(9), 16601668. http://doi.org/10.1037/a0030788Google Scholar
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357368.Google Scholar
Triona, L. & Klahr, D. (2008). Hands-on science: Does it matter what the students’ hands are on? The Science Education Review, 6(4), 126130.Google Scholar
Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, 51, 110.Google Scholar
Uttal, D. H., Fisher, J. A., & Taylor, H. A. (2006). Words and maps: Children’s mental models of spatial information acquired from maps and from descriptions. Developmental Science, 9(2), 221235.Google Scholar
Vendetti, M. S., Matlen, B. J., Richland, L. E., & Bunge, S. A. (2015). Analogical reasoning in the classroom: Insights from cognitive science. Mind, Brain, and Education, 9(2), 100106.Google Scholar
Vosniadou, S. (ed.) (2013). International handbook of research on conceptual change. 2nd edn. New York: Routledge.Google Scholar
Vosniadou, S. & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535585.Google Scholar
Vosniadou, S. & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123183.Google Scholar
Wiser, M. & Smith, C. L. (2008). Learning and teaching about matter in grades K-8: When should the atomic-molecular theory be introduced. In Vosiadou, S. (ed.), International handbook of research on conceptual change (pp. 205239). New York: Routledge.Google Scholar
Wright, S. B., Matlen, B. J., Baym, C. L., Ferrer, E., & Bunge, S. A. (2008). Neural correlates of fluid reasoning in children and adults. Frontiers in Human Neuroscience, 1(8). http://dx.doi.org/10.3389/neuro.09.008.2007Google Scholar
Zimmerman, C. & Croker, S. (2014). A prospective cognition analysis of scientific thinking and the implications for teaching and learning science. Journal of Cognitive Education and Psychology, 13, 245257.Google Scholar
Zimmerman, C. & Cuddington, K. (2007). Ambiguous, circular and polysemous: Students’ definitions of the “balance of nature” metaphor. Public Understanding of Science, 16, 393406.Google Scholar
Zimmerman, C. & Klahr, D. (2018). Development of scientific thinking. In Ghetti, S. (ed.), The Stevens’ handbook of experimental psychology and cognitive neuroscience, Vol. 3: Developmental & Social Psychology (pp. 223248). New York: Wiley.Google Scholar
Zimmerman, C., Raghavan, K., & Sartoris, M. L. (2003). The impact of the MARS curriculum on students’ ability to coordinate theory and evidence. International Journal of Science Education, 25, 12471271.Google Scholar

References

Alibali, M. W. & DiRusso, A. A. (1999). The function of gesture in learning to count: More than keeping track. Cognitive Development, 14(1), 3756. https://doi.org/10.1016/s0885-2014(99)80017–3Google Scholar
Amalric, M. & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians.Proceedings of the National Academy of Sciences, 113, 4909–4917. https://doi.org/10.1073/pnas.1603205113Google Scholar
Ansari, D. & Lyons, I.M. (2016). Cognitive neuroscience and mathematics learning: How far have we come? Where do we need to go? ZDM Mathematics Education, 48, 379383. https://doi.org/10.1007/s11858-016–0782-zGoogle Scholar
Ashcraft, M. H. (1996). Cognitive psychology and simple arithmetic: A review and summary of new directions. In Butterworth, B. (ed.), Mathematical cognition. Vol. 1 (pp. 334). Hove, UK: Psychology Press. https://doi.org/10.1037/0096–3445.130.2.224Google Scholar
Ashcraft, M. H. & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 243248. https://doi.org/10.1037/0096–3445.130.2.224Google Scholar
Baddeley, A. D. & Hitch, G. (1974). Working memory. In Bower, G. (ed.), Recent advances in learning and motivation Vol. 8 (pp. 4789). New York: Academic Press.Google Scholar
Barth, H. & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125135. https://doi.org/10.1111/j.1467–7687.2010.00962.xGoogle Scholar
Barth, H., Slusser, E., Cohen, D., & Paladino, A. (2011). A sense of proportion: Commentary on Opfer, Siegler and Young. Developmental Science, 14(5), 12051206. https://doi.org/10.1111/j.1467–7687.2011.01081.xGoogle Scholar
Battista, M. (1981). The interaction between two instructional treatments of algebraic structures and spatial-visualization ability. The Journal of Educational Research, 74(5), 337341. https://doi.org/10.1080/00220671.1981.10885326Google Scholar
Battista, M. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21(1), 4760. https://doi.org/10.2307/749456Google Scholar
Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Journal for Research in Mathematics Education, 13(5), 332340. https://doi.org/10.2307/749007Google Scholar
Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006). Object-spatial imagery: A new self-report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239263. https://doi.org/10.1002/acp.1182Google Scholar
Blazhenkova, O., Becker, M., & Kozhevnikov, M. (2011). Object–spatial imagery and verbal cognitive styles in children and adolescents: Developmental trajectories in relation to ability. Learning and Individual Differences, 21(3), 281287. https://doi.org/10.1016/j.lindif.2010.11.012Google Scholar
Booth, J. L. & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41(6), 189201. https://doi.org/10.1037/0012–1649.41.6.189Google Scholar
Booth, J. L. & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 10161031. https://doi.org/10.1111/j.1467–8624.2008.01173.xGoogle Scholar
Bremigan, E. G. (2005). An analysis of diagram modification and construction in students’ solutions to applied calculus problems. Journal for Research in Mathematics Education, 36(3), 248277.Google Scholar
Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.Google Scholar
Casey, B. M., Dearing, E., Dulaney, A., Heyman, M., & Springer, R. (2014). Young girls’ spatial and arithmetic performance: The mediating role of maternal supportive interactions during joint spatial problem solving. Early Childhood Research Quarterly, 29(4), 636648. https://doi.org/10.1016/j.ecresq.2014.07.005Google Scholar
Casey, M. B., Nuttall, R. L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties. Developmental Psychology, 33(4), 669. http://dx.doi.org/10.1037/0012–1649.33.4.669Google Scholar
Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test-scores across diverse samples. Developmental Psychology, 31(4), 697705. https://doi.org/10.1037/0012–1649.31.4.697Google Scholar
Castles, A., Rastle, K., & Nation, K. (2018). Ending the reading wars: Reading acquisition from novice to expert. Psychological Science in the Public Interest, 19(1), 551.Google Scholar
Caviola, S., Mammarella, I. C., Cornoldi, C., & Lucangeli, D. (2012). The involvement of working memory in children’s exact and approximate mental addition. Journal of Experimental Child Psychology, 112(2), 141160. https://doi.org/10.1016/j.jecp.2012.02.005Google Scholar
Cheng, Y. L. & Mix, K. S. (2012). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 211. https://doi.org/10.1080/15248372.2012.725186Google Scholar
Cromley, J. G., Booth, J. L., Wills, T.W., Chang, B.L., Shipley, T.F., Zahner, W., Tran, N., & Madeja, M. (2017). Relation of spatial skills to high school calculus proficiency: A brief report. Mathematical Thinking and Learning, 19(1), 5568.Google Scholar
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371396. https://doi.org/10.1037/0096–3445.122.3.371Google Scholar
Dehaene, S., Izard, V., Pica, P., & Spelke, E. (2006). Core knowledge of geometry in an Amazonian indigene group. Science, 311(5759), 381384.Google Scholar
Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in western and Amazonian indigene cultures. Science, 320(5880), 12171220. https://doi.org/10.1126/science.1156540Google Scholar
de Hevia, M. D. & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21(5), 653660. https://doi.org/10.1177/0956797610366091Google Scholar
Delgado, A. R. & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32(1), 2532. https://doi.org/10.1016/S0160-2896(03)00061–8Google Scholar
Duffy, S., Huttenlocher, J., & Levine, S. (2005). It is all relative: How young children encode extent. Journal of Cognition & Development, 6(1), 5163. https://doi.org/10.1207/s15327647jcd0601_4Google Scholar
Ebersbach, M. (2015). Evidence for a spatial–numerical association in kindergartners using a number line task. Journal of Cognition and Development, 16(1), 118128. https://doi.org/10.1080/15248372.2013.805134Google Scholar
Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99(1), 117. https://doi.org/10.1016/j.jecp.2007.08.006Google Scholar
Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J., & Midgley, C. (1983). Expectancies, values and academic behaviors. In Spence, J. T. (ed.), Achievement and achievement motives. San Francisco: W. H. Freeman.Google Scholar
Elliot, A. J. & Church, M. A. (1997). A hierarchical model of approach and avoidance achievement motivation. Journal of Personality and Social Psychology, 72(1), 218232. https://doi.org/10.1037/0022–3514.72.1.218Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307314. https://doi.org/10.1016/j.tics.2004.05.002Google Scholar
Frick, A. & Newcombe, N. S. (2012). Getting the big picture: Development of spatial scaling abilities. Cognitive Development, 27(3), 270282. https://doi.org/10.1016/j.cogdev.2012.05.004Google Scholar
Friedman, L. (1995). The space factor in mathematics: Gender differences. Review of Educational Research, 65(1), 2250.Google Scholar
Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., Changas, P. (2013). Improving at-risk learners’ understanding of fractions. Journal of Educational Psychology, 105(3), 683700. https://doi.org/10.1037/a0032446Google Scholar
Gathercole, S. E. & Pickering, S. J. (2000). Working memory deficits in children with low achievements in the national curriculum at 7 years of age. British Journal of Educational Psychology, 70(2), 177194. https://doi.org/10.1348/000709900158047Google Scholar
Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177190. https://doi.org/10.1037/0012–1649.40.2.177Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., & Catherine DeSoto, M. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88(2), 121151. https://doi.org/10.1016/j.jecp.2004.03.002Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78(4), 13431359. https://doi.org/10.1111/j.1467–8624.2007.01069.xGoogle Scholar
Giofrè, D., Mammarella, I. C., Ronconi, L., & Cornoldi, C. (2013). Visuospatial working memory in intuitive geometry, and in academic achievement in geometry. Learning and Individual Differences, 23, 114122. https://doi.org/10.1016/j.lindif.2012.09.012Google Scholar
Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47(2), 604608. https://doi.org/10.1016/j.neuropsychologia.2008.10.013Google Scholar
Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. NeuroImage, 38(2), 346356. https://doi.org/10.1016/j.neuroimage.2007.07.041Google Scholar
Grissmer, D., Mashburn, A., Cottone, E., Brock, L., Murrah, W., Blodgett, J., Cameron, C. (2013). The efficacy of minds in motion on children’s development of executive function, visuo-spatial and math skills. Paper presented at the Society for Research in Educational Effectiveness Conference, Washington, DC.Google Scholar
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 12291241. https://doi.org/10.1037/a0027433Google Scholar
Halberda, J. & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 14571465. https://doi.org/10.1037/a0012682Google Scholar
Hambrick, D. Z., Libarkin, J. C., Petcovic, H. L., Baker, K. M., Elkins, J., Callahan, C. N., … LaDue, N. D. (2012). A test of the circumvention-of-limits hypothesis in scientific problem solving: The case of geological bedrock mapping. Journal of Experimental Psychology: General, 141(3), 397403. https://doi.org/10.1037/a0025927 and https://doi.org/10.1037/a0025927.supp (Supplemental)Google Scholar
Hamdan, N. & Gunderson, E. A. (2016). The number line is a critical spatial-numerical representation: Evidence from a fraction intervention. Developmental Psychology, https://doi.org/10.1037/dev0000252 and https://doi.org/10.1037/dev0000252.supp (Supplemental)Google Scholar
Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children’s spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention. Cognition and Instruction, 35(3), 236264. https://doi.org/10.1080/07370008.2017.1323902Google Scholar
Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 6068. https://doi.org/10.1016/j.tine.2015.05.001Google Scholar
Heathcote, D. (1994). The role of visuo-spatial working memory in the mental addition of multi-digit addends. Current Psychology of Cognition, 13, 207245.Google Scholar
Hegarty, M. & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684689. https://doi.org/10.1037/0022–0663.91.4.684Google Scholar
Huttenlocher, J., Duffy, S., & Levine, S. (2002). Infants and toddlers discriminate amount: Are they measuring? Psychological Science, 13(3), 244.Google Scholar
Huttenlocher, J., Hedges, L. V., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. Cognition, 93(2), 7597. https://doi.org/10.1016/j.cognition.2003.10.006Google Scholar
Huttenlocher, J., Hedges, L. V., & Vevea, J. L. (2000). Why do categories affect stimulus judgment? Journal of Experimental Psychology: General, 129(2), 220241. https://doi.org/10.1037/0096–3445.129.2.220Google Scholar
Huttenlocher, J., Jordan, N. C., & Levine, S. C. (1994). A mental model for early arithmetic. Journal of Experimental Psychology: General, 123(3), 284296. https://doi.org/10.1037/0096–3445.123.3.284Google Scholar
Huttenlocher, J., Newcombe, N., & Sandberg, E. H. (1994). The coding of spatial location in young children. Cognitive Psychology, 27(2), 115147. https://doi.org/10.1006/cogp.1994.1014Google Scholar
Jones, K. (2001). Spatial thinking and visualisation. In K. Jones, Teaching and learning geometry. (pp. 5556). London: Royal Society.Google Scholar
Jones, K. (2002). Issues in the teaching and learning of geometry. In Haggarty, L. (ed.), Aspects of teaching secondary mathematics: Perspectives on practice (pp. 121139). London: Routledge. https://doi.org/10.4324/9780203165874Google Scholar
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: When do fingers help? Developmental Science, 11(5), 662668. https://doi.org/10.1111/j.1467–7687.2008.00715.xGoogle Scholar
Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36(6), 763787. https://doi.org/10.1080/87565641.2010.549884Google Scholar
Kim, D. & Opfer, J. E. (2017). A unified framework for bounded and unbounded numerical estimation. Developmental Psychology, 53(6), 1088. http://dx.doi.org/10.1037/dev0000305Google Scholar
Kinach, B. M. (2012). Fostering spatial vs. metric understanding in geometry. Mathematics Teacher, 105(7), 534540.Google Scholar
Kirby, J. R. & Boulter, D. R. (1999). Spatial ability and transformational geometry. European Journal of Psychology of Education, 14(2), 283294. https://doi.org/10.1007/BF03172970Google Scholar
Krajewski, K. & Schneider, W. (2009). Exploring the impact of phonological awareness, visual–spatial working memory, and preschool quantity–number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103(4), 516531. http://dx.doi.org/10.1016/j.jecp.2009.03.009Google Scholar
Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J. E. H., & Hautamäki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20(3), 6576.Google Scholar
Kyttälä, M. & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 7794. https://doi.org/10.1007/BF03173141Google Scholar
Laski, E. V. & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78(6), 17231743. https://doi.org/10.1111/j.1467–8624.2007.01087.xGoogle Scholar
Le Corre, M. (2014). Children acquire the later-greater principle after the cardinal principle. British Journal of Developmental Psychology, 32(2), 163177. https://doi.org/10.1111/bjdp.12029Google Scholar
Le Corre, M. & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395438. https://doi.org/10.1016/j.cognition.2006.10.005Google Scholar
LeFevre, J.-A., Jimenez Lira, C., Sowinski, C., Cankaya, O., Kamawar, D., & Skwarchuk, S.-L. (2013). Charting the role of the number line in mathematical development. Frontiers in Psychology, 4, 19. https://doi.org/10.3389/fpsyg.2013.00641Google Scholar
Logan, T. (2015). The influence of test mode and visuospatial ability on mathematics assessment performance. Mathematics Education Research Journal, 27(4), 423441. https://doi.org/10.1007/s13394-015–0143-1Google Scholar
Lourenco, S. F. & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 878881. https://doi.org/10.1177/0956797610370158Google Scholar
Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170186. https://doi.org/10.1111/bjep.12142Google Scholar
McKenzie, B., Bull, R., & Gray, C. (2003). The effects of phonological and visuospatial interference on children’s arithmetical performance. Educational and Child Psychology, 20(3), 93108.Google Scholar
Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20(2), 101109. https://doi.org/10.1016/j.lindif.2009.08.004Google Scholar
Miller-Cotto, D., Booth, J. L., Chang, B. L., Cromley, J. G., Newcombe, N. S., & Williams, T. A. (under review). Sketching and verbal self-explanation: Do they help middle school children solve math and science problems?Google Scholar
Mix, K. S. & Cheng, Y. L. (2012). The relation between space and math: developmental and educational implications. In Benson, J. B. (ed.), Advances in child development and behavior, Vol. 42 (pp. 197243). New York: Elsevier.Google Scholar
Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 12061227.Google Scholar
Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2009). Children’s early mental number line: Logarithmic or decomposed linear? Journal of Experimental Child Psychology, 103(4), 503515. https://doi.org/10.1016/j.jecp.2009.02.006Google Scholar
Möhring, W., Newcombe, N. S., & Frick, A. (2015). The relation between spatial thinking and proportional reasoning in preschoolers. Journal of Experimental Child Psychology, 132, 213220. https://doi.org/10.1016/j.jecp.2015.01.005Google Scholar
Möhring, W., Newcombe, N., Levine, S. C., & Frick, A. (2014). A matter of proportions: Spatial scaling is related to proportional reasoning in 4- and 5-year-olds. Paper presented at the Spatial Cognition Conference, Bremen, Germany.Google Scholar
Möhring, W., Newcombe, N., Levine, S. C., & Frick, A. (2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 6784. https://doi.org/10.1080/15248372.2014.996289Google Scholar
Nath, S. & Szücs, D. (2014). Construction play and cognitive skills associated with the development of mathematical abilities in 7-year-old children. Learning and Instruction, 32(0), 7380. https://doi.org/10.1016/j.learninstruc.2014.01.006Google Scholar
Opfer, J. E. & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55(3), 169195. https://doi.org/10.1016/j.cogpsych.2006.09.002Google Scholar
Opfer, J. E., Siegler, R. S., & Young, C. J. (2011). The powers of noise-fitting: Reply to Barth and Paladino. Developmental Science, 14(5), 11941204. https://doi.org/10.1111/j.1467–7687.2011.01070.xGoogle Scholar
Opfer, J. E., Thompson, C. A., & Kim, D. (2016). Free versus anchored numerical estimation: A unified approach. Cognition, 149, 1117. https://doi.org/10.1016/j.cognition.2015.11.015Google Scholar
Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455. https://doi.org/10.1037/edu0000079Google Scholar
Piaget, J. & Inhelder, B. (1975). The origins of the idea of chance in children. New York: Norton.Google Scholar
Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41, 120. https://doi.org/10.1016/S0896-6273(04)00107–2Google Scholar
Pittalis, M. & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191212. https://doi.org/10.1007/s10649-010–9251-8Google Scholar
Rasmussen, C. & Bisanz, J. (2005). Representation and working memory in early arithmetic. Journal of Experimental Child Psychology, 91(2), 137157. https://doi.org/10.1016/j.jecp.2005.01.004Google Scholar
Rayner, K., Foorman, B., Perfetti, C., Pesetsky, D., & Seidenberg, M. (2001). How psychological science informs the teaching of reading. Psychological Science in the Public Interest, 2(2), 3174. https://doi.org/10.1111/1529–1006.00004Google Scholar
Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory. Educational Psychology, 21(4), 387399. https://doi.org/10.1080/01443410120090786Google Scholar
Royal Society and JMC (Joint Mathematical Council). (2001), Teaching and Learning Geometry 11–19. London: Royal Society and JMC.Google Scholar
Rugani, R & de Hevia, M.-D. (2017). Number-space associations without language: Evidence from 4 preverbal human infants and non-human animal species. Psychonomic Bulletin & Review, 24, 352369.Google Scholar
Samuels, J. (2010). The use of technology and visualization in calculus instruction (Unpublished doctoral dissertation). Teachers College, New York.Google Scholar
Saxe, G. B., Diakow, R., & Gearhart, M. (2013). Towards curricular coherence in integers and fractions: A study of the efficacy of a lesson sequence that uses the number line as the principal representational context. ZDM Mathematics Journal, 45(3), 343364. https://doi.org/10.1007/s11858-012–0466-2Google Scholar
Sekuler, R. & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child Development, 48(2), 630633. https://doi.org/10.2307/1128664Google Scholar
Sella, F., Berteletti, I., Lucangeli, D., & Zorzi, M. (2017). Preschool children use space, rather than counting, to infer the numerical magnitude of digits: Evidence for a spatial mapping principle. Cognition, 158, 5667. http://dx.doi.org/10.1016/j.cognition.2016.10.010Google Scholar
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604614. https://doi.org/10.1037/0022–0663.93.3.604Google Scholar
Shepard, R. N. & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701702.Google Scholar
Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective?. Psychological Bulletin, 138(4), 628–154.Google Scholar
Siegler, R. S. (2009). Improving the numerical understanding of children from low-income families. Child Development Perspectives, 3(2), 118124. https://doi.org/10.1111/j.1750–8606.2009.00090.xGoogle Scholar
Siegler, R. S. & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428444. https://doi.org/10.1111/j.1467–8624.2004.00684.xGoogle Scholar
Siegler, R. S. & Booth, J. L. (2005). Development of numerical estimation. In Campbell, J. I. D. (ed.), Handbook of mathematical cognition (pp. 197212). New York: Psychology Press.Google Scholar
Siegler, R. S. & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237243. https://doi.org/10.1111/1467–9280.02438Google Scholar
Siegler, R. S. & Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science, 11(5), 655661. https://doi.org/10.1111/j.1467–7687.2008.00714.xGoogle Scholar
Siegler, R. S. & Ramani, G. B. (2009). Playing linear number board games – but not circular ones – improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545560. https://doi.org/10.1037/a0014239Google Scholar
Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology: General, 142(1), 193208. https://doi.org/10.1037/a0028560Google Scholar
Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 2029. https://doi.org/10.1016/j.lindif.2013.03.010Google Scholar
Soto-Calvo, E., Simmons, F. R., Willis, C., & Adams, A.-M. (2015). Identifying the cognitive predictors of early counting and calculation skills: Evidence from a longitudinal study. Journal of Experimental Child Psychology, 140, 1637. https://doi.org/10.1016/j.jecp.2015.06.011Google Scholar
Spelke, E. S. & Tsivkin, S. (2001). Language and number: A bilingual training study. Cognition, 78, 4588.Google Scholar
Spence, I. & Krizel, P. (1994). Children’s perception of proportion in graphs. Child Development, 65(4), 11931213. https://doi.org/10.2307/1131314Google Scholar
Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17(2), 219234. https://doi.org/10.1016/j.learninstruc.2007.01.012Google Scholar
Tolar, T. D., Lederberg, A. R., & Fletcher, J. M. (2009) A structural model of algebra achievement: Computational fluency and spatial visualisation as mediators of the effect of working memory on algebra achievement. Educational Psychology, 29(2), 239266. https://doi.org/10.1080/01443410802708903Google Scholar
Trbovich, P. & LeFevre, J. A. (2003). Phonological and visual working memory in mental addition. Memory and Cognition, 31(5), 738745. https://doi.org/10.3758/bf03196112Google Scholar
Trezise, K. & Reeve, R. A. (2014). Working memory, worry, and algebraic ability. Journal of Experimental Child Psychology, 121, 120136.Google Scholar
Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In Coxford, A. (ed.), Ideas of algebra, K-12 (pp. 819). Reston, VA: NCTM.Google Scholar
Uttal, D. H. & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how? Psychology of Learning and Motivation, 57, 147181. https://doi.org/10.1016/B978-0–12-394293–7.00004–2Google Scholar
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L. Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352402.Google Scholar
Vasilyeva, M. & Huttenlocher, J. (2004). Early development of scaling ability. Developmental Psychology, 40(5), 682690. https://doi.org/10.1037/0012–1649.40.5.682Google Scholar
Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). Links between spatial and mathematical skills across the preschool years [Monograph]. Monographs of the Society for Research in Child Development, 82,(1), Serial Number 124.Google Scholar
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817835. https://doi.org/10.1037/a0016127Google Scholar
Weckbacher, L. M. & Okamoto, Y. (2014). Mental rotation ability in relation to self-perceptions of high school geometry. Learning and Individual Differences, 30, 5863. https://doi.org/10.1016/j.lindif.2013.10.007Google Scholar
Xenidou-Dervou, I., van der Schoot, M., & van Lieshout, E. C. D. M. (2015). Working memory and number line representations in single-digit addition: Approximate versus exact, nonsymbolic versus symbolic. The Quarterly Journal of Experimental Psychology, 68(6), 11481167. https://doi.org/10.1080/17470218.2014.977303Google Scholar
Ye, A., Resnick, I., Hansen, N., Rodrigues, J., Rinne, L., & Jordan, N. C. (2016). Pathways to fraction learning: Numerical abilities mediate the relation between early cognitive competencies and later fraction knowledge. Journal of Experimental Child Psychology, 152, 242263. http://dx.doi.org/10.1016/j.jecp.2016.08.001Google Scholar
Zacks, J. M. (2007). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 119. https://doi.org/10.1162/jocn.2008.20013Google Scholar
Zorzi, M., Priftis, K., & Umilta, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417, 138139. https://doi.org/10.1038/417138aGoogle Scholar
Zuccheri, L. & Zudini, V. (2014). History of teaching calculus. In Karp, A. & Schubring, G. (eds.), Handbook on the history of mathematics education (pp. 493513). New York: Springer .Google Scholar

References

Alcock, L., Ansari, D., Batchelor, S., Bisson, M.-J., De Smedt, B., Gilmore, C. K., … Weber, K. (2016). Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 2041. https://doi.org/10.5964/jnc.v2i1.10Google Scholar
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.Google Scholar
Bailey, D. H., Zhou, X., Zhang, Y., Cui, J., Fuchs, L. S., Jordan, N. C., … Siegler, R. S. (2015). Development of fraction concepts and procedures in U.S. and Chinese children. Journal of Experimental Child Psychology, 129, 6883. https://doi.org/10.1016/j.jecp.2014.08.006Google Scholar
Baroody, A. J. (1992). The development of preschoolers’ counting skills and principles. In Bideaud, J., Meljac, C., & Fischer, J. P. (eds.), Pathway to numbers: Children’s developing numerical abilities (pp. 99126). Hillsdale, NJ: Erlbaum.Google Scholar
Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In Baroody, A. J. & Dowker, A. (eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 134). Mahwah, NJ: Erlbaum.Google Scholar
Baroody, A. J., Feil, Y., & Johnson, A. R. (2007). An alternative reconceptualization of procedural and conceptual knowledge. Journal for Research in Mathematics Education, 38, 115131.Google Scholar
Baroody, A. J. & Ginsburg, H. (1986). The relationship between initial meaningful and mechanical knowledge of arithmetic. In Hiebert, J. (ed.), Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Blöte, A. W., Van der Burg, E., & Klein, A. S. (2001). Students’ flexibility in solving two-digit addition and subtraction problems: Instruction effects. Journal of Educational Psychology, 93, 627638. https://doi.org/10.1037//0022-0663.93.3.627Google Scholar
Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental Psychology, 27, 777786. https://doi.org/10.1037//0012-1649.27.5.777Google Scholar
Canobi, K. H. (2005). Children’s profiles of addition and subtraction understanding. Journal of Experimental Child Psychology, 92, 220246. https://doi.org/10.1016/j.jecp.2005.06.001Google Scholar
Canobi, K. H. (2009). Concept-procedure interactions in children’s addition and subtraction. Journal of Experimental Child Psychology, 102, 131149. https://doi.org/10.1016/j.jecp.2008.07.008Google Scholar
Canobi, K. H., Reeve, R. A., & Pattison, P. E. (1998). The role of conceptual understanding in children’s addition problem solving. Developmental Psychology, 34, 882891. https://doi.org/10.1037//0012-1649.34.5.882Google Scholar
Cobb, P., Wood, T., Yackel, E., Nicholls, J., Wheatley, G., Trigatti, B., & Perlwitz, M. (1991). Assessment of a problem-centered second-grade mathematics project. Journal for Research in Mathematics Education, 22, 329. https://doi.org/10.2307/749551Google Scholar
Cowan, R., Donlan, C., Shepherd, D.-L., Cole-Fletcher, R., Saxton, M., & Hurry, J. (2011). Basic calculation proficiency and mathematics achievement in elementary school children. Journal of Educational Psychology, 103, 786803. https://doi.org/10.1037/a0024556Google Scholar
Crooks, N. M. & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. Developmental Review, 34, 344377. https://doi.org/10.1016/j.dr.2014.10.001Google Scholar
DeCaro, M. S. (2016). Inducing mental set constrains procedural flexibility and conceptual understanding in mathematics. Memory and Cognition, 44, 11381148. https://doi.org/10.3758/s13421-016-0614-yGoogle Scholar
diSessa, A. A., Gillespie, N. M., & Esterly, J. B. (2004). Coherence versus fragmentation in the development of the concept of force. Cognitive Science, 28, 843900.Google Scholar
Dowker, A. (2008). Individual differences in numerical abilities in preschoolers. Developmental Science, 11, 650654. https://doi.org/10.1111/j.1467-7687.2008.00713.xGoogle Scholar
Faulkenberry, T. J. (2013). The conceptual/procedural distinction belongs to strategies, not tasks: A comment on Gabriel et al. (2013). Frontiers in Psychology, 4, 820. https://doi.org/10.3389/fpsyg.2013.00820Google Scholar
Fuson, K. C. (1988). Children’s counting and concept of number. New York: Springer-Verlag.Google Scholar
Fuson, K. C. & Briars, D. J. (1990). Using a base-ten blocks learning/teaching approach for first- and second-grade place-value and multidigit addition and subtraction. Journal for Research in Mathematics Education, 21, 180206. https://doi.org/10.2307/749373Google Scholar
Fuson, K. C. & Kwon, Y. (1992). Korean children’s understanding of multidigit addition and subtraction. Child Development, 63, 491506. https://doi.org/10.1111/j.1467-8624.1992.tb01642.xGoogle Scholar
Gelman, R. & Meck, E. (1983). Preschoolers’ counting: Principles before skill. Cognition, 13, 343359. https://doi.org/10.1016/0010-0277(83)90014–8Google Scholar
Gelman, R. & Williams, E. M. (1998). Enabling constraints for cognitive development and learning: Domain specificity and epigenesis. In Kuhn, D. & Siegler, R. S. (eds.), Handbook of child psychology: Cognition, perception, and language, Vol. 2, 5th edn (pp. 575630). New York: John Wiley & Sons.Google Scholar
Gilmore, C. K. & Papadatou-Pastou, M. (2009). Patterns of individual differences in conceptual understanding and arithmetical skill: A meta-analysis. Mathematical Thinking and Learning, 11, 2540.Google Scholar
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394406. https://doi.org/10.1016/j.cognition.2010.02.002Google Scholar
Ginsburg, H. P. (1997). Entering the child’s mind: The clinical interview in psychological research and practice. New York: Cambridge University Press.Google Scholar
Goldin Meadow, S., Alibali, M. W., & Church, R. B. (1993). Transitions in concept acquisition: Using the hand to read the mind. Psychological Review, 100, 279297. https://doi.org/10.1037//0033-295X.100.2.279Google Scholar
Grouws, D. A. & Cebulla, K. J. (2000). Improving student achievement in mathematics. Geneva.Google Scholar
Haapasalo, L. & Kadijevich, D. (2000). Two types of mathematical knowledge and their relation. JMD – Journal for Mathematic-Didaktik, 21, 139157.Google Scholar
Halford, G. S. (1993). Children’s understanding: The development of mental models. Hillsdale, NJ: Erlbaum.Google Scholar
Hallett, D., Nunes, T., & Bryant, P. (2010). Individual differences in conceptual and procedural knowledge when learning fractions. Journal of Educational Psychology, 102, 395406. https://doi.org/10.1037/a0017486Google Scholar
Hecht, S. A. (1998). Toward an information-processing account of individual differences in fraction skills. Journal of Educational Psychology, 90, 545559. https://doi.org/10.1037/0022-0663.90.3.545Google Scholar
Hecht, S. A. & Vagi, K. J. (2010). Sources of group and individual differences in emerging fraction skills. Journal of Educational Psychology, 102, 843859. https://doi.org/10.1037/a0019824Google Scholar
Hiebert, J. & Grouws, D. (2007). Effective teaching for the development of skill and conceptual understanding of number: What is most effective? Reston, VA: National Council of Teachers of Mathematics. www.nctm.org/Research-and-Advocacy/Research-Brief-and-Clips/Effective-Instruction/.Google Scholar
Hiebert, J. & LeFevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In Hiebert, J. (ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 127). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Hiebert, J. & Wearne, D. (1996). Instruction, understanding, and skill in multidigit addition and subtraction. Cognition and Instruction, 14, 251283. https://doi.org/10.1207/s1532690xci1403_1Google Scholar
Jordan, J.-A., Mulhern, G., & Wylie, J. (2009). Individual differences in trajectories of arithmetical development in typically achieving 5- to 7-year-olds. Journal of Experimental Child Psychology, 103, 455468. https://doi.org/10.1016/j.jecp.2009.01.011Google Scholar
Kamii, C. & Dominick, A. (1997). To teach or not to teach algorithms. Journal of Mathematical Behavior, 16, 5161. https://doi.org/10.1016/S0732-3123(97)90007–9Google Scholar
Kamii, C. & Dominick, A. (1998). The harmful effects of algorithms in grades 1–4. In Morrow, L. J. & Kenney, M. J. (eds.), The teaching and learning of algorithms in school mathematics. 1998 yearbook (pp. 130140). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
Kao, Y. S., Davenport, J., Matlen, B., Thomas, L., & Schneider, S. A. (2017). The effectiveness of cognitive principles in authentic education settings: Research to practice. Paper presented at the Society for Research in Educational Effectiveness, Washington, DC. www.iesmathcenter.org/research/2017_KaoSREESpring2017PaperAbstract.pdfGoogle Scholar
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.Google Scholar
Kilpatrick, J., Swafford, J. O., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.Google Scholar
Knuth, E. J., Stephens, A. C., McNeil, N. M., & Alibali, M. W. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37, 297312.Google Scholar
Laski, E. V. & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78, 17231743.Google Scholar
Lavigne, N. C. (2005). Mutually informative measures of knowledge: Concept maps plus problem sorts in statistics. Educational Assessment, 101, 3971. https://doi.org 10.1207/s15326977ea1001_3Google Scholar
LeFevre, J.-A., Smith-Chant, B. L., Fast, L., Skwarchuk, S.-L., Sargla, E., Arnup, J. S., … Kamawar, D. (2006). What counts as knowing? The development of conceptual and procedural knowledge of counting from kindergarten through grade 2. Journal of Experimental Child Psychology, 93, 285303. https://doi.org/10.1016/j.jecp.2005.11.002Google Scholar
Matthews, P. & Rittle-Johnson, B. (2009). In pursuit of knowledge: Comparing self-explanations, concepts, and procedures as pedagogical tools. Journal of Experimental Child Psychology, 104, 121. https://doi.org/10.1016/j.jecp.2008.08.004Google Scholar
Matthews, P., Rittle-Johnson, B., McEldoon, K., & Taylor, R. (2012). Measure for measure: What combining diverse measures reveals about children’s understanding of the equal sign as an indicator of mathematical equality. Journal for Research in Mathematics Education, 43, 316350.Google Scholar
McNeil, N. M. & Alibali, M. W. (2004). You’ll see what you mean: Students encode equations based on their knowledge of arithmetic. Cognitive Science, 28, 451466. https://doi.org/10.1016/j.cogsci.2003.11.002Google Scholar
McNeil, N. M., Chesney, D. L., Matthews, P. G., Fyfe, E. R., Petersen, L. A., Dunwiddie, A. E., & Wheeler, M. C. (2012). It pays to be organized: Organizing arithmetic practice around equivalent values facilitates understanding of math equivalence. Journal of Educational Psychology. https://doi.org/10.1037/a0028997Google Scholar
McNeil, N. M., Fyfe, E. R., & Dunwiddie, A. E. (2014). Arithmetic practice can be modified to promote understanding of mathematical equivalence. Journal of Educational Psychology, 107, 423436. https://doi.org/10.1037/a0037687Google Scholar
Muldoon, K. P., Lewis, C., & Berridge, D. (2007). Predictors of early numeracy: Is there a place for mistakes when learning about number? British Journal of Developmental Psychology, 25, 543558. https://doi.org/10.1348/026151007x174501Google Scholar
Muldoon, K. P., Towse, J., Simms, V., Perra, O., & Menzies, V. (2013). A longitudinal analysis of estimation, counting skills, and mathematical ability across the first school year. Developmental Psychology, 49, 250257. https://doi.org/10.1037/a0028240Google Scholar
National Assessment Governing Board. (2014). Mathematics framework for the 2015 National Assessment of Educational Progress. Washington, DC: US Government Printing Office.Google Scholar
National Mathematics Advisory Panel. (2008). Foundations of success: The final report of the National Mathematics Advisory Panel. Washington, DC: US Department of Education.Google Scholar
NCTM (National Council of Teachers of Mathematics). (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.Google Scholar
NCTM (National Council of Teachers of Mathematics) (2000). Principles and standards for school mathematics. Reston, VA: NCTM.Google Scholar
NCTM (National Council of Teachers of Mathematics) (2014). Principles to actions: Ensuring mathematical success for all. Reston, VA: NCTM.Google Scholar
Pashler, H., Bain, P., Bottge, B., Graesser, A. C., Koedinger, K., McDaniel, M. A., & Metcalfe, J. (2007). Organizing instruction and study to improve student learning Washington, DC: National Center for Education Research, Institute of Education Sciences, and US Department of Education. https://ies.ed.gov/ncer/pubs/practiceguides/20072004.aspGoogle Scholar
Peled, I. & Segalis, B. (2005). It’s not too late to conceptualize: Constructing a generalized subtraction schema by abstracting and connecting procedures. Mathematical Thinking and Learning, 7, 207230. https://doi.org/10.1207/s15327833mtl0703_2Google Scholar
Perry, M. (1991). Learning and transfer: Instructional conditions and conceptual change. Cognitive Development, 6, 449468. https://doi.org/10.1016/0885-2014(91)90049-JGoogle Scholar
Pesek, D. D. & Kirshner, D. (2000). Interference of instrumental instruction in subsequent relation learning. Journal for Research in Mathematics Education, 31, 524540. https://doi.org/10.2307/749885Google Scholar
Prather, R. W. & Alibali, M. W. (2008). Understanding and using principles of arithmetic: Operations involving negative numbers. Cognitive Science, 32, 445457. https://doi.org/10.1080/03640210701864147Google Scholar
Rasmussen, C., Ho, E., & Bisanz, J. (2003). Use of the mathematical principle of inversion in young children. Journal of Experimental Child Psychology, 85, 89102. https://doi.org/10.1016/s0022-0965(03)00031–6Google Scholar
Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out examples: The effects of example variability and elicited self-explanations. Contemporary Educational Psychology, 23, 90108. https://doi.org/10.1006/ceps.1997.0959Google Scholar
Resnick, L. B. (1982). Syntax and semantics in learning to subtract. In Carpenter, T. P., Moser, J. M., & Romberg, T. A. (eds.), Addition & subtraction: A cognitive perspective (pp. 136155). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Resnick, L. B. & Ford, W. W. (1981). The psychology of mathematics for instruction. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Resnick, L. B. & Omanson, S. F. (1987). Learning to understand arithmetic. In Glaser, R. (ed.), Advances in instructional psychology, Vol. 3 (pp. 4195). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct instruction. Child Development, 77, 115. https://doi.org/10.1111/j.1467-8624.2006.00852.xGoogle Scholar
Rittle-Johnson, B. & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other? Journal of Educational Psychology, 91, 175189. https://doi.org/10.1037//0022-0663.91.1.175Google Scholar
Rittle-Johnson, B., Fyfe, E. R., & Loehr, A. M. (2016). Improving conceptual and procedural knowledge: The impact of instructional content within a mathematics lesson. British Journal of Educational Psychology, 86, 576591. https://doi.org/10.1111/bjep.12124Google Scholar
Rittle-Johnson, B. & Koedinger, K. R. (2009). Iterating between lessons concepts and procedures can improve mathematics knowledge. British Journal of Educational Psychology, 79, 483500. https://doi.org/10.1348/000709908X398106Google Scholar
Rittle-Johnson, B. & Schneider, M. (2015). Developing conceptual and procedural knowledge of mathematics. In Kadosh, R. C. & Dowker, A. (eds.), Oxford handbook of numerical cognition (pp. 11181134). Oxford: Oxford University Press.Google Scholar
Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27, 587597. https://doi.org/10.1007/s10648-015-9302-xGoogle Scholar
Rittle-Johnson, B. & Siegler, R. S. (1998). The relation between conceptual and procedural knowledge in learning mathematics: A review. In Donlan, C. (ed.), The development of mathematical skills (pp. 75110). London: Psychology Press.Google Scholar
Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346362. https://doi.org/10.1037//0022-0663.93.2.346Google Scholar
Rittle-Johnson, B. & Star, J. R. (2011). The power of comparison in learning and instruction: Learning outcomes supported by different types of comparisons. In Mestre, J. P. & Ross, B. H. (eds.), Psychology of learning and motivation: Cognition in education, Vol. 55 (pp. 199222). Waltham, MA: Elsevier.Google Scholar
Robinson, K. M., Dube, A. K., & Beatch, J. A. (2016). Children’s understanding of additive concepts. Journal of Experimental Child Psychology, 156, 1628. https://doi.org/10.1016/j.jecp.2016.11.009Google Scholar
Schneider, M., Grabner, R., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical achievement: Their interrelations in grades 5 and 6. Journal of Educational Psychology, 101, 359372. https://doi.org/10.1037/a0013840Google Scholar
Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations between conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. Developmental Psychology. https://doi.org/10.1037/a0024997Google Scholar
Schneider, M. & Stern, E. (2009). The inverse relation of addition and subtraction: A knowledge integration perspective. Mathematical Thinking and Learning, 11, 92101. https://doi.org/10.1080/10986060802584012Google Scholar
Schneider, M. & Stern, E. (2010). The developmental relations between conceptual and procedural knowledge: A multimethod approach. Developmental Psychology, 46, 178192. https://doi.org/10.1037/a0016701Google Scholar
Siegler, R. S. & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428444. https://doi.org/10.1111/j.1467-8624.2004.00684.xGoogle Scholar
Siegler, R. S. & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal of Experimental Psychology: General, 127, 377397. https://doi.org/10.1037/0096-3445.127.4.377Google Scholar
Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62, 273296. https://doi.org/10.1016/j.cogpsych.2011.03.001Google Scholar
Star, J. R. (2005a). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36, 404411. www.jstor.org/stable/30034943Google Scholar
Star, J. R. (2005b). Re-conceptualizing procedural knowledge: Innovation and flexibility in equation solving. Journal for Research in Mathematics Education, 36, 404411.Google Scholar
Star, J. R., & Newton, K. J. (2009). The nature and development of expert’s strategy flexibility for solving equations. ZDM Mathematics Education, 41, 557567. https://doi.org/10.1007/s11858-009-0185-5Google Scholar
Star, J. R., Pollack, C., Durkin, K., Rittle-Johnson, B., Lynch, K., Newton, K., & Gogolen, C. (2015). Learning from comparison in algebra. Contemporary Educational Psychology, 40, 4154. https://doi.org/10.1016/j.cedpsych.2014.05.005Google Scholar
Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18, 565579. https://doi.org/10.1016/j.learninstruc.2007.09.018Google Scholar
Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skill to explicit knowledge: A bottom-up model of skill learning. Cognitive Science, 25, 203244.Google Scholar
Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24, 335359. https://doi.org/10.1007/bf03174765Google Scholar
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8, 88101. https://doi.org/10.1111/j.1467-7687.2005.00395.xGoogle Scholar

References

Alcock, L., Ansari, D., Batchelor, S., Bisson, M.-J., De Smedt, B., Gilmore, C., … Weber, K. (2016). Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2(1), 2041. https://doi.org/10.5964/jnc.v2i1.10Google Scholar
Alibali, M. W. & Sidney, P. G. (2015). Variability in the natural number bias: Who, when, how, and why?. Learning and Instruction, 37, 5661. https://doi.org/10.1016/j.learninstruc.2015.01.003Google Scholar
Alvarez, J., Abdul-Chani, M., Deutchman, P., DiBiasie, K., Iannucci, J., Lipstein, R., …, Sullivan, J. (2017). Estimation as analogy-making: Evidence that preschoolers’ analogical reasoning ability predicts their numerical estimation. Cognitive Development, 41, 7384. http://dx.doi.org/10.1016/j.cogdev.2016.12.004Google Scholar
Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental Science, 17(5), 775785. https://doi.org/10.1111/desc.12155Google Scholar
Ball, D. L. (1990). Prospective elementary and secondary teachers’ understandings of division. Journal for Research in Mathematics Education, 21(2), 132144. https://doi.org/10.2307/749140Google Scholar
Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86(3), 201–221. https://doi.org/10.1016/S0010-0277(02)00178-6Google Scholar
Behr, M., Wachsmuth, I., Post, T., & Lesh, R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15(5), 323341. https://doi.org/10.2307/748423Google Scholar
Bonato, M., Fabbri, S., Umilta, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer?. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 14101419. https://doi.org/10.1037/0096-1523.33.6.1410Google Scholar
Booth, J. L. & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37 (4), 247253. http://dx.doi.org/10.1016/j.cedpsych.2012.07.001.Google Scholar
Booth, J. L. & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 10161031. https://doi.org/10.1111/j.1467-8624.2008.01173.xGoogle Scholar
Boyer, T. W. & Levine, S. C. (2015). Prompting children to reason proportionally: Processing discrete units as continuous amounts. Developmental Psychology, 51(5), 615620. http://dx.doi.org/10.1037/a0039010Google Scholar
Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 14781490. https://doi.org/10.1037/a0013110Google Scholar
Brannon, E. M. & Terrace, H. S. (1998). Ordering of numerosities 1 to 9 by monkeys. Science, 282(5389), 746749. https://doi.org/10.1126/science.282.5389.746Google Scholar
Brown, S. A., Donovan, A. M., & Alibali, M. W. (2016). Gestural schematization influences understanding of infinite divisibility. Paper presented at the Fourth Annual Midwest Meeting on Mathematical Thinking, Madison, WI.Google Scholar
Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction learning by fourth- and fifth-grade students: A comparison of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33(2), 111144. https://doi.org/10.2307/749646Google Scholar
Dehaene, S. (2003). The neural basis of Weber-Fechner’s law: Neuronal recordings reveal a logarithmic scale for number. Trends in Cognitive Science, 7(4), 145147.Google Scholar
DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6 (68). https://doi.org/10.3389/fnhum.2012.00068Google Scholar
DeWolf, M., Bassok, M., & Holyoak, K. J. (2015). From rational numbers to algebra: Separable contributions of decimal magnitude and relational understanding of fractions. Journal of Experimental Child Psychology, 133(1), 7284. http://dx.doi.org/10.1016/j.jecp.2015.01.013Google Scholar
DeWolf, M., Grounds, M. A., Bassok, M., & Holyoak, K. J. (2014). Magnitude comparison with different types of rational numbers. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 7182. https://doi.org/10.1037/a0032916Google Scholar
Dixon, J. A., Deets, J. K., & Bangert, A. (2001). The representation of the arithmetic operations include functional relationships. Memory and Cognition, 29(3), 462477.Google Scholar
Drucker, C. B., Rossau, M. A., & Brannon, E. M. (2016). Comparison of discrete ratios by rhesus macaques (Macaca mulatta). Animal Cognition, 19(1), 7589. https://doi.org/10.1007/s10071-015-0914-9Google Scholar
Duffy, S., Huttenlocher, J., & Levine, S. C. (2005). How infants encode spatial extent. Infancy, 8(1), 8190. https://doi.org/10.1207/s15327078in0801_5Google Scholar
Emmerton, J. (2001). Pigeons’ discrimination of color proportion in computer-generated visual displays. Animal Learning and Behavior, 29(1), 2135. https://doi.org/10.3758/BF03192813Google Scholar
Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123(1), 5372, http://dx.doi.org/10.1016/j.jecp.2014.01.013.Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Science, 8(7), 308314. https://doi.org/10.1016/j.tics.2004.05.002Google Scholar
Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16(1), 317. https://doi.org/10.2307/748969Google Scholar
Fuhs, M. W. & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136148. https://doi.org/10.1111/desc.12013Google Scholar
Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematics learning disability. Developmental Neuropsychology, 33(3), 277299. https://doi.org/10.1080/87565640801982361Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematics learning disability. Child Development, 78(4), 13431359. https://doi.org/10.1111/j.1467-8624.2007.01069.xGoogle Scholar
Gebuis, T. & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642648. https://doi.org/10.1037/a0026218Google Scholar
Gentner, D. (1988). Metaphor as structure mapping: The relational shift. Child Development, 59(1), 4759. https://doi.org/10.2307/1130388Google Scholar
Goswami, U. (1995). Phonological development and reading by analogy: What is analogy and what is it not?. Journal of Research in Reading, 18(2), 139145. https://doi.org/0.1111/j.1467-9817.1995.tb00080.xGoogle Scholar
Goswami, U. & Brown, A. L. (1990). Melting chocolate and melting snowman: Analogical reasoning and causal relations. Cognition, 35(1), 6995. http://dx.doi.org/10.1016/0010-0277(90)90037-KGoogle Scholar
Halberda, J. & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The approximate number system in 3-, 4-, 5-, 6-year-olds and adults. Developmental Psychology, 44(5), 14571465. https://doi.org/10.1037/a0012682Google Scholar
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665668. https://doi.org/10.1038/nature07246Google Scholar
Hamdan, N. & Gunderson, E. A. (2017). The number line is a critical spatial-numerical representation: Evidence from a fraction intervention. Developmental Psychology. 53(3), 587596. http://dx.doi.org/10.1037/dev0000252Google Scholar
Harper, D. (1982). Competitive foraging in mallards: “ideal free” ducks. Animal Behavior, 30, 575584.Google Scholar
Hartnett, P., & Gelman, R. (1998). Early understandings of numbers: Paths or barriers to the construction of new understandings? Learning and Instruction, 8(4), 341374.Google Scholar
Hecht, S. A. & Vagi, K. J. (2010). Sources of group and individual differences in emerging fraction skills. Journal of Educational Psychology, 102, 843858. http://dx.doi.org/10.1037/a0019824Google Scholar
Hoffer, T. B., Venkataraman, L., Hedberg, E. C., & Shagle, S. (2007). Final report on the National Survey of Algebra Teachers (for the National Mathematics Advisory Panel Subcommittee). Washington, DC: US Department of Education (Conducted by the National Opinion Research Center at the University of Chicago). http://www2.ed.gov/about/bdscomm/list/mathpanel/report/nsat.pdfGoogle Scholar
Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 4558. http://dx.doi.org/10.1016/j.jecp.2013.02.001Google Scholar
Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008). The advantage of abstract examples in learning math. Science, 320(5875), 454455. https://doi.org/10.1126/science.1154659Google Scholar
Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention Perception and Psychophysics, 71(4), 803821. https://doi.org/10.3758/APP.71.4.803Google Scholar
Koedinger, K. R., Alibali, M. W., & Nathan, M. J. (2008). Trade-offs between grounded and abstract representations: Evidence from algebra problem solving. Cognitive Science, 32(2),366397. https://doi.org/10.1080/03640210701863933Google Scholar
Leibovich, T., Kallai, A. Y., & Itamar, S. (2016). What do we measure when we measure magnitudes? In Henik, A. (ed.), Continuous issues in numerical cognition (pp. 355373). Cambridge, MA: Academic Press.Google Scholar
Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavior and Brain Sciences, 40, e164. https://doi.org/10.1017/S0140525X16000960Google Scholar
Lewis, M. R., Matthews, P. G., & Hubbard, E. M. (2015). Neurocognitive architectures and the nonsymbolic foundations of fractions understanding. In Berch, D. B., Geary, D. C., & Koepke, K. M. (eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 141160). San Diego, CA: Academic Press.Google Scholar
Lo, J.-J. & Leu, F. (2012). Prospective elementary teachers’ knowledge of fraction division. Journal of Mathematics Teacher Education, 15(6), 481500. https://doi.org/10.1007/s10857-012-9221-4Google Scholar
Ma, L. (1999).Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Mack, N. K. (1990). Learning fractions with understanding: Building on informal knowledge. Journal for Research in Mathematics Education, 21(1), 1632. https://doi.org/10.2307/749454Google Scholar
Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research in Mathematics Education, 26(5), 422441. https://doi.org/10.2307/749431Google Scholar
Matthews, P. G. & Chesney, D. L. (2015). Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology, 78, 2856. http://dx.doi.org/10.1016/j.cogpsych.2015.01.006Google Scholar
Matthews, P. G. & Hubbard, E. M. (2017). Making space for spatial proportions. Journal of Learning Disabilities. 50(6), 644647. https://doi.org/10.1177/0022219416679133Google Scholar
Matthews, P. G., Lewis, M. R., & Hubbard, E. M. (2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27(2), 191202. https://doi.org/10.1177/0956797615617799Google Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behavior, 47(2), 379387. http://dx.doi.org/10.1006/anbe.1994.1052Google Scholar
McCrink, K., Spelke, E. S., Dehaene, S., & Pica, P. (2013). Non-symbolic halving in an Amazonian indigene group. Developmental Science, 16(3), 451462. https://doi.org/10.1111/desc.12037Google Scholar
McCrink, K. & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18(8), 740–175. https://doi.org/10.1111/j.1467-9280.2007.01969.xGoogle Scholar
McMullen, J., Laakkonen, E., Hannula-Sormunen, M., & Lehtinen, E. (2015). Modeling the developmental trajectories of rational number concept(s). Learning and Instruction, 37, 1420. http://dx.doi.org/10.1016/j.learninstruc.2013.12.004Google Scholar
McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19, 171184. https://doi.org/10.1016/j.learninstruc.2008.03.005Google Scholar
Meck, W. H. & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320334. http://dx.doi.org/10.1037/0097-7403.9.3.320Google Scholar
Meert, G., Grégoire, J., Seron, X., & Noël, M. P. (2012). The mental representation of the magnitude of symbolic and nonsymbolic ratio in adults. Quarterly Journal of Experimental Psychology, 65(4), 702724. https://doi.org/10.1080/17470218.2011.632485Google Scholar
Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin, 128(2), 278294. http://dx.doi.org/10.1037/0033-2909.128.2.278Google Scholar
Mix, K. S., Levine, S. C., & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35(1), 164174.Google Scholar
Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 6784. https://doi.org/10.1080/15248372.2014.996289Google Scholar
Moss, J. & Case, R. (1999). Developing children’s understanding of the rational numbers: A new model and an experimental curriculum. Journal for Research in Mathematics Education, 30(2), 127147. https://doi.org/10.2307/749607Google Scholar
Moyer, R. S. & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 15191520. https://doi.org/10.1038/2151519a0Google Scholar
Namkung, J. M. & Fuchs, L. S. (2016). Cognitive predictors of calculations and number line estimation with whole numbers and fractions among at-risk students. Journal of Educational Psychology, 108(2), 214228. https://doi.org/10.1037/edu0000055Google Scholar
NCTM (National Council of Teachers of Mathematics). (2007). Second handbook of research on mathematics teaching and learning. Washington, DC: NCTM.Google Scholar
NGA & CCSSO (National Governors Association & Council of Chief State School Officers). (2010). Common core state standards for mathematics. www.corestandards.org/assets/CCSSI_Math%20Standards.pdfGoogle Scholar
Ni, Y. & Zhou, Y. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychology, 40(1), 2752. http://dx.doi.org/10.1207/s15326985ep4001_3Google Scholar
OECD (Organisation for Economic Co-operation and Development). (2016). PISA 2015: PISA results in focus. www.oecd.org/pisa/pisa-2015-results-in-focus.pdfGoogle Scholar
Opfer, J. E. & DeVries, J. M. (2008). Representational change and magnitude estimation: Why young children can make more accurate salary comparisons than adults. Cognition, 108(3), 843849. http://dx.doi.org/10.1016/j.cognition.2008.05.003Google Scholar
Opfer, J. E. & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55(3), 169195. https://doi.org/10.1016/j.cogpsych.2006.09.002Google Scholar
Park, J. & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 20132019. https://doi.org/10.1177/0956797613482944Google Scholar
Ramani, G. B. & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375394.Google Scholar
Rattermann, M. J. & Gentner, D. (1998). More evidence for a relational shift in the development of analogy: Children’s performance on a causal-mapping task. Cognitive Development, 13(4), 453478. http://dx.doi.org/10.1016/S0885-2014(98)90003-XGoogle Scholar
Richland, L. E. & Hansen, J. H. (2013). Reducing cognitive load in learning by analogy. International Journal of Psychological Studies, 5(4), 6980. https://doi.org/10.5539/ijps.v5n4pGoogle Scholar
Richland, L. E. & McDonough, I. M. (2010). Learning by analogy: Discriminating between two potential analogs. Contemporary Educational Psychology, 23(1), 2843. https://doi.org/10.1016/j.cedpsych.2009.09.001Google Scholar
Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogies in the mathematics classroom. Science, 316(5828), 11281129. https://doi.org/10.1126/science.1142103Google Scholar
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science. 20(3), 116. https://doi.org/10.1111/desc.12372Google Scholar
Schneider, M. & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 12271238. https://doi.org/10.1037/a0018170Google Scholar
Sidney, P. G. (2016). Does new learning provide new perspectives on familiar concepts? Exploring the role of analogical instruction in conceptual change in arithmetic. (Unpublished doctoral dissertation). University of Wisconsin-Madison.Google Scholar
Sidney, P. G. & Alibali, M. W. (2012). Supporting conceptual representations of fraction division by activating prior knowledge domains. In Van Zoest, L. R., Lo, J.-J., & Kratky, J. L. (eds.) Proceedings of the 34th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (1012). Kalamazoo: Western Michigan University.Google Scholar
Sidney, P. G. & Alibali, M. W. (2015). Making connections in math: Activating a prior knowledge analogue matters for learning. Journal of Cognition and Development, 16(1), 160185. https://doi.org/10.1080/15248372.2013.792091Google Scholar
Sidney, P. G. & Alibali, M. W. (2017). Creating a context for learning: Activating children’s whole number knowledge prepares them to understand fraction division. Journal of Numerical Cognition, 3(1), 3157. https://doi.org/10.5964/jnc.v3i1.71Google Scholar
Sidney, P. G., Hattikudur, S., & Alibali, M. W. (2015). How do contrasting cases and self-explanation promote learning? Evidence from fraction division. Learning and Instruction, 40, 2938. https://doi.org/10.1016/j.learninstruc.2015.07.006Google Scholar
Sidney, P. G., Thompson, C. A., Matthews, P. G., & Hubbard, E. M. (2017). From continuous magnitudes to symbolic numbers: The centrality of ratio. Behavioral and Brain Sciences, 40, e190. https://doi.org/10.1017/S0140525X16002284Google Scholar
Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341361. https://doi.org/10.1111/desc.12395Google Scholar
Siegler, R. S. & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428444. https://doi.org/10.1111/j.1467-8624.2004.00684.xGoogle Scholar
Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L., & Wray, J. (2010). Developing effective fractions instruction for kindergarten through 8th grade: A practice guide (NCEE #2010-4039). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, US Department of Education. whatworks.ed.gov/ publications/practiceguides.Google Scholar
Siegler, R. S., Duncan, G. J., Davis-Kean, P. E. et al. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23(7), 691697. https://doi.org/10.1177/0956797612440101Google Scholar
Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Science, 17(1), 1319.Google Scholar
Siegler, R. S. & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8(3), 144150, https://doi.org/10.1111/cdep.12077Google Scholar
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237243.Google Scholar
Siegler, R. S. & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 19942004, https://doi.org/10.1037/a0031200Google Scholar
Siegler, R. S. & Ramani, G. B. (2009). Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science, 11(6), 655661. https://doi.org/10.1111/j.1467-7687.2008.00714.xGoogle Scholar
Siegler, R. S. & Thompson, C. A. (2014). Numerical landmarks are useful – Except when they’re not. Journal of Experimental Child Psychology, 120(1), 3958, http://dx.doi.org/10.1016/j.jecp.2013.11.014Google Scholar
Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: One learning sequence, many tasks, many time scales. Mind, Brain, and Education, 3(3), 143150. https://doi.org/10.1111/j.1751-228X.2009.01064.xGoogle Scholar
Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273296. https://doi.org/10.1016/j.cogpsych.2011.03.001Google Scholar
Singer-Freeman, K. & Goswami, U. (2001). Does half a pizza equal half a box of chocolates? Proportional matching in an analogy task. Cognitive Development, 16(3), 811829. http://dx.doi.org/10.1016/S0885-2014(01)00066-1Google Scholar
Sophian, C. (2000). Perceptions of proportionality in young children: Matching spatial ratios. Cognition, 75(2), 145170. http://dx.doi.org/10.1016/S0010-0277(00)00062-7Google Scholar
Spinillo, A. G., & Bryant, P. (2001). Children’s proportional judgements: The importance of “half.” Child Development, 62(3), 427440. https://doi.org/10.2307/1131121Google Scholar
Stevenson, H. W., Chen, C., & Lee, S. Y. (1993). Mathematics achievement of Chinese, Japanese, and American children: Ten years later. Science, 259(5091), 5358. https://doi.org/10.1126/science.8418494Google Scholar
Sullivan, J. & Barner, D. (2014). The development of structural analogy in number-line estimation. Journal of Experimental Child Psychology, 128(1), 171189. https://doi.org/10.1016/j.jecp.2014.07.004Google Scholar
Sullivan, J., Frank, M. C., & Barner, D. (2016). Intensive math training does not affect approximate number acuity: Evidence from a three-year longitudinal curriculum intervention. Journal of Numerical Cognition, 2(2), 5776. https://doi.org/10.5964/jnc.v2i2.19Google Scholar
Thompson, C. A. & Opfer, J. E. (2008). Costs and benefits of representational change: Effects of context on age and sex differences in magnitude estimation. Journal of Experimental Child Psychology, 101(1), 2051.Google Scholar
Thompson, C. A. & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81(6), 17681786. https://doi.org/10.1111/j.1467–8624.2010.01509.xGoogle Scholar
Thompson, C. A. & Siegler, R. S. (2010). Linear numerical magnitude representations aid children’s memory for numbers. Psychological Science, 21(9), 12741281.Google Scholar
Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 513. http://dx.doi.org/10.1016/j.learninstruc.Google Scholar
Vallentin, D. & Nieder, A. (2008). Behavioral and prefrontal representations of spatial proportions in the monkey. Current Biology, 18(8), 14201425. http://dx.doi.org/10.1016/j.cub.2008.08.042Google Scholar
Vamvakoussi, X. & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and Instruction, 28(2), 181209. https://doi.org/10.1080/07370001003676603Google Scholar
Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. (2014). Sources of individual differences in children’s understanding of fractions. Child Development, 85(4), 14611476. https://doi.org/10.1111/cdev.12218Google Scholar
Whyte, J. C. & Bull, R. (2008). Number games, magnitude representation, and basic number skills in preschoolers. Developmental Psychology, 44(2), 588596. https://doi.org/10.1037/0012-1649.44.2.588Google Scholar
Wynn, K. (1998). Psychological foundations of number: Numerical competence in human infants. Trends in Cognitive Science, 2(8), 296303. http://dx.doi.org/10.1016/S1364-6613(98)01203-0Google Scholar
Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89(1), B15B25. http://dx.doi.org/10.1016/S0010-0277(03)00050-7Google Scholar
Xu, F. & Spelke, E. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1B11. https://doi.org/10.1016/S0010-0277(99)00066–9Google Scholar

References

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S., & Van Velsen, M. (2014). Using erroneous examples to improve mathematics learning with a web-based tutoring system. Computers in Human Behavior, 36, 401411. https://doi.org/10.1016/j.chb.2014.03.053Google Scholar
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of examples and rules in the acquisition of a cognitive skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 932945. https://doi.org/10.1037/0278-7393.23.4.932Google Scholar
Atkinson, R. K. (2002). Optimizing learning from examples using animated pedagogical agents. Journal of Educational Psychology, 94, 416427. https://doi.org/10.1037/0022-0663.94.2.416Google Scholar
Atkinson, R. K., Catrambone, R., & Merrill, M. M. (2003). Aiding transfer in statistical learning: Examining the use of conceptually-oriented equations and elaborations. Journal of Educational Psychology, 95, 762773. https://doi.org/10.1037/0022-0663.95.4.762Google Scholar
Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70, 181214. https://doi.org/10.3102/00346543070002181Google Scholar
Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving problems: Effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95, 774783. https://doi.org/10.1037/0022-0663.95.4.774Google Scholar
Baars, M., Van Gog, T., De Bruin, A., & Paas, F. (2014). Effects of problem solving after worked example study on primary school children’s monitoring accuracy. Applied Cognitive Psychology, 28, 382391. https://doi.org/10.1002/acp.3008Google Scholar
Baars, M., Van Gog, T., De Bruin, A., & Paas, F. (2017). Effects of problem solving after worked example study on secondary school children’s monitoring accuracy. Educational Psychology, 37, 810834. https://doi.org/10.1080/01443410.2016.1150419Google Scholar
Baars, M., Visser, S., Van Gog, T., De Bruin, A., & Paas, F. (2013). Completion of partially worked-out examples as a generation strategy for improving monitoring accuracy. Contemporary Educational Psychology, 38, 395406. https://doi.org/10.1016/j.cedpsych.2013.09.001Google Scholar
Baldwin, T. T. (1992). Effects of alternative modelling strategies on outcomes of interpersonal-skills training. Journal of Applied Psychology, 77, 147154. https://doi.org/10.1037/0021-9010.77.2.147Google Scholar
Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Bandura, A. (1994). Self-efficacy. In Ramachaudran, V. S. (ed.), Encyclopedia of human behavior, Vol. 4 (pp. 7181). New York: Academic Press.Google Scholar
Berthold, K. & Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Psychology, 101, 7087. https://doi.org/10.1037/a0013247Google Scholar
Blandin, Y. & Proteau, L. (2000). On the cognitive basis of observational learning: Development of mechanisms for the detection and correction of errors. The Quarterly Journal of Experimental Psychology, 53A, 846867. https://doi.org/10.1080/713755917Google Scholar
Braaksma, M. A. H., Rijlaarsdam, G., & Van den Bergh, H. (2002). Observational learning and the effects of model-observer similarity. Journal of Educational Psychology, 94, 405415. https://doi.org/10.1037/0022-0663.94.2.405Google Scholar
Carroll, W. M. (1994). Using worked examples as an instructional support in the algebra classroom. Journal of Educational Psychology, 86, 360367. https://doi.org/10.1037/0022-0663.86.3.360Google Scholar
Catrambone, R. (1996). Generalizing solution procedures learned from examples. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 10201031. https://doi.org/10.1037/0278-7393.22.4.1020Google Scholar
Catrambone, R. (1998). The subgoal learning model: Creating better examples so that students can solve novel problems. Journal of Experimental Psychology: General, 127, 355376. https://doi.org/10.1037/0096-3445.127.4.355Google Scholar
Chandler, P. & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293332. https://doi.org/10.1207/s1532690xci0804_2Google Scholar
Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145182. https://doi.org/10.1207/s15516709cog1302_1Google Scholar
Chi, M. T. H., Roy, M., & Hausmann, R. G. M. (2008). Observing tutorial dialogues collaboratively: Insights about human tutoring effectiveness from vicarious learning. Cognitive Science, 32, 301341. https://doi.org/10.1080/03640210701863396Google Scholar
Cooper, G. & Sweller, J. (1987). Effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79, 347362. https://doi.org/10.1037/0022-0663.79.4.347Google Scholar
Cooper, G., Tindall-Ford, S., Chandler, P., & Sweller, J. (2001). Learning by imagining. Journal of Experimental Psychology: Applied, 7, 6882. https://doi.org/10.1037/1076-898X.7.1.68Google Scholar
Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? The Journal of Applied Psychology, 79, 481492. https://doi.org/10.1037/0021-9010.79.4.481Google Scholar
Dunning, D., Johnson, K., Erlinger, J., & Kruger, J. (2003). Why people fail to recognize their own incompetence. Current Directions in Psychological Science, 12, 8387. https://doi.org/10.1111/1467-8721.01235Google Scholar
Durkin, K. & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support learning about decimal magnitude. Learning and Instruction, 22, 206214. https://doi.org/10.1016/j.learninstruc.2011.11.001Google Scholar
Ertelt, A., Renkl, A., & Spada, H. (2006). Making a difference: Exploiting the full potential of instructionally designed on-screen videos. In Barab, S. A., Hay, K. E., & Hickey, D. T. (eds.), Proceedings of the 7th International Conference of the Learning Sciences (pp. 154169). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Feltz, D. L. & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of Sport Psychology, 5, 2557. https://doi.org/10.1123/jsp.5.1.25Google Scholar
Fiorella, L. & Mayer, R. E. (2013). The relative benefits of learning by teaching and teaching expectancy. Contemporary Educational Psychology, 38, 281288. https://doi.org/10.1016/j.cedpsych.2013.06.001Google Scholar
Fiorella, L. & Mayer, R. E. (2014). Role of expectations and explanations in learning by teaching. Contemporary Educational Psychology, 39, 7585. https://doi.org/10.1016/j.cedpsych.2014.01.001Google Scholar
Fiorella, L., Van Gog, T., Hoogerheide, V., & Mayer, R. E. (2017). It’s all a matter of perspective: Viewing first-person video modeling examples promotes learning of an assembly task. Journal of Educational Psychology, 109, 653665. https://doi.org/10.1037/edu0000161IssnGoogle Scholar
Foster, N. L., Rawson, K. A., & Dunslosky, J. (2018). Self-regulated learning of principle-based concepts: Do students prefer worked examples, faded examples, or problem solving? Learning and Instruction. 55, 124138. https://doi.org/10.1016/j.learninstruc.2017.10.002Google Scholar
Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32, 3358. https://doi.org/10.1023/B:TRUC.0000021809.10236.71Google Scholar
Gerjets, P., Scheiter, K., & Catrambone, R. (2006). Can learning from molar and modular worked-out examples be enhanced by providing instructional explanations and prompting self-explanations? Learning and Instruction, 16, 104121. https://doi.org/10.1016/j.learninstruc.2006.02.007Google Scholar
Gick, M. L. & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 138. https://doi.org/10.1016/0010-0285(83)90002–6Google Scholar
Ginns, P., Chandler, P., & Sweller, J. (2003). When imagining information is effective. Contemporary Educational Psychology, 28, 229251. https://doi.org/10.1016/S0361-476X(02)00016–4Google Scholar
Goldin-Meadow, S. & Alibali, M. W. (2012). Gesture’s role in learning and development. In Zelazo, P. (ed.), Oxford handbook of developmental psychology (pp. 953973). Oxford: Oxford University Press.Google Scholar
Gott, S. P., Parker Hall, E., Pokorny, R. A., Dibble, E., & Glaser, R. (1993). A naturalistic study of transfer: Adaptive expertise in technical domains. In Detterman, D. K. & Sternberg, R. J. (eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 258288). Norwood, NJ: Ablex.Google Scholar
Groenendijk, T., Janssen, T., Rijlaarsdam, G., & Van den Bergh, H. (2013). Learning to be creative: The effects of observational learning on students’ design products and processes. Learning and Instruction, 28, 3547. https://doi.org/10.1016/j.learninstruc.2013.05.001Google Scholar
Große, C. S., & Renkl, A. (2007). Finding and fixing errors in worked examples: Can this foster learning outcomes? Learning and Instruction, 17, 612634. https://doi.org/10.1016/j.learninstruc.2007.09.008Google Scholar
Hartmann, C., Rummel, N., & Van Gog, T. (2017). Productive or vicarious failure: Do students need to make every mistake by themselves? Paper presented at the 17th International Conference of the European Association for Research on Learning and Instruction (EARLI), Tampere, Finland.Google Scholar
Hilbert, T. S., Renkl, A., Schworm, S., Kessler, S., & Reiss, K. (2008). Learning to teach with worked-out examples: A computer-based learning environment for teachers. Journal of Computer-Assisted Learning, 24, 316332. https://doi.org/10.1111/j.1365-2729.2007.00266.xGoogle Scholar
Holyoak, K. J. (2005). Analogy. In Holyoak, K. J. & Morrison, R. G. (eds.), The Cambridge handbook of thinking and reasoning (pp. 117142). New York: Cambridge University Press.Google Scholar
Hoogerheide, V., Deijkers, L., Loyens, S. M. M., Heijltjes, A. E. G., & Van Gog, T. (2016). Gaining from explaining: Learning improves from explaining to fictitious others on video, not from writing to them. Contemporary Educational Psychology, 44–45, 95106. https://doi.org/10.1016/j.cedpsych.2016.02.005Google Scholar
Hoogerheide, V., Loyens, S. M. M., & Van Gog, T. (2014a). Effects of creating video-based modeling examples on learning and transfer. Learning and Instruction, 33, 108119. https://doi.org/10.1016/j.learninstruc.2014.04.005Google Scholar
Hoogerheide, V., Loyens, S. M. M., & Van Gog, T. (2014b). Comparing the effects of worked examples and modeling examples on learning. Computers in Human Behavior, 41, 8091. https://doi.org/10.1016/j.chb.2014.09.013Google Scholar
Hoogerheide, V., Loyens, S. M. M., & Van Gog, T. (2016). Learning from video modeling examples: Does gender matter? Instructional Science, 44, 6986. https://doi.org/10.1007/s11251-015-9360-yGoogle Scholar
Hoogerheide, V., Renkl, A., Fiorella, L., Paas, F., & Van Gog, T. (2018). Enhancing example-based learning: Teaching on video increases arousal and improves problem-solving performance. Journal of Educational Psychology. http://dx.doi.org/10.1037/edu0000272Google Scholar
Hoogerheide, V., Van Wermeskerken, M., Loyens, S. M. M., & Van Gog, T. (2016). Learning from video modeling examples: Content kept equal, adults are more effective models than peers. Learning and Instruction, 44, 2230. https://doi.org/10.1016/j.learninstruc.2016.02.004Google Scholar
Hoogerheide, V., Van Wermeskerken, M. M., Van Nassau, H., & Van Gog, T. (2018). Model-observer similarity and task-appropriateness in learning from video-modeling examples: Do model and student gender affect test performance, self-efficacy, and perceived competence? Computers in Human Behavior, 89, 457464. https://doi.org/10.1016/j.chb.2017.11.012Google Scholar
Jarodzka, H., Balslev, T., Holmqvist, K. et al. (2012). Conveying clinical reasoning based on visual observation via eye-movement modelling examples. Instructional Science, 40, 813827. https://doi.org/10.1007/s11251-012-9218-5Google Scholar
Jarodzka, H., Van Gog, T., Dorr, M., Scheiter, K., & Gerjets, P. (2013). Learning to see: Guiding students’ attention via a model’s eye movements fosters learning. Learning and Instruction, 25, 6270. https://doi.org/10.1016/j.learninstruc.2012.11.004Google Scholar
Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509539. https://doi.org/10.1007/s10648-007-9054-3Google Scholar
Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93, 579588. https://doi.org/10.1037/0022-0663.93.3.579Google Scholar
Kant, J. M., Scheiter, K., & Oschatz, K. (2017). How to sequence video modeling examples and inquiry tasks to foster scientific reasoning. Learning and Instruction, 52, 4658. https://doi.org/10.1016/j.learninstruc.2017.04.005Google Scholar
Kapur, M. (2008). Productive failure. Cognition and Instruction, 26, 379424. https://doi.org/10.1080/07370000802212669Google Scholar
Kapur, M. & Rummel, N. (2012). Productive failure in learning from generation and invention activities. Instructional Science, 40(4), 645650. https://doi.org/10.1007/s11251-012-9235-4Google Scholar
Koedinger, K. R. & Aleven, V. (2007). Exploring the assistance dilemma in experiments with cognitive tutors. Educational Psychology Review, 19, 239264. https://doi.org/10.1007/s10648-007-9049-0Google Scholar
Kopp, V., Stark, R., & Fischer, M. R. (2008). Fostering diagnostic knowledge through computer-supported, casebased worked examples: Effects of erroneous examples and feedback. Medical Education, 42, 823829. https://doi.org/10.1111/j.1365-2923.2008.03122.xGoogle Scholar
Kopp, V., Stark, R., Kühne‐Eversmann, L., & Fischer, M. R. (2009). Do worked examples foster medical students’ diagnostic knowledge of hyperthyroidism? Medical Education, 43, 12101217. https://doi.org/10.1111/j.1365-2923.2009.03531.xGoogle Scholar
Kostons, D., Van Gog, T., & Paas, F. (2012). Training self-assessment and task-selection skills: A cognitive approach to improving self-regulated learning. Learning and Instruction, 22, 121132. https://doi.org/10.1016/j.learninstruc.2011.08.004Google Scholar
Langton, S. R. H., Watt, R. J., & Bruce, V. (2000). Do the eyes have it? Cues to the direction of social attention. Trends in Cognitive Sciences, 4, 5059. https://doi.org/10.1016/S1364-6613(99)01436–9Google Scholar
Leahy, W., Hanham, J., & Sweller, J. (2015). High element interactivity information during problem solving may lead to failure to obtain the testing effect. Educational Psychology Review, 27, 291304. https://doi.org/10.1007/s10648-015-9296-4Google Scholar
Leahy, W. & Sweller, J. (2005). Interactions among the imagination, expertise reversal and element interactivity effects. Journal of Experimental Psychology: Applied, 11, 266276. https://doi.org/10.1037/1076-898X.11.4.266Google Scholar
Leahy, W. & Sweller, J. (2008). The imagination effect increases with an increased intrinsic cognitive load. Applied Cognitive Psychology, 22, 273283. https://doi.org/10.1002/acp.1373Google Scholar
Leppink, J., Paas, F., Van Gog, T., Van der Vleuten, C. P. M., & Van Merriënboer, J. J. G. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 3242. https://doi.org/10.1016/j.learninstruc.2013.12.001Google Scholar
Loibl, K., Roll, I., & Rummel, N. (2017). Towards a theory of when and how problem solving followed by instruction supports learning. Educational Psychology Review, 29, 693715. https://doi.org/10.1007/s10648-016-9379-xGoogle Scholar
Louwerse, M. M., Graesser, A. C., McNamara, D. S., & Lu, S. (2009). Embodied conversational agents as conversational partners. Applied Cognitive Psychology, 23, 12441255. https://doi.org/10.1002/acp.1527Google Scholar
Lovett, M. C. (1992). Learning by problem solving versus by examples: The benefits of generating and receiving information. Proceedings of the 14th annual conference of the Cognitive Science Society (pp. 956961). Hillsdale: Erlaum.Google Scholar
Mason, L., Pluchino, P., & Tornatora, M. C. (2015). Eye-movement modeling of integrative reading of an illustrated text: Effects on processing and learning. Contemporary Educational Psychology, 41, 172187 https://doi.org/10.1016/j.cedpsych.2015.01.004Google Scholar
Mason, L., Scheiter, K., & Tornatora, C. (2017). Using eye movements to model the sequence of text-picture processing for multimedia comprehension. Journal of Computer Assisted Learning, 33, 443460. https://doi.org/10.1111/jcal.12191Google Scholar
Mayer, R. E. & DaPra, C. S. (2012). An embodiment effect in computer-based learning with animated pedagogical agents. Journal of Experimental Psychology: Applied, 18, 239252. https://doi.org/10.1037/a0028616Google Scholar
Mayer, R. E. & Wittrock, M. C. (1996). Problem-solving transfer. In Berliner, D. C. & Calfee, R. C. (eds.), Handbook of educational psychology (pp. 4762). New York: Macmillan.Google Scholar
McLaren, B. M., Van Gog, T., Ganoe, C., Karabinos, M., & Yaron, D. (2016). The efficiency of worked examples compared to erroneous examples, tutored problem solving, and problem solving in computer-based learning environments. Computers in Human Behavior, 55, 8799. https://doi.org/10.1016/j.chb.2015.08.038Google Scholar
Meltzoff, A. N. & Brooks, R. (2013). Gaze following and agency in human infancy. In Metcalfe, J. & Terrace, H. S. (eds.), Agency and joint attention (pp. 125138). New York: Oxford University Press.Google Scholar
Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87, 319334.Google Scholar
Mwangi, W. & Sweller, J. (1998). Learning to solve compare word problems: The effect of example format and generating self-explanations. Cognition and Instruction, 16, 173199.Google Scholar
Newell, A. & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Ohlsson, S. & Rees, E. (1991). The function of conceptual understanding in the learning of arithmetic procedures. Cognition and Instruction, 8, 103179. https://doi.org/10.1207/s1532690xci0802_1Google Scholar
Ouwehand, K., Van Gog, T., & Paas, F. (2015). Designing effective video-based modeling examples using gaze and gesture cues. Educational Technology and Society, 18, 7888.Google Scholar
Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive load approach. Journal of Educational Psychology, 84, 429434. https://doi.org/10.1037/0022-0663.84.4.429Google Scholar
Paas, F. & Van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem solving skills: A cognitive load approach. Journal of Educational Psychology, 86, 122133. https://doi.org/10.1037/0022-0663.86.1.122Google Scholar
Raaijmakers, S. F., Baars, M., Schaap, L., Paas, F., Van Merriënboer, J. J. G., & Van Gog, T. (2018). Training self-regulated learning skills with video modeling examples: Do task-selection skills transfer? Instructional Science, 64, 273290. https://doi.org/10.1007/s11251-017-9434-0Google Scholar
Reed, S. K., Willis, D., & Guarino, J. (1994). Selecting examples for solving word problems. Journal of Educational Psychology, 86, 380388. https://doi.org/10.1037/0022-0663.86.3.380Google Scholar
Reeves, L. M. & Weisberg, R. W. (1993). On the concrete nature of human thinking: Content and context in analogical transfer. Educational Psychology, 13, 245258. https://doi.org/10.1080/0144341930130303Google Scholar
Reisslein, J., Atkinson, R., Seeling, P., & Reisslein, M. (2006). Encountering the expertise reversal effect with a computer-based environment on electrical circuit analysis. Learning and Instruction, 16, 92103. https://doi.org/10.1016/j.learninstruc.2006.02.008Google Scholar
Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21, https://doi.org/1-29. 10.1207/s15516709cog2101_1Google Scholar
Renkl, A. (2014). Towards an instructionally-oriented theory of example-based learning. Cognitive Science, 38, 137. https://doi.org/10.1111/cogs.12086Google Scholar
Renkl, A. (2017). Instruction based on examples. In Mayer, R. E. & Alexander, P. A. (eds.), Handbook of research on learning and instruction, 2nd edn (pp. 325348). New York: Routledge.Google Scholar