Skip to main content Accessibility help
×
Hostname: page-component-5d59c44645-lfgmx Total loading time: 0 Render date: 2024-02-29T23:17:53.578Z Has data issue: false hasContentIssue false

Part III - Social Cognition

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Apperly, I. & Butterfill, S. A. (2009). Do humans have two systems to track beliefs and belief-like states? Psychological Review, 116(4), 953970.Google Scholar
Aureli, F. & Schino, G. (2019). Social complexity from within: How individuals experience the structure and organization of their groups. Behavioral Ecology and Sociobiology, 73(6), 113.Google Scholar
Bachmann, C. & Kummer, H. (1980). Male assessment of female choice in hama-dryas baboons. Behavioral Ecology and Sociobiology, 6, 315321.Google Scholar
Barrett, L., Henzi, S. P., & Rendall, D. (2007). Social brains, simple minds: Does social complexity really require cognitive complexity? Philosophical Transactions of the Royal Society of London B, 362, 561575.Google Scholar
Bates, E., Camaioni, L., & Volterra, V. (1975). The acquisition of performatives prior to speech. Merrill-Palmer Quarterly, 21, 205226.Google Scholar
Boucherie, P., Loretto, M.-C., Massen, J., & Bugnyar, T. (2019). What constitutes social complexity and social intelligence in birds? Lessons from ravens. Behavioral Ecology and Sociobiology, 73(12), 114.Google Scholar
Bshary, R. & Brown, C. (2014). Fish cognition. Current Biology, 24(19), R947R950.Google Scholar
Bugnyar, T.Reber, S., & Buckner, C. (2016). Ravens attribute visual access to unseen competitorsNatural Communities7(10506). doi: 10.1038/ncomms10506 (2016).Google Scholar
Bunge, M. (1980). The Mind-Body Problem: A Psychobiological Approach. Oxford: Pergamon.Google Scholar
Butterfill, S. A. & Apperly, I. A. (2013). How to construct a minimal theory of mind. Mind & Language, 28, 606637.Google Scholar
Byrne, R. & Whiten, A. (Eds.) (1988). Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes and Humans. Oxford: Oxford University Press.Google Scholar
Call, J. & Tomasello, M. (1998). Distinguishing intentional from accidental actions in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes), and human children (Homo sapiens). Journal of Comparative Psychology, 112(2), 192206.Google Scholar
Call, J., Hare, B., Carpenter, M., & Tomasello, M. (2004). ‘Unwilling’ versus ‘unable’: Chimpanzees’ understanding of human intentional action. Developmental Science, 7(4), 488498.CrossRefGoogle ScholarPubMed
Call, J. & Tomasello, M. (2005). What Chimpanzees Know about Seeing Revisited: An Explanation of the Third Kind. In Eilan, N., Hoerl, C., McCormack, T., & Roessler, J. (Eds.), Joint Attention: Communication and Other Minds (pp. 4564). Oxford: Oxford University Press.Google Scholar
Canteloup, C. & Meunier, H. (2017). ‘Unwilling’ versus ‘unable’: Tonkean macaques’ understanding of human goal-directed actions. PeerJ, 5, e3227. https://doi.org/10.7717/peerj.3227Google Scholar
Catala, A., Mang, B., MangWallis L., & Huber, L. (2017). Dogs demonstrate perspective taking based on geometrical gaze following in a Guesser–Knower task. Animal Cognition, 20, 581589.CrossRefGoogle Scholar
Cheney, D. L. & Seyfarth, R. M. (1990). How Monkeys See the World. Chicago: Chicago University Press.Google Scholar
Cheney, D. L., Seyfarth, R. M., & Silk, J. B. (1995). The responses of female baboons (Papio cynocephalus ursinus) to anomalous social interactions: Evidence for causal reasoning? Journal of Comparative Psychology 109, 134141.Google Scholar
Clayton, N. S. & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jaysNature, 395(6699), 272274.CrossRefGoogle ScholarPubMed
Clayton, N. S., Dally, J. M., & Emery, N. J. (2007). Social cognition by food-caching corvids: The western scrub-jay as a natural psychologist. Philosophical Transactions of the Royal Society, 362, 507522.Google Scholar
Crane, T. (1998). Intentionality as the Mark of the Mental. In O’Hear, A (Ed.), Current Issues in the Philosophy of Mind (pp. 229251). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Crockford, Catherine, Wittig, Roman M., Mundry, Roger, and Zuberbuhler, Klaus. (2012). Wild chimpanzees inform ignorant group members of danger. Current Biology, 22, 142146.Google Scholar
Dally, J. M., Clayton, N. S., & Emery, N. J. (2006). The behaviour and evolution of cache protection and pilferage. Animal Behavior, 72, 1323CrossRefGoogle Scholar
Davidson, G. L. et al. (2014). Gaze sensitivity: Function and mechanisms from sensory and cognitive perspectives. Animal Behavior, 87, 315.Google Scholar
Davidson, G. L. & Clayton, N. S. (2016). New perspectives in gaze sensitivity research. Learning and Behavior, 44, 917.Google Scholar
Dennett, D. C. (1983). Intentional systems in cognitive ethology: The panglossian paradigm defended. Behavioral and Brain Sciences, 6, 343390.Google Scholar
Dennett, D. C. and Haugeland, J. C. (1987). Intentionality. In Gregory, R. L. (Ed.), The Oxford Companion to the Mind (pp. 383386). Oxford: Oxford University Press.Google Scholar
Ducheminsky, N., Henzi, S. P., & Barrett, L. (2014). Responses of vervet monkeys in large troops to terrestrial and aerial predator alarm calls. Behavioral Ecology, 25(6), 14741484.Google Scholar
Dunbar, R. I. M. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36(5), 562.Google Scholar
Emery, N. & Clayton, N. S. (2009). Comparative social cognition. Annual Review of Psychology, 60, 87113.Google Scholar
Evans, J. B. T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7, 454459.CrossRefGoogle ScholarPubMed
Fabricius, W. V., Boyer, T. W., Weimer, A. A., & Carroll, K. (2010). True or false: Do 5-year-olds understand belief? Developmental Psychology, 46(6), 14021416.Google Scholar
Fischer, J. & Price, T. (2017). Meaning, intention, and inference in primate vocal communication. Neuroscience and Biobehavioral Reviews, 82, 2231.Google Scholar
Flombaum, J. I. & Santos, L. R. (2005). Rhesus monkeys attribute perceptions to others. Current Biology, 15, 447452.CrossRefGoogle ScholarPubMed
Furrer, R. D. & Manser, M. B. (2009). The evolution of urgency-based and functionally referential alarm calls in ground-dwelling species. The American Naturalist, 173(3), 400410.CrossRefGoogle ScholarPubMed
Gómez, J. C. (1990). The Emergence of Intentional Communication as a Problem-Solving Strategy in the Gorilla. In Parker, S. T. & Gibson, K. R. (Eds.), “Language” and Intelligence in Monkeys and Apes: Comparative Developmental Perspectives (pp. 333355). Cambridge, MA: Cambridge University Press.Google Scholar
Gómez, J. C. (1991). Visual Behavior as a Window for Reading the Minds of Others in Primates. In Whiten, A. (Ed.), Natural Theories of Mind: Evolution, Development and Simulation of Everyday Mindreading (pp. 195207). Oxford: B. Blackwell.Google Scholar
Gómez, J. C. (1996a). Ostensive Behavior in the Great Apes: The Role of Eye Contact. In Russon, A., Parker, S., & Bard, K. (Eds.), Reaching into Thought: The Minds of the Great Apes (pp. 131151). Cambridge: Cambridge University Press.Google Scholar
Gómez, J. C. (1996b). Second-person intentional relations and the evolution of social understanding. Behavioral and Brain Sciences, 19(1), 129130.Google Scholar
Gómez, J. C. (2004). Apes, Monkeys, Children and the Growth of Mind. Cambridge, MA: Harvard University Press.Google Scholar
Gómez, J. C. (2007). Pointing behaviors in apes and human infants: A balanced interpretation. Child Development, 78, 729734.Google Scholar
Gómez, J. C. (2008). The evolution of pretence: From intentional availability to intentional non-existence. Mind and Language, 23(5), 586606.Google Scholar
Gómez, J. C. (2009). Embodying meaning: Insights from primates, autism, and Brentano. Neural Networks, 22(2), 190196.Google Scholar
Gómez, J. C. (2020). Intentionality. In Vonk, J. and Shackelford, T. K. (Eds.), Encyclopedia of Animal Cognition and Behavior (pp. 19). Cham: Springer.Google Scholar
Graham, K. E., Hobaiter, C., Ounsley, J., Furuichi, T., & Byrne, R. W. (2018). Bonobo and chimpanzee gestures overlap extensively in meaning. PLoS Biology, 16(2), e2004825.CrossRefGoogle ScholarPubMed
Grice, H. P. (1957). Meaning. Philosophical Review, 66, 377388.Google Scholar
Happé, F., Cook, J., & Bird, G. (2017). The structure of social cognition: In(ter)dependence of sociocognitive processes. Annual Review of Psychology, 68, 243267.CrossRefGoogle ScholarPubMed
Harcourt, A. H. & Waal, F. d. (Eds.) (1992). Coalitions and Alliances in Humans and Other Animals. Oxford: Oxford University Press.Google Scholar
Hare, B, Call, J., Agnetta, B., & Tomasello, M. (2000). Chimpanzees know what conspecifics do and do not see. Animal Behaviour, 59, 771785.Google Scholar
Hare, B, Call, J., Tomasello, M., & Hare, B. (2001). Do chimpanzees know what conspecifics know? Animal Behaviour, 61(2), 139151.Google Scholar
Hare, B., Call, J., & Tomasello, M. (2006). Chimpanzees deceive a human competitor by hiding. Cognition, 101, 495514.CrossRefGoogle ScholarPubMed
Hayashi, T., Akikawa, R, Kawasaki, K., Egawa, J., Minamimoto, T., Kobayashi, K., Kato, S., Hori, Y., Nagai, Y., Iijima, A., Someya, T., & Hasegawa, I. (2020). Macaques exhibit implicit gaze bias anticipating others’ false-belief-driven actions via medial prefrontal cortex. Cell Reports, 30(13), 44334444. e5, doi.org/10.1016/j.celrep.2020.03.013.Google Scholar
von Helmholtz, H. (1867). Handbuch der physiologischen Optik 3. Leipzig: Voss. (English: Treatise on Physiological Optics. Optical Society of America, 1924–1925).Google Scholar
Henzi, S. P. & Barrett, L. (2007) Coexistence in female-bonded primate groups. Advances in the Study of Behavior, 37, 4381.Google Scholar
Heyes, C. M. (1998). Theory of mind in nonhuman primates. Behavioral and Brain Sciences, 21(1), 101148.Google Scholar
Heyes, C. (2017). Apes submentalise. Trends in Cognitive Sciences, 21(1), 12.Google Scholar
Hinde, R. (1979). Towards Understanding Relationships. London: Academy Press.Google Scholar
Hobaiter, C. & Byrne, R. (2014). The meanings of chimpanzee gestures. Current Biology, 24, 15961600.Google Scholar
Hochberg, J. (1987) Gestalt Theory. In Gregory, R. L. (Ed.), The Oxford Companion to the Mind (pp. 288291). Oxford: Oxford University Press.Google Scholar
Hochsler, D. Santos, L., & Mclean, E. (2019). Do non-human primates really represent others’ ignorance? A test of the awareness relations hypothesis. Cognition, 190, 7280.Google Scholar
Humphrey, N. (1976). The Social Function of Intellect. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing Points in Ethology (pp. 303317). Cambridge: Cambridge University Press.Google Scholar
Jensen, K., Silk, J. B., Andrews, K., Bshary, R., Cheney, D. L., & Emery, N., … Teufel, C. (2011). Social Knowledge. In Menzel, R. and Fischer, J. (Eds.), Animal Thinking: Contemporary Issues in Comparative Cognition (pp. 267291). Cambridge, MA: MIT Press.Google Scholar
Jolly, A. (1966). Lemur social behavior and primate intelligence. Science, 153, 501506.Google Scholar
Kaminski, J., Call, J., & Tomasello, M. (2008). Chimpanzees know what others know, but not what they believe. Cognition, 109(2), 224234.Google Scholar
Kano, F. & Call, J. (2014). Great apes generate goal-based action predictions: An eye-tracking study. Psychological Science, 25, 16911698.Google Scholar
Kano, F., Krupenye, C., Hirata, S., Tomonaga, M., & Call, J. (2019) Great apes use self-experience to anticipate an agent’s action in a false-belief test. Proceedings of the National Academy of Sciences, 116(42), 2090420909.Google Scholar
Karg, K., Schmelz, M., Call, J., & Tomasello, M. (2015b). The goggles experiment: Can chimpanzees use self-experience to infer what a competitor can see? Animal Behaviour, 105, 211221.Google Scholar
Karmiloff-Smith, A. (1992). Beyond Modularity: A Developmental Perspective on Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Kersken, V., Gómez, J.-C., Liszkowski, U., Soldati, A., & Hobaiter, C. (2019). A gestural repertoire of 1- to 2-year-old human children: In search of the ape gestures. Animal Cognition, 22(4), 577595.CrossRefGoogle ScholarPubMed
KirchhoferK. C., ZimmermannF., Kaminski, J., & TomaselloM. (2012). Dogs (Canis familiaris), but not chimpanzees (Pan troglodytes), understand imperative pointing. PLoS One, 7(2), e30913.Google Scholar
Krebs, J. R. & Dawkins, R. (1984). Animal Signals: Mind-Reading and Manipulation. In Krebs, J. R. & Davies, N. B. (Eds.), Behavioural Ecology: An Evolutionary Approach (2nd ed.), (pp. 380402). Oxford: Blackwell Scientific Publications.Google Scholar
Krøjgaard, P. (2005). Infants’ search for hidden persons. International Journal of Behavioral Development, 29(1), 7071.Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354(63)08, 110114.Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2017). A test of the submentalizing hypothesis: Apes’ performance in a false belief task inanimate control. Communicative & Integrative Biology, 10(4), e1343771. https://doi.org/10.1080/19420889.2017.1343771Google Scholar
Lazareva, O. F. (2012). Transitive Inference in Nonhuman Animals. In Wasserman, E. A. & Zentall, T. R. (Eds.), The Oxford Handbook of Comparative Cognition (2nd ed.) (online publication: doi: 10.1093/oxfordhb/9780195392661. 9780195392013.9780195390036).Google Scholar
Leavens, D. & Hopkins, W. (1998). Intentional communication by chimpanzees. A cross-sectional study of the use of referential gestures. Developmental Psychology, 34, 813822.Google Scholar
Leavens, D., Hopkins, W., & Thomas, R. K. (2004). Referential communication by chimpanzees. Journal of Comparative Psychology, 118, 4857.CrossRefGoogle ScholarPubMed
Macedonia, J. M. & Evans, C. S. (1993). Variation among mammalian alarm call systems and the problem of meaning in animal signals. Journal of Ethology, 93(3), 177197.CrossRefGoogle Scholar
Marticorena, D., Ruiz, A. M., Mukerji, C., Goddu, A., & Santos, L. (2011). Monkeys represent others’ knowledge but not their beliefs. Developmental Science , 14(6), 14061416.Google Scholar
Martin, A. & Santos, L. (2014). The origins of belief representation: Monkeys fail to automatically represent others’ beliefs. Cognition, 130, 300308.Google Scholar
McMillan, N., Hahn, A., Spetch, M., & Sturdy, C. (2015). Avian cognition: Examples of sophisticated capabilities in space and song. WIREs Cognitive Science, 6, 285297.CrossRefGoogle ScholarPubMed
Olkowicz, S., Kocoureka, M., Lucan, R., Porteša, M., Fitch, W. T., Herculano-Houzel, S., & Nemec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences, 113, 72557260.Google Scholar
Ostojic, L., Shaw, R. C., Cheke, L. G., & Clayton, N. S. (2013). Evidence that desire-state attribution may govern food sharing in Eurasian jays. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 41234128.CrossRefGoogle ScholarPubMed
Ostojic, L., Legg, E. W., Brecht, K. F., Lange, F., Deininger, C., Mendl, M., & Clayton, N. S. (2017). Current desires of conspecific observers affect cache-protection strategies in California scrub-jays and Eurasian jays. Current Biology, 27(2), R51R53.Google Scholar
Penn, D. C. & Povinelli, D. J. (2007). On the lack of evidence that non-human animals possess anything remotely resembling a “theory of mind.” Philosophical Transactions of the Royal Society of London B, 362: 731744.Google Scholar
Perner, J. (2010), Who Took the Cog out of Cognitive Science? Mentalism in an Era of Anti-Cognitivism. In Frensch, P. A. & Schwarzer, R. (Eds.), International Perspectives on Psychological Science: Cognition and Neuropsychology (pp. 241261). Hove: Psychology Press.Google Scholar
Perner, J. & Roessler, J. (2012). From infants’ to children’s appreciation of belief. Trends in Cognitive Sciences, 16, 519525.Google Scholar
Perrett, D. (1999). A Cellular Basis for Reading Minds from Faces and Actions. In Hauser, M. & Konishi, M. (Eds.), The Design of Animal Communication, Cambridge, MA: MIT Press.Google Scholar
Piaget, J. (1936). La naissance de l’intelligence chez l’enfant. Neuchatel: Delachaux et Niestlée.Google Scholar
Povinelli, D. J. & Eddy, T. J. (1996). What young chimpanzees know about seeing. Monographs of the Society for Research in Child Development, 61(3), 1190.Google Scholar
Povinelli, D. J., Perilloux, H. K., Reaux, J. E., & Bierschwale, D. T. (1998). Young and juvenile chimpanzees’ (Pan troglodytes) reactions to intentional versus accidental and inadvertent actions. Behavioural Processes, 42, 205218.CrossRefGoogle Scholar
Povinelli, D. J. & Vonk, J. (2003). Chimpanzee minds: Suspiciously human? Trends in Cognitive Sciences, 7(4), 157160.CrossRefGoogle ScholarPubMed
Povinelli, D. J. & Vonk, J. (2004). We don’t need a microscope to explore the chimpanzee’s mind. Mind and Language, 19, 128.CrossRefGoogle Scholar
Premack, D. & Woodruff, G. (1978a). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515526.Google Scholar
Premack, D. & Woodruff, G. (1978b). Chimpanzee problem-solving: A test for comprehension. Science, 202, 532535.Google Scholar
Price, T., Wadewitz, P., Cheney, D. L., Seyfarth, R. M., Hammerschmidt, K., & Fischer, J. (2015). Vervets revisited: A quantitative analysis of alarm call structure and context specificity. Scientific Reports, 5, 111.Google Scholar
Ristau, C. (1991). Before Mindreading: Attention, Purposes, and Deception in Birds? In Whiten, A. (Ed.), Natural Theories of Mind: Evolution, Development and Simulation of Everyday Mindreading (pp. 209222), Oxford: B. Blackwell.Google Scholar
Ristau, C. (1993). The cognitive ethology of an “injury-feigning” plover: A beginning. Etología, 3, 5768.Google Scholar
Rivière, A. (1991). Objetos con mente [Objects with Minds]. Madrid: Alianza.Google Scholar
Robbins, M. M., & Robbins, A. M. (2018). Variation in the social organization of gorillas: Life history and socioecological perspectives. Evolutionary Anthropology: Issues, News, and Reviews, 27(5), 218233.Google Scholar
Romero, T. & Aureli, F. (2017). Conflict Resolution. In Call, J., Burghardt, G. M., Pepperberg, I. M., Snowdon, C. T., & Zentall, T. (Eds.),  APA Handbook of Comparative Psychology: Basic Concepts, Methods, Neural Substrate, and Behavior (pp. 877–897).Google Scholar
Santos, L. & Hauser, M. (1999). How monkeys see the eyes: Cotton-top tamarins’ reactions to changes in visual attention and action. Animal Cognition, 2, 131139.Google Scholar
Schino, G. (2000). Beyond the Primates: Expanding the Reconciliation Horizon. In Aureli, F. & Waal, F. B. M. (Eds.), Natural Conflict Resolution (pp. 225242). Berkeley: University of California Press.Google Scholar
Scott, R. & Baillargeon, R. (2017) Early false-belief understanding. Trends in Cognitive Science, 21, P237P249.Google Scholar
Senju, A., Southgate, V., Snape, C., Leonard, M., & Csibra, G. (2011). Do 18-month-olds really attribute mental states to others? A critical text. Psychological Science, 22(7), 878880.Google Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28, 10701094.Google Scholar
Seyfarth, R. M. & Cheney, D. (2012). The evolutionary origins of friendship. Annual Review of Psychology, 63, 153177.Google Scholar
Seyfarth, R. M. & Cheney, D. (2015). Social cognition. Animal Behaviour, 103, 191202.Google Scholar
Shapiro, L. A. (2011). Embodied Cognition. New York: Routledge.Google Scholar
Silk, J. B. (2002). The form and function of reconciliation in primates. Annual Review of Anthropology, 31, 2144.CrossRefGoogle Scholar
Slocombe, K. E. & Zuberbühler, K. (2007). Chimpanzees modify recruitment screams as a function of audience composition. Proceedings of the National Academy of Science USA, 104, 1722817233.Google Scholar
Slocombe, K., Kaller, T., Call, J., & Zuberbühler, K. (2010). Chimpanzees extract social information from agonistic screams. PLoS One, 5(7), e11473.Google Scholar
Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false belief in two-year-olds. Psychological Science, 18(7), 587592.Google Scholar
Sperber, D. & Wilson, D. (1986). Relevance: Communication and Cognition. Cambridge, MA: Harvard University Press.Google Scholar
Steele, M. A., Halkin, S. L., Smallwood, P. D., McKenna, T. J., & Beam, M. (2008). Cache protection strategies of a scatter-hoarding rodent: Do tree squirrels engage in behavioural deception? Animal Behaviour, 75, 705714.Google Scholar
Stevens, M., Hopkins, E., Hinde, W., Adcock, A., Connolly, Y., Troscianko, T., (2007). Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Animal Behaviour, 74, 12151227.Google Scholar
Tomasello, M., George, B., Kruger, A., Farrar, J., & Evans, E. (1985). The development of gestural communication in young chimpanzees. Journal of Human Evolution, 14, 175186.Google Scholar
Tomasello, M., Hare, B., & Agnetta, B. (1999). Chimpanzees follow gaze direction geometrical “y.” Animal Behaviour, 58, 769777.CrossRefGoogle Scholar
Tomasello, M., Call, J., & Hare, B. (2003). Chimpanzees understand psychological states: The question is which ones and to what extent. Trends in Cognitive Sciences, 7(4), 153156.Google Scholar
Tomasello, M., Carpenter, M., & Liszkowski, U. (2007). A new look at infant pointing. Child Development, 78(3), 705722.Google Scholar
Townsend, S. W., Koski, S. E., Byrne, R. W., Slocombe, K. E., Bickel, B., Boeckle, M. et al. (2017). Exorcising Grice’s ghost: An empirical approach to studying intentional communication in animals. Biological Reviews, 92(3), 14271433.Google Scholar
de Waal, F. (1982). Chimpanzee Politics: Power and Sex among Apes. London: Jonathan Cape.Google Scholar
de Waal, F. (1993). Reconciliation among Primates: A Review of Empirical Evidence and Theoretical Issues. In Mason, W. A. & Mendoza, S. P. (Eds.), Primate Social Conflict (pp. 111144). New York: State University New York Press.Google Scholar
Whiten, A. (1994). Grades of Mindreading. In Lewis, C. & Mitchell, P. (Eds.), Children’s Early Understanding of Mind: Origins and Development (pp. 4770). Hillsdale, MI: Erlbaum.Google Scholar
Whiten, A. & Byrne, R. W. (1988). Tactical deception in primates. Behavioral and Brain Sciences, 11(2), 233273.Google Scholar
Wittig, R. M., Crockford, C., Wikberg, E., Seyfarth, R. M., & Cheney, D. L. (2007). Kin-mediated reconciliation substitutes for direct reconciliation in female baboons. Proceedings of the Royal Society of London. B, 274, 11091115.Google Scholar
Wood, E. K. & Higley, J. D. (2018) Attachment. In Vonk, J. & Shackelford, T. (Eds.), Encyclopedia of Animal Cognition and Behavior. Cham: Springer.Google Scholar
Woodward, A. L. (2005). The infant origins of intentional understanding. Advances in Child Development and Behavior, 33, 229262.Google Scholar
Zimmermann, F., Zemke, F., Call, J., & Gómez, J. C. (2009). Orangutans (Pongo pygmaeus) and bonobos (Pan paniscus) point to inform a human about the location of a tool. Animal Cognition, 12, 347358.Google Scholar
Zuberbühler, K. (2000a). Referential vocalizations in wild diana monkeys. Animal Behavior, 59, 917927.Google Scholar
Zuberbühler, K. (2000b). Interspecies semantic communication in two forest monkeys. Proceedings of the Royal Society of London. B, 267, 713718.Google Scholar
Zuberbühler, K. (2008). Audience effects. Current Biology, 18(5), R189eR190.Google Scholar
Zuberbühler, K. & Gómez, J. C. (2018). Communication, Primate Intentional. In Callan, H. (Ed.), The International Encyclopedia of Anthropology (pp. 110). Hoboken, NJ: Cheney.Google Scholar

References

Ågren, J. A., Davies, N. G., & Foster, K. R. (2019). Enforcement is central to the evolution of cooperation. Nat. Ecol. Evol., 3, 10181029.Google Scholar
Arnold, C. & Taborsky, B. (2010). Social experience in early ontogeny has lasting effects on social skills in cooperatively breeding cichlids. Anim. Behav., 79, 621630.Google Scholar
Arnold, K. E. (2000). Kin recognition in rainbowfish (Melanotaenia eachamensis): Sex, sibs and shoaling. Behav. Ecol. Sociobiol., 48, 385391.Google Scholar
Awata, S., Munehara, H., & Kohda, M. (2005) Social system and reproduction of helpers in a cooperatively breeding cichlid fish (Julidochromis ornatus) in Lake Tanganyika: Field observations and parentage analyses. Behav. Ecol. Sociobiol., 58, 506516.Google Scholar
Baird, T. A. & Baird, T. D. (1992). Colony formation and some possible benefits and costs of gregarious living in the territorial sand tilefish, Malacanthis plumieri. Bull. Mar. Sci., 50, 5665.Google Scholar
Bergmüller, R. & Taborsky, M. (2005). Experimental manipulation of helping in a cooperative breeder: Helpers “pay to stay” by pre-emptive appeasement. Anim. Behav., 69, 1928.CrossRefGoogle Scholar
Boesch, C. & Boesch, H. (1989). Hunting behavior of wild chimpanzees in the Tai National Park. Am. J. Phys. Anthropol, 78, 547573.Google Scholar
Bourke, A. F. (2014). Hamilton’s rule and the causes of social evolution. Phil. Trans. R. Soc. B, 369, 20130362.Google Scholar
Brandl, S. J. & Bellwood, D. R. (2015). Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes. Sci. Rep., 5, 14556.Google Scholar
Brouwer, L., Heg, D., & Taborsky, M. (2005). Experimental evidence for helper effects in a cooperatively breeding cichlid. Behav. Ecol., 16, 667673.CrossRefGoogle Scholar
Brown, G. E. & Brown, J. A. (1996). Does kin-biased territorial behavior increase kin-biased foraging in juvenile salmonids? Behav. Ecol., 7, 2429.Google Scholar
Brown, G. E., Brown, J. A., & Wilson, W. R. (1996). The effects of kinship on the growth of juvenile Arctic charr. J. Fish Biol., 48, 313320.Google Scholar
Brown, C. & Laland, K. N. (2003). Social learning in fishes: A review. Fish Fish., 4, 280288.CrossRefGoogle Scholar
Brown, C., Laland, K., & Krause, J. (2011). Fish Cognition and Behavior (2nd ed.), Oxford: Wiley-Blackwell.Google Scholar
Bruintjes, R. & Taborsky, M. (2008). Helpers in a cooperative breeder pay a high price to stay: Effects of demand, helper size and sex. Anim. Behav., 75, 18431850.Google Scholar
Bruintjes, R. & Taborsky, M. (2011). Size-dependent task specialization in a cooperative cichlid in response to experimental variation of demand. Anim. Behav., 81, 387394.Google Scholar
Bshary, R. & Grutter, A. S. (2002). Asymmetric cheating opportunities and partner control in a cleaner fish mutualism. Anim. Behav., 63, 547555.Google Scholar
Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: A primate’s eye view. Anim. Cogn., 5, 113.Google Scholar
Bshary, R., Hohner, A., Ait-El-Djoudi, K., & Fricke, H. (2006). Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol., 4, 23932398.Google Scholar
Bshary, R., Grutter, A. S., Willener, A. S., & Leimar, O. (2008). Pairs of cooperating cleaner fish provide better service quality than singletons. Nature, 455, 964966Google Scholar
Bshary, R., Gingins, S., & Vail, A. L. (2014). Social cognition in fishes. Trends Cogn. Sci., 18, 465471.Google Scholar
Burkart, J. M., Hrdy, S. B., & van Schaik, C. P. (2009). Cooperative breeding and human cognitive evolution. Evol. Anthropol., 18, 175186.Google Scholar
Cardoso, S. C., Paitio, J. R., Oliveira, R. F., Bshary, R., & Soares, M. C. (2015). Arginine vasotocin reduces levels of cooperative behaviour in a cleaner fish. Physiol. Behav., 139, 314320.CrossRefGoogle Scholar
Carter, G. (2014). The reciprocity controversy. Anim. Behav. Cogn., 1, 368386.Google Scholar
Chabrolles, L., Ammar, I. B., Fernandez, M. S., Boyer, N., Attia, J., Fonseca, P. J., Amorim, M. C. P., & Beauchaud, M. (2017). Appraisal of unimodal cues during agonistic interactions in Maylandia zebra. PeerJ., 5, e3643.Google Scholar
Clutton-Brock, T. (2002). Breeding together: Kin selection and mutualism in cooperative vertebrates. Science, 296, 6972.Google Scholar
Clutton-Brock, T. (2009). Cooperation between non-kin in animal societies. Nature, 462, 5157.Google Scholar
Cockburn, A. (1998). Evolution of helping behavior in cooperatively breeding birds. Ann. Rev. Ecol. Sys., 29, 141177.Google Scholar
Crowley, P. H. & Hart, M. K. (2007). Evolutionary stability of egg trading and parceling in simultaneous hermaphrodites: The chalk bass revisited. J. Theoret. Biol., 246, 420429.Google Scholar
Csanyi, V., Csizmadia, G., & Miklosi, A. (1989). Long-term memory and recognition of another species in the paradise fish. Anim. Behav., 37, 908911.Google Scholar
Darden, S. K., James, R., Cave, J. M., Brask, J. B., & Croft, D. P. (2020). Trinidadian guppies use a social heuristic that can support cooperation among non-kin. Proc. R. Soc. B., 287, 20200487.Google Scholar
Darwin, C. D. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Dierkes, P., Heg, D., Taborsky, M., Skubic, E., & Achmann, R. (2005). Genetic relatedness in groups is sex‐specific and declines with age of helpers in a cooperatively breeding cichlid. Ecol. Lett., 8, 968975.Google Scholar
Dugatkin, L. A. (1997). Cooperation among Animals. Oxford: Oxford University Press.Google Scholar
Dugatkin, L. A. & Alfieri, M. (1991). Tit-for-tat in guppies (Poecilia reticulata): The relative nature of cooperation and defection during predator inspection. Evol. Ecol., 5, 300309.CrossRefGoogle Scholar
Edenbrow, M. & Croft, D. P. (2012). Kin and familiarity influence association preferences and aggression in the mangrove killifish Kryptolebias marmoratus. J. Fish Biol., 80, 503518.Google Scholar
Field, J. & Leadbeater, E. (2016). Cooperation between non-relatives in a primitively eusocial paper wasp, Polistes dominula. Phil. Trans. R. Soc. B, 371, 20150093.Google Scholar
Fischer, E. A. (1984). Egg-trading in the chalk bass, Serranus tortugarum, a simultaneous hermaphrodite. Z. Tierpsychol., 66, 143151.CrossRefGoogle Scholar
Fischer, S., Bessert-Nettelbeck, M., Kotrschal, A., & Taborsky, B. (2015). Rearing-group size determines social competence and brain structure in a cooperatively breeding cichlid. Am. Nat., 186, 123140.Google Scholar
Fischer, S., Zöttl, M., Groenewoud, F., & Taborsky, B. (2014). Group-size-dependent punishment of idle subordinates in a cooperative breeder where helpers pay to stay. Proc. R. Soc. B, 281, 20140184.Google Scholar
Fischer, S., Bohn, L., Oberhummer, E., Nyman, C., & Taborsky, B. (2017). Divergence of developmental trajectories is triggered interactively by early social and ecological experience in a cooperative breeder. Proc. Natl. Acad. Sci. USA, 114, E9300E9307.Google Scholar
Frommen, J. G. (2020). Aggressive communication in aquatic environments. Funct. Ecol., 34, 364380.Google Scholar
Frommen, J. G., Zala, S. M., Raveh, S., Schaedelin, F. C., Wernisch, B., & Hettyey, A. (2013). Investigating the effect of familiarity on kin recognition of three-spined stickleback (Gasterosteus aculeatus). Ethology, 119, 531539.Google Scholar
Gaston, A. J. (1978). The evolution of group territorial behavior and cooperative breeding. Am. Nat., 112, 10911100.Google Scholar
Gazda, S. K., Connor, R. C., Edgar, R. K., & Cox, F. (2005). A division of labour with role specialization in group–hunting bottlenose dolphins (Tursiops truncatus) off Cedar Key, Florida. Proc. R. Soc. B, 272, 135140.Google Scholar
Gerlach, G. & Lysiak, N. (2006). Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim. Behav., 71, 13711377.Google Scholar
Gerlach, G., Hodgins-Davis, A., MacDonald, B., & Hannah, R. C. (2007) Benefits of kin association: Related and familiar zebrafish larvae (Danio rerio) show improved growth. Behav. Ecol. Sociobiol., 61, 17651770.Google Scholar
Godin, J.-G. J. (1997). Behavioural Ecology of Teleost Fishes. Oxford: Oxford University Press.Google Scholar
Godin, J.-G. J. & Davis, S. A, (1995). Who dares, benefits: Predator approach behaviour in the guppy (Poecilia articulata) deters predator pursuit. Proc. R. Soc. B, 259, 193200.Google Scholar
Griesser, M., Drobniak, S. M., Nakagawa, S., & Botero, C. A. (2017). Family living sets the stage for cooperative breeding and ecological resilience in birds. PLoS Biol., 15, e2000483.Google Scholar
Griffiths, S. W. & Armstrong, J. D. (2002). Kin-biased territory overlap and food sharing among Atlantic salmon juveniles. J. Anim. Ecol., 71, 480486.Google Scholar
Groenewoud, F., Frommen, J. G., Josi, D., Tanaka, H., Jungwirth, A., & Taborsky, M. (2016). Predation risk drives social complexity in cooperative breeders. Proc. Natl. Acad. Sci. USA, 113, 41044109.Google Scholar
Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445, 429432.Google Scholar
Gross, M. R. & MacMillan, A. M. (1981). Predation and the evolution of colonial nesting in bluegill sunfish (Lepomis macrochirus). Behav. Ecol. Sociobiol., 8, 163174.Google Scholar
Gunaydin, L. A., Grosenick, L., Finkelstein, J. C., Kauvar, I. V., Fenno, L. E., Adhikari, A., Lammel, S., Mirzabekov, J. J., Airan, R. D., Zalocusky, K. A., Tye, K. M., Anikeeva, P., Malenka, R. C., & Deisseroth, K. (2014) Natural neural projection dynamics underlying social behavior. Cell, 157, 15351551.Google Scholar
Hamilton, W. D. (1963). The evolution of altruistic behavior. Am. Nat., 97, 354356.Google Scholar
Hamilton, W. D. (1964a). The genetical evolution of social behaviour I. J. Theoret. Biol., 7, 116.Google Scholar
Hamilton, W. D. (1964b). The genetical evolution of social behaviour II. J. Theoret. Biol., 7, 1752.Google Scholar
Hart, M. K., Kratter, A. W., & Crowley, P. H. (2016). Partner fidelity and reciprocal investments in the mating system of a simultaneous hermaphrodite. Behav. Ecol., 27, 14711479.Google Scholar
Harvey-Girard, E., Tweedle, J., Ironstone, J., Cuddy, M., Ellis, W., & Maler, L. (2010). Long-term recognition memory of individual conspecifics is associated with telencephalic expression of Egr-1 in the electric fish Apteronotus leptorhynchus. J. Comp. Neurol., 518, 26662692.Google Scholar
Heg, D. & Bachar, Z. (2006). Cooperative breeding in the Lake Tanganyika cichlid Julidochromis ornatus. Environ. Biol. Fish, 76, 265281.Google Scholar
Heg, D., Bachar, Z., & Taborsky, M. (2005). Cooperative breeding and group structure in the Lake Tanganyika cichlid Neolamprologus savoryi. Ethology, 111, 10171043.Google Scholar
Hellmann, J. K., Sovic, M. G., Gibbs, H. L., Reddon, A. R., O’Connor, C. M., Ligocki, I. Y., Marsh‐Rollo, S., Balshine, S., & Hamilton, I. M. (2016). Within‐group relatedness is correlated with colony‐level social structure and reproductive sharing in a social fish. Mol. Ecol., 25, 40014013.Google Scholar
Hesse, S., Anaya-Rojas, J. M., Frommen, J. G., & Thünken, T. (2015a). Kinship reinforces cooperative predator inspection in a cichlid fish. J. Evol. Biol., 28, 20882096.Google Scholar
Hesse, S., Anaya-Rojas, J, Frommen, J. G., & Thünken, T. (2015b). Social deprivation affects cooperative predator inspection in a cichlid fish. R. Soc. Open Sci., 2, 140451.Google Scholar
Hori, M. (1997). Structure of Littoral Fish Communities Organized by Their Feeding Activities. In Kawanabe, H., Hori, M., & Nagoshi, M. (Eds.), Fish Communities in Lake Tanganyika (pp. 277298). Kyoto: Kyoto University Press.Google Scholar
Josi, D., Taborsky, M., & Frommen, J. G. (2019). First field evidence for alloparental egg care in cooperatively breeding fish. Ethology, 125, 164169.Google Scholar
Josi, D., Taborsky, M., & Frommen, J. G. (2020a). Task-dependent helping behaviour is mediated by the presence of young in the cooperatively breeding cichlid Neolamprologus savoryi. Anim. Behav., 160, 3542.Google Scholar
Josi, D., Freudiger, A., Taborsky, M., & Frommen, J. G. (2020b) Experimental predator intrusions in a cooperative breeder reveal threat-dependent task partitioning. Behav. Ecol., 31, 13691378.Google Scholar
Jungwirth, A. & Taborsky, M. (2015). First- and second-order sociality determine survival and reproduction in cooperative cichlids. Proc. R. Soc. B, 282, 20151971.Google Scholar
Jungwirth, A., Josi, D., Walker, J., & Taborsky, M. (2015). Benefits of coloniality: Communal defence saves anti-predator effort in cooperative breeders. Funct. Ecol., 29, 12181224.Google Scholar
Kasper, C., Vierbuchen, M., Ernst, U., Fischer, S., Radersma, R., Raulo, A., Cunha-Saraiva, F., Wu, M., Mobley, K. B., & Taborsky, B. (2017) Genetics and developmental biology of cooperation. Mol. Ecol., 26, 43644377.Google Scholar
Kelly, A. M. & Vitousek, M. N. (2017) Dynamic modulation of sociality and aggression: An examination of plasticity within endocrine and neuroendocrine systems. Phil. Trans. R. Soc. B, 372, 20160243.Google Scholar
Koenig, W. D. & Dickinson, J. L. (2016). Cooperative Breeding in Vertebrates. Cambridge: Cambridge University Press.Google Scholar
Kohda, M., Jordan, L. A., Hotta, T., Kosaka, N., Karino, K., Tanaka, H., Taniyama, M., & Takeyama, T. (2015) Facial recognition in a group-living cichlid fish. PLoS One, 10, e0142552.Google Scholar
Kramer, K. L. (2010). Cooperative breeding and its significance to the demographic success of humans. Ann. Rev. Anthropol., 39, 417436.Google Scholar
Laglbauer, B. J. L., Afonso, P., Donnay, A., Santos, R. S., & Fontes, J. (2017). Reproductive synchrony in a temperate damselfish, Chromis limbata. Acta. Ethol., 20, 297311.Google Scholar
Lukas, D. & Clutton-Brock, T. (2012). Cooperative breeding and monogamy in mammalian societies. Proc. R. Soc. B, 279, 21512156.Google Scholar
Magurran, A. E. & Higham, A. (1988). Information transfer across fish shoals under predator threat. Ethology, 78, 153158.CrossRefGoogle Scholar
Makowicz, A. M., Moore, T., & Schlupp, I. (2018). Clonal fish are more aggressive to distant relatives in a low resource environment. Behaviour, 155, 351367.Google Scholar
Maruska, K., Soares, M. C., Lima-Maximino, M., de Siqueira-Silva, D. H., & Maximino, C. (2019). Social plasticity in the fish brain: Neuroscientific and ethological aspects. Brain Res., 1711, 156172.Google Scholar
Mehlis, M., Bakker, T. C. M., Langen, K., & Frommen, J. G. (2009). Cain and Abel reloaded? Kin recognition and male-male aggression in three-spined sticklebacks Gasterosteus aculeatus L. J. Fish Biol., 75, 21542162.Google Scholar
Mendonça, R., Soares, M. C., Bshary, R., & Oliveira, R. F. (2013). Arginine vasotocin neuronal phenotype and interspecific cooperative behaviour. Brain Behav. Evol., 82, 166176.Google Scholar
Messias, J. P., Paula, J. R, Grutter, A. S., Bshary, R., & Soares, M. C. (2016a). Dopamine disruption increases negotiation for cooperative interactions in a fish. Sci. Rep., 6, 20817.Google Scholar
Messias, J. P., Santos, T. P., Pinto, M., & Soares, M. C. (2016b). Stimulation of dopamine D1 receptor improves learning capacity in cooperating cleaner fish. Proc. R. Soc. B, 283, 20152272.Google Scholar
Milinski, M. (1987). Tit for tat in sticklebacks and the evolution of cooperation. Nature, 325: 433435.Google Scholar
Milinski, M. (1994). Long-term-memory for food patches and implications for ideal free distributions in sticklebacks. Ecology, 75, 11501156.Google Scholar
Milinski, M., Pfluger, D., Külling, D., & Kettler, R. (1990). Do sticklebacks cooperate repeatedly in reciprocal pairs? Behav. Ecol. Sociobiol., 27, 1721.Google Scholar
Milinski, M., Lüthi, J. H., Eggler, R., & Parker, G. A. (1997). Cooperation under predation risk: Experiments on costs and benefits. Proc. R. Soc. B., 264, 831837.Google Scholar
Naef, J. & Taborsky, M. (2020). Commodity-specific punishment for experimentally induced defection in cooperatively breeding fish. R. Soc. Open Sci., 7, 191808.Google Scholar
Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior: A node in the mammalian social behavior network. Ann. NY Acad. Sci., 877, 242257.Google Scholar
Nyman, C., Fischer, S., Aubin-Horth, N., & Taborsky, B. (2018). Evolutionary conserved neural signature of early life stress affects animal social competence. Proc. R. Soc. B, 285, 20172344.Google Scholar
O’Connell, L. A. & Hofmann, H. A. (2011). The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. J. Comp. Neurol., 519, 35993639.Google Scholar
Olsen, K. H. & Jarvi, T. (1997). Effects of kinship on aggression and RNA content in juvenile Arctic charr. J. Fish Biol., 51, 422435.Google Scholar
Pennisi, E. (2005). How did cooperative behavior evolve? Science, 309, 93.Google Scholar
Pitcher, T. (1992) Who dares, wins: The function and evolution of predator inspection behavior in shoaling fish. Neth. J. Zool., 42, 371391.Google Scholar
Quiñones, A. E., van Doorn, G. S., Pen, I., Weissing, F. J., & Taborsky, M. (2016). Negotiation and appeasement can be more effective drivers of sociality than kin selection. Phil. Trans. R. Soc. B, 371, 20150089.Google Scholar
Raihani, N. J., Grutter, A. S., & Bshary, R. (2010). Punishers benefit from third-party punishment in fish. Science, 327, 171.Google Scholar
Raihani, N. J., Thornton, A., & Bshary, R. (2012). Punishment and cooperation in nature. Trends Ecol. Evol., 27, 288295.Google Scholar
Reddon, A. R., O’Connor, C. M., Marsh-Rollo, S. E, & Balshine, S. (2012). Effects of isotocin on social responses in a cooperatively breeding fish. Anim. Behav. 84, 753760.Google Scholar
Reddon, A. R., O’Connor, C. M., Nesjan, E., Cameron, J., Hellmann, J. K., Ligocki, I. Y., Marsh-Rollo, S. E., Hamilton, I. M., Wylie, D. R., Hurd, P. L., & Balshine, S. (2017). Isotocin neuronal phenotypes differ among social systems in cichlid fishes. R. Soc. Open Sci., 4, 170350.Google Scholar
Reyes-Contreras, M., Glauser, G., Rennison, D. J., & Taborsky, B. (2019). Early-life manipulation of cortisol and its receptor alters stress axis programming and social competence. Phil. Trans. R. Soc. B, 374, 20180119.Google Scholar
Riehl, C. (2013). Evolutionary routes to non-kin cooperative breeding in birds. Proc. R. Soc. B, 280, 20150090.Google Scholar
Riehl, C. & Frederickson, M. E. (2016). Cheating and punishment in cooperative animal societies. Phil. Trans. R. Soc. B, 371, 20150090.Google Scholar
Schädelin, F. C., Fischer, S., & Wagner, R. H. (2012). Reduction in predator defense in the presence of neighbors in a colonial fish. PLoS One, 7, e35833.Google Scholar
Schütz, D., Ocana, S. W., Maan, M. E., & Taborsky, M. (2016). Sexual selection promotes colonial breeding in shell-brooding cichlid fish. Anim. Behav., 112, 153161.Google Scholar
Schweinfurth, M. K. (2021). Reciprocal cooperation: Norway rats (Rattus norvegicus) as an example. In A. B. Kaufmann, J. Call, & J. C. Kaufmann (Eds.), The Cambridge Handbook of Animal Cognition (pp. 343–361). Cambridge: Cambridge University Press.Google Scholar
Schweinfurth, M. K. & Call, J. (2019a). Reciprocity: Different behavioural strategies, cognitive mechanisms and psychological processes. Learn. Behav., 47, 284301.Google Scholar
Schweinfurth, M. K. & Call, J. (2019b). Revisiting the possibility of reciprocal help in non-human primates. Neurosci. Biobehav. Rev., 104, 7386.Google Scholar
Soares, M. C., Bshary, R., Mendonça, R., Grutter, A. S., & Oliveira, R. F. (2012). Arginine vasotocin regulation of interspecific cooperative behaviour in a cleaner fish. PLoS One, 7, e39583.Google Scholar
Soares, M. C., Cardoso, S. C., Grutter, A. S., Oliveira, R. F., & Bshary, R. (2014). Cortisol mediates cleaner wrasse switch from cooperation to cheating and tactical deception. Horm. Behav., 66, 346350.Google Scholar
Steinegger, M., Roche, D. G., & Bshary, R. (2018). Simple decision rules underlie collaborative hunting in yellow saddle goatfish. Proc. R. Soc. B, 285, 20172488.Google Scholar
Strübin, C., Steinegger, M., & Bshary, R. (2011). On group living and collaborative hunting in the yellow saddle goatfish (Parupeneus cyclostomus). Ethology, 117, 961969.Google Scholar
Taborsky, M. (2016). Cichlid Fishes: A Model for the Integrative Study of Social Behavior. In Koenig, W. D. & Dickinson, J. L. (Eds.), Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (pp. 272293). Cambridge: Cambridge University Press.Google Scholar
Taborsky, B. & Oliveira, R. F. (2012). Social competence: An evolutionary approach. Trends Ecol. Evol., 27, 679688.Google Scholar
Taborsky, B., Arnold, C., Junker, J., & Tschopp, A. (2012). The early social environment affects social competence in a cooperative breeder. Anim. Behav., 83, 10671074.Google Scholar
Taborsky, B., Tschirren, L., Meunier, C., & Aubin-Horth, N. (2013). Stable reprogramming of brain transcription profiles by the early social environment in a cooperatively breeding fish. Proc. R. Soc. B, 280, 20122605.Google Scholar
Taborsky, M., Frommen, J. G., & Riehl, C. (2016). Correlated pay-offs are key to cooperation. Phil. Trans. R. Soc. B, 371, 20150084.Google Scholar
Taborsky, M. & Wong, M. (2017). Sociality in Fishes. In Rubenstein, D. R. & Abbot, P. (Eds.), Comparative Social Evolution (pp. 354389). Cambridge: Cambridge University Press.Google Scholar
Taborsky, M., Koblmüller, S., Sefc, K. M., McGee, M., Kohda, M., Awata, S., Hori, M., & Frommen, J. G. (2019). Insufficient data render comparative analyses of the evolution of cooperative breeding mere speculation: A reply to Dey et al., Ethology, 125, 851854.Google Scholar
Tanaka, H., Heg, D., Takeshima, H., Takeyama, T., Awata, S., Nishida, M., & Kohda, M. (2015). Group composition, relatedness, and dispersal in the cooperatively breeding cichlid Neolamprologus obscurus. Behav. Ecol. Sociobiol., 69, 169181.Google Scholar
Tanaka, H., Frommen, J. G., Engqvist, L., & Kohda, M. (2018a). Task-dependent workload adjustment of female breeders in a cooperatively breeding fish. Behav. Ecol., 29, 221229.Google Scholar
Tanaka, H., Frommen, J. G., Koblmüller, S., Sefc, K. M., McGee, M., Kohda, M., Awata, S., Hori, M., & Taborsky, M. (2018b). Evolutionary transitions to cooperative societies in fishes revisited. Ethology, 124, 777789.Google Scholar
Tanaka, H., Frommen, J. G., & Kohda, M. (2018c). Helpers increase food abundance in the territory of a cooperatively breeding fish. Behav. Ecol. Sociobiol., 72, 51.Google Scholar
Tanaka, H., Kohda, M., & Frommen, J (2018d). Helpers increase the reproductive success of breeders in the cooperatively breeding cichlid Neolamprologus obscurus. Behav. Ecol. Sociobiol., 72, 152.Google Scholar
Thünken, T., Bakker, T. C. M., Baldauf, S. A., & Kullmann, H. (2007). Active inbreeding in a cichlid fish and its adaptive significance. Curr. Biol., 17, 225229.Google Scholar
Trivers, R. L. (1971). The evolution of reciprocal altruism. Quart. Rev. Biol., 46, 3557.Google Scholar
Tyler, W. A. (1995). The adaptive significance of colonial nesting in a coral-reef fish. Anim. Behav., 49, 949966.Google Scholar
Vail, A. L., Manica, A., & Bshary, R. (2013). Referential gestures in fish collaborative hunting. Nat. Comm., 4, 1765.Google Scholar
Ward, A. J. W. & Hart, P. J. B. (2003). The effects of kin and familiarity on interactions between fish. Fish Fish., 4, 348358.Google Scholar
West, S. A., Pen, I., & Griffin, A. S. (2002). Cooperation and competition between relatives. Science, 296, 7275.Google Scholar
Wickens, J. R., Budd, C. S., Hyland, B. I., & Arbuthnott, G. W. (2007). Striatal contributions to reward and decision making: Making sense of regional variations in a reiterated processing matrix. Ann. NY Acad. Sci., 1104, 192212.Google Scholar
Zöttl, M., Heg, D., Chervet, N., & Taborsky, M. (2013). Kinship reduces alloparental care in cooperative cichlids where helpers pay-to-stay. Nat. Comm., 4, 1341.Google Scholar

Bibliography

Adolphs, R. (2008). Fear, faces, and the human amygdala. Current Opinion in Neurobiology, 18(2), 166172. https://doi.org/10.1016/j.conb.2008.06.006Google Scholar
Aristotle, (1980). The Physics. Cambridge, MA: Harvard University Press.Google Scholar
Avarguès-Weber, A., Portelli, G., Benard, J., Dyer, A., & Giurfa, M. (2010). Configural processing enables discrimination and categorization of face-like stimuli in honeybees. Journal of Experimental Biology, 213(4), 593601. https://doi.org/10.1242/jeb.039263Google Scholar
Ball, W. & Tronick, E. (1971). Infant responses to impending collision: Optical and real. Science (New York, N.Y.), 171(3973), 818820.Google Scholar
Barrett, C. H. (2005). Adaptations to Predators and Preys. In Buss, D. M. (Ed.), The Handbook of Evolutionary Psychology (pp. 200223). New York: John Wiley & Sons.Google Scholar
Bates, H. W. (1862). Contributions to an insect fauna of the Amazon valley (Lepidoptera: Heliconidae). Biological Journal of the Linnean Society, 16(1), 4154. https://doi.org/10.1111/j.1095-8312.1981.tb01842.xGoogle Scholar
Bern, C. & Herzog, H. A. (1994). Stimulus control of defensive behaviors of garter snakes (Thamnophis sirtalis): Effects of eye spots and movement. Journal of Comparative Psychology, 108(4), 353357. https://doi.org/10.1037/0735-7036.108.4.353Google Scholar
Bona, S. D., Valkonen, J. K., López-Sepulcre, A., & Mappes, J. (2015). Predator mimicry, not conspicuousness, explains the efficacy of butterfly eyespots. Procedures of the Royal Society B, 282(1806), 20150202. https://doi.org/10.1098/rspb.2015.0202Google Scholar
Brown, J., Kaplan, G., Rogers, L. J., & Vallortigara, G. (2010). Perception of biological motion in common marmosets (Callithrix jacchus): By females only. Animal Cognition, 13(3), 555564. https://doi.org/10.1007/s10071-009-0306-0Google Scholar
Buiatti, M., Di Giorgio, E., Piazza, M., Polloni, C., Menna, G., Taddei, F., … & Vallortigara, G. (2019). Cortical route for facelike pattern processing in human newbornsProceedings of the National Academy of Sciences116(10), 46254630. https://doi.org/10.1073/pnas.1812419116Google Scholar
Burger, J. (1998). Antipredator behaviour of hatchling snakes: Effects of incubation temperature and simulated predators. Animal Behaviour, 56(3), 547–553. https://doi.org/10.1006/anbe.1998.0809Google Scholar
Burger, J., Gochfeld, M., & Murray, B. G. (1991). Role of a predator’s eye size in risk perception by basking black iguana. Ctenosaura similis. Animal Behaviour, 42(3), 471476. https://doi.org/10.1016/S0003-3472(05)80046-6Google Scholar
Burger, J., Gochfeld, M., & Murray, B. G. (1992). Risk discrimination of eye contact and directness of approach in black iguanas (Ctenosaura similis). Journal of Comparative Psychology, 106(1), 97101. https://doi.org/10.1037/0735-7036.106.1.97Google Scholar
Burghardt, G. M. & Greene, H. W. (1988). Predator simulation and duration of death feigning in neonate hognose snakes. Animal Behaviour, 36(6), 18421844. https://doi.org/10.1016/S0003-3472(88)80127-1Google Scholar
Butler, A. B. & Hodos, W. (2005). Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. New York: John Wiley & Sons.Google Scholar
Catania, K. C. (2009). Tentacled snakes turn C-starts to their advantage and predict future prey behavior. Proceedings of the National Academy of Sciences, 106(27), 1118311187. https://doi.org/10.1073/pnas.0905183106Google Scholar
Clara, E., Regolin, L., Vallortigara, G., & Rogers, L. J. (2009). Chicks prefer to peck at insect-like elongated stimuli moving in a direction orthogonal to their longer axis. Animal Cognition, 12(6), 755765. https://doi.org/10.1007/s10071-009-0235-yGoogle Scholar
Coss, R. G. (1978a). Development of face aversion by the jewel fish (Hemichromis bimaculatus, Gill 1862). Zeitschrift Für Tierpsychologie, 48(1), 2846. https://doi.org/10.1111/j.1439-0310.1978.tb00246.xGoogle Scholar
Coss, R. G. (1978b). Perceptual determinants of gaze aversion by the lesser mouse lemur (Microcebus Murinus): The role of two facing eyes. Behaviour, 64(3), 248269. https://doi.org/10.1163/156853978X00053Google Scholar
Coss, R. G. (1979). Delayed plasticity of an instinct: Recognition and avoidance of 2 facing eyes by the jewel fish. Developmental Psychobiology, 12(4), 335345. https://doi.org/10.1002/dev.420120408Google Scholar
Day-Brown, J. D., Wei, H., Chomsung, R. D., Petry, H. M., & Bickford, M. E. (2010). Pulvinar projections to the striatum and amygdala in the tree shrew. Frontiers in Neuroanatomy, 4. https://doi.org/10.3389/fnana.2010.00143Google Scholar
Dean, P., Redgrave, P., & Westby, G. W. M. (1989). Event or emergency? Two response systems in the mammalian superior colliculus. Trends in Neurosciences, 12(4), 137147. https://doi.org/10.1016/0166-2236(89)90052-0Google Scholar
De Franceschi, G., Vivattanasarn, T., Saleem, A. B., & Solomon, S. G. (2016). Vision guides selection of freeze or flight defense strategies in mice. Current Biology, 26(16), 21502154. https://doi.org/10.1016/j.cub.2016.06.006Google Scholar
Dewell, R. B. & Gabbiani, F. (2012). Escape behavior: Linking neural computation to action. Current Biology, 22(5), R152R153. https://doi.org/10.1016/j.cub.2012.01.034Google Scholar
Di Giorgio, E., Lunghi, M., Simion, F., & Vallortigara, G. (2016). Visual cues of motion that trigger animacy perception at birth: The case of self-propulsion. Developmental Science, 20(4), e12394. https://doi.org/10.1111/desc.12394Google Scholar
Di Giorgio, E., Loveland, J. L., Mayer, U., Rosa-Salva, O., Versace, E., & Vallortigara, G. (2017). Filial responses as predisposed and learned preferences: Early attachment in chicks and babies. Behavioural Brain Research, 325(Pt B), 90104. https://doi.org/10.1016/j.bbr.2016.09.018Google Scholar
Eaton, R. C., Bombardieri, R. A., & Meyer, D. L. (1977). The Mauthner-initiated startle response in teleost fish. Journal of Experimental Biology, 66(1), 6581.Google Scholar
Ebbesson, S. O. E. (1972). A proposal for a common nomenclature for some optic nuclei in vertebrates and the evidence for a common origin of two such cell groups. Brain, Behavior and Evolution, 6(1–6), 7591. https://doi.org/10.1159/000123698Google Scholar
Emery, N. J. (2000). The eyes have it: The neuroethology, function and evolution of social gaze. Neuroscience & Biobehavioral Reviews, 24(6), 581604. https://doi.org/10.1016/S0149-7634(00)00025-7Google Scholar
Ewert, J.-P. (1987). Neuroethology of releasing mechanisms: Prey-catching in toads. Behavioral and Brain Sciences, 10(3), 337368. https://doi.org/10.1017/S0140525X00023128Google Scholar
Ewert, J.-P. (2004). Motion Perception Shapes the Visual World of Amphibians. In Prete, F. R. (Ed.), Complex Worlds from Simpler Nervous Systems (pp. 177260). Cambridge: MIT Press.Google Scholar
Farroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005). Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 1724517250. https://doi.org/10.1073/pnas.0502205102Google Scholar
Fotowat, H. & Gabbiani, F. (2007). Relationship between the phases of sensory and motor activity during a looming-evoked multistage escape behavior. Journal of Neuroscience, 27(37), 1004710059. https://doi.org/10.1523/JNEUROSCI.1515-07.2007Google Scholar
Fotowat, H., Harrison, R. R., & Gabbiani, F. (2011). Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors. Neuron, 69(1), 147158. https://doi.org/10.1016/j.neuron.2010.12.007Google Scholar
Frost, B. J. & Nakayama, K. (1983). Single visual neurons code opposing motion independent of direction. Science, 220(4598), 744745.Google Scholar
Frost, B. J., Cavanagh, P., & Morgan, B. (1988). Deep tectal cells in pigeons respond to kinematograms. Journal of Comparative Physiology A, 162(5), 639647. https://doi.org/10.1007/BF01342639Google Scholar
van der Gaag, C., Minderaa, R. B., & Keysers, C. (2007). The BOLD signal in the amygdala does not differentiate between dynamic facial expressions. Social Cognitive and Affective Neuroscience, 2(2), 93103. https://doi.org/10.1093/scan/nsm002Google Scholar
Gallup, G. G., Cummings, W. H., & Nash, R. F. (1972). The experimenter as an independent variable in studies of animal hypnosis in chickens (Gallus gallus). Animal Behaviour, 20(1), 166169. https://doi.org/10.1016/S0003-3472(72)80187-8Google Scholar
Goodson, J. L. & Kingsbury, M. A. (2013). What’s in a name? Considerations of homologies and nomenclature for vertebrate Social Behavior Networks. Hormones and Behavior, 64(1), 103112. https://doi.org/10.1016/j.yhbeh.2013.05.006Google Scholar
Guthrie, S. E. & Guthrie, S. (1993). Faces in the Clouds: A New Theory of Religion. Oxford: Oxford University Press.Google Scholar
Harlow, H. F. (1958). The nature of love. American Psychologist, 13(12), 673685. https://doi.org/10.1037/h0047884Google Scholar
Harlow, H. F. & Suomi, S. J. (1971). Social recovery by isolation-reared monkeys. Proceedings of the National Academy of Sciences, 68(7), 15341538. https://doi.org/10.1073/pnas.68.7.1534Google Scholar
Hatschek, B. (1888): Lehrbuch der Zoologie, 1. Lieferung (pp. 1–144); Jena (Gustav Fischer)Google Scholar
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223233. https://doi.org/10.1016/S1364-6613(00)01482-0Google Scholar
Headland, T. N. & Greene, H. W. (2011). Hunter–gatherers and other primates as prey, predators, and competitors of snakes. Proceedings of the National Academy of Sciences, 108(52), E1470E1474. https://doi.org/10.1073/pnas.1115116108Google Scholar
Hébert, M., Versace, E., & Vallortigara, G. (2019). Inexperienced preys know when to flee or to freeze in front of a threatProceedings of the National Academy of Sciences116(46), 2291822920. https://doi.org/10.1073/pnas.1915504116Google Scholar
Hennig, C. W. (1977). Effects of simulated predation on tonic immobility in Anolis carolinensis: The role of eye contact. Bulletin of the Psychonomic Society, 9(4), 239242. https://doi.org/10.3758/BF03336987Google Scholar
Hernik, M., Fearon, P., & Csibra, G. (2014). Action anticipation in human infants reveals assumptions about anteroposterior body-structure and action. Procedures of the Royal Society B, 281(1781), 20133205. https://doi.org/10.1098/rspb.2013.3205Google Scholar
Hoffman, K. L., Gothard, K. M., Schmid, M. C., & Logothetis, N. K. (2007). Facial-expression and gaze-selective responses in the monkey amygdala. Current Biology, 17(9), 766772. https://doi.org/10.1016/j.cub.2007.03.040Google Scholar
Horn, G. (2004). Pathways of the past: The imprint of memory. Nature Reviews Neuroscience, 5(2), 108120. https://doi.org/10.1038/nrn1324Google Scholar
Horn, G. & McCabe, B. J. (1984). Predispositions and preferences. Effects on imprinting of lesions to the chick brain. Animal Behaviour, 32(1), 288292. https://doi.org/10.1016/S0003-3472(84)80349-8Google Scholar
Ikebuchi, M., Nanbu, S., Okanoya, K., Suzuki, R., & Bischof, H.-J. (2012). Very early development of nucleus taeniae of the amygdala. Brain, Behavior and Evolution, 81(1), 1226. https://doi.org/10.1159/000342785Google Scholar
Ingle, D. (1973). Two visual systems in the frog. Science, 181(4104), 10531055. https://doi.org/10.1126/science.181.4104.1053Google Scholar
Isbell, L. A. (2009). The Fruit, the Tree, and the Serpent. London: Harvard University Press.Google Scholar
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6(10), 766774. https://doi.org/10.1038/nrn1766Google Scholar
Johnson, M. H., Bolhuis, J. J., & Horn, G. (1985). Interaction between acquired preferences and developing predispositions during imprinting. Animal Behaviour, 33(3), 10001006. https://doi.org/10.1016/S0003-3472(85)80034-8Google Scholar
Johnson, M. H. & Horn, G. (1986). Dissociation of recognition memory and associative learning by a restricted lesion of the chick forebrain. Neuropsychologia, 24(3), 329340. https://doi.org/10.1016/0028-3932(86)90018-7Google Scholar
Johnson, M. H. & Horn, G. (1987). The role of a restricted region of the chick forebrain in the recognition of individual conspecifics. Behavioural Brain Research, 23(3), 269275. https://doi.org/10.1016/0166-4328(87)90027-1Google Scholar
Johnson, M. H. & Horn, G. (1988). Development of filial preferences in dark-reared chicks. Animal Behaviour, 36(3), 675683. https://doi.org/10.1016/S0003-3472(88)80150-7Google Scholar
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1), 119. https://doi.org/10.1016/0010-0277(91)90045-6CrossRefGoogle ScholarPubMed
Johnson, M. H., Senju, A., & Tomalski, P. (2015). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience & Biobehavioral Reviews, 50, 169179. https://doi.org/10.1016/j.neubiorev.2014.10.009Google Scholar
Jones, R. B. (1980). Reactions of male domestic chicks to two-dimensional eye-like shapes. Animal Behaviour, 28(1), 212218. https://doi.org/10.1016/S0003-3472(80)80025-XGoogle Scholar
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 43024311. https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997Google Scholar
Kasturiratne, A., Wickremasinghe, A. R., Silva, N. de, Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., … Silva, H. J. de. (2008). The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine, 5(11), e218. https://doi.org/10.1371/journal.pmed.0050218Google Scholar
King, J. G. Jr., Lettvin, J. Y., & Gruberg, E. R. (1999). Selective, unilateral, reversible loss of behavioral responses to looming stimuli after injection of tetrodotoxin or cadmium chloride into the frog optic nerve. Brain Research, 841(1–2), 2026. https://doi.org/10.1016/S0006-8993(99)01764-3Google Scholar
Kostyk, S. K. & Grobstein, P. (1982). Visual orienting deficits in frogs with various unilateral lesions. Behavioural Brain Research, 6(4), 379388. https://doi.org/10.1016/0166-4328(82)90019-5Google Scholar
Kovács, K., Kis, A., Kanizsár, O., Hernádi, A., Gácsi, M., & Topál, J. (2016). The effect of oxytocin on biological motion perception in dogs (Canis familiaris). Animal Cognition, 19(3), 513522. https://doi.org/10.1007/s10071-015-0951-4Google Scholar
Kutschera, U., Burghagen, H., & Ewert, J. P. (2008). Prey-Catching Behaviour in Mudskippers and Toads: A Comparative Analysis. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=AV20120141573Google Scholar
Larsch, J. & Baier, H. (2018). Biological motion as an innate perceptual mechanism driving social affiliation. BioRxiv, 347419. https://doi.org/10.1101/347419Google Scholar
Leonard, C. M., Rolls, E. T., Wilson, F. A. W., & Baylis, G. C. (1985). Neurons in the amygdala of the monkey with responses selective for faces. Behavioural Brain Research, 15(2), 159176. https://doi.org/10.1016/0166-4328(85)90062-2Google Scholar
Leopold, D. A. & Rhodes, G. (2010). A comparative view of face perception. Journal of Comparative Psychology, 124(3), 233251. https://doi.org/10.1037/a0019460Google Scholar
Leventhal, A. G., Rodieck, R. W., & Dreher, B. (1981). Retinal ganglion cell classes in the Old World monkey: Morphology and central projections. Science, 213(4512), 11391142. https://doi.org/10.1126/science.7268423Google Scholar
Liu, J., Li, J., Feng, L., Li, L., Tian, J., & Lee, K. (2014). Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Cortex, 53, 6077. https://doi.org/10.1016/j.cortex.2014.01.013Google Scholar
LoBue, V. & DeLoache, J. S. (2010). Superior detection of threat-relevant stimuli in infancy. Developmental Science, 13(1), 221228. https://doi.org/10.1111/j.1467-7687.2009.00872.xGoogle Scholar
Lorenzi, E., Mayer, U., Rosa-Salva, O., & Vallortigara, G. (2017). Dynamic features of animate motion activate septal and preoptic areas in visually naïve chicks (Gallus gallus). Neuroscience, 354, 5468. https://doi.org/10.1016/j.neuroscience.2017.04.022Google Scholar
Lorenzi, E., Pross, A., Rosa Salva, O., Versace, E., Sgadò, P., & Vallortigara, G. (2019). Embryonic exposure to valproic acid affects social predispositions for dynamic cues of animate motion in newly-hatched chicksFrontiers in Physiology10, 501. https://doi.org/10.3389/fphys.2019.00501Google Scholar
Loveland, J. L., Stewart, M. G., & Vallortigara, G. (2019). Effects of oxytocin‐family peptides and substance P on locomotor activity and filial preferences in visually naïve chicks. European Journal of Neuroscience. https://doi.org/10.1111/ejn.14520Google Scholar
Luksch, H., Cox, K., & Karten, H. J. (1998). Bottlebrush dendritic endings and large dendritic fields: Motion-detecting neurons in the tectofugal pathway. Journal of Comparative Neurology, 396(3), 399414. https://doi.org/10.1002/(SICI)1096-9861(19980706)396:3<399::AID-CNE9>3.0.CO;2-YGoogle Scholar
Maior, R. S., Hori, E., Barros, M., Teixeira, D. S., Tavares, M. C. H., Ono, T., … Tomaz, C. (2011). Superior colliculus lesions impair threat responsiveness in infant capuchin monkeys. Neuroscience Letters, 504(3), 257260. https://doi.org/10.1016/j.neulet.2011.09.042Google Scholar
Maior, R. S., Hori, E., Uribe, C. E., Saletti, P. G., Ono, T., Nishijo, H., & Tomaz, C. (2012). A role for the superior colliculus in the modulation of threat responsiveness in primates: Toward the ontogenesis of the social brain. Revneuro, 23(5–6), 697706. https://doi.org/10.1515/revneuro-2012-0055Google Scholar
Manteuffel, G. & Fiseifis, S. (1990). Configuration-sensitive visual responses in the superior colliculus of the house mouse (Mus musculus domesticus). Brain, Behavior and Evolution, 35(3), 176184. https://doi.org/10.1159/000115865Google Scholar
Martínez-García, F., Novejarque, A., & Lanuza, E. (2008). Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Research Bulletin, 75(2–4), 206213. https://doi.org/10.1016/j.brainresbull.2007.10.019Google Scholar
Mascalzoni, E., Regolin, L., & Vallortigara, G. (2010). Innate sensitivity for self-propelled causal agency in newly hatched chicks. Proceedings of the National Academy of Sciences, 107(9), 44834485. https://doi.org/10.1073/pnas.0908792107Google Scholar
Masino, T. & Knudsen, E. I. (1992). Anatomical pathways from the optic tectum to the spinal cord subserving orienting movements in the barn owl. Experimental Brain Research, 92(2), 194208. https://doi.org/10.1007/BF00227965Google Scholar
Mayer, U., Rosa-Salva, O., Lorenzi, E., & Vallortigara, G. (2016). Social predisposition dependent neuronal activity in the intermediate medial mesopallium of domestic chicks (Gallus gallus domesticus). Behavioural Brain Research, 310, 93102. https://doi.org/10.1016/j.bbr.2016.05.019Google Scholar
Mayer, U., Rosa-Salva, O., Morbioli, F., & Vallortigara, G. (2017). The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (Gallus gallus). European Journal of Neuroscience, 45(3), 423432. https://doi.org/10.1111/ejn.13484Google Scholar
Mayer, U., Rosa-Salva, O., & Vallortigara, G. (2017). First exposure to an alive conspecific activates septal and amygdaloid nuclei in visually-naïve domestic chicks (Gallus gallus). Behavioural Brain Research, 317, 7181. https://doi.org/10.1016/j.bbr.2016.09.031Google Scholar
Morton, J. & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98(2), 164181.Google Scholar
Nakano, T., Higashida, N., & Kitazawa, S. (2013). Facilitation of face recognition through the retino-tectal pathway. Neuropsychologia, 51(10), 20432049. https://doi.org/10.1016/j.neuropsychologia.2013.06.018Google Scholar
Nakayasu, T. & Watanabe, E. (2013). Biological motion stimuli are attractive to medaka fish. Animal Cognition, 17(3), 559575. https://doi.org/10.1007/s10071-013-0687-yGoogle Scholar
Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior a node in the mammalian social behavior network. Annals of the New York Academy of Sciences, 877(1), 242257. https://doi.org/10.1111/j.1749-6632.1999.tb09271.xGoogle Scholar
Nguyen, M. N., Hori, E., Matsumoto, J., Tran, A. H., Ono, T., & Nishijo, H. (2013). Neuronal responses to face-like stimuli in the monkey pulvinar. European Journal of Neuroscience, 37(1), 3551. https://doi.org/10.1111/ejn.12020Google Scholar
Nguyen, M. N., Matsumoto, J., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., … Nishijo, H. (2014). Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00085Google Scholar
Norman, M. D., Finn, J., & Tregenza, T. (2001). Dynamic mimicry in an Indo–Malayan octopus. Proceedings of the Royal Society of London B: Biological Sciences, 268(1478), 17551758. https://doi.org/10.1098/rspb.2001.1708Google Scholar
O’Brien, T. J. & Dunlap, W. P. (1975). Tonic immobility in the blue crab (Callinectes sapidus, Rathbun): Its relation to threat of predation. Journal of Comparative and Physiological Psychology, 89(1), 8694. https://doi.org/10.1037/h0076425Google Scholar
O’Connell, L. A. & Hofmann, H. A. (2011). The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. The Journal of Comparative Neurology, 519(18), 35993639. https://doi.org/10.1002/cne.22735Google Scholar
Öhman, A. & Soares, J. J. (1993). On the automatic nature of phobic fear: Conditioned electrodermal responses to masked fear-relevant stimuli. Journal of Abnormal Psychology, 102(1), 121132.Google Scholar
Öhman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130(3), 466478. https://doi.org/10.1037/0096-3445.130.3.466Google Scholar
Öhman, A. (2005). The role of the amygdala in human fear: Automatic detection of threat. Psychoneuroendocrinology, 30(10), 953958. https://doi.org/10.1016/j.psyneuen.2005.03.019Google Scholar
Oliva, D., Medan, V., & Tomsic, D. (2007). Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). Journal of Experimental Biology, 210(5), 865880. https://doi.org/10.1242/jeb.02707Google Scholar
Pallus, A. C., Fleishman, L. J., & Castonguay, P. M. (2010). Modeling and measuring the visual detection of ecologically relevant motion by an anolis lizard. Journal of Comparative Physiology A, 196(1), 1. https://doi.org/10.1007/s00359-009-0487-7Google Scholar
Pavlova, M. A. (2012). Biological motion processing as a hallmark of social cognition. Cerebral Cortex, 22(5), 981995. https://doi.org/10.1093/cercor/bhr156Google Scholar
Perry, V. H. & Cowey, A. (1984). Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience, 12(4), 11251137. https://doi.org/10.1016/0306-4522(84)90007-1Google Scholar
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331348. https://doi.org/10.1006/nimg.2002.1087Google Scholar
Premack, D. (1990). The infant’s theory of self-propelled objects. Cognition, 36(1), 116.Google Scholar
Preuss, T., Osei-Bonsu, P. E., Weiss, S. A., Wang, C., & Faber, D. S. (2006). Neural representation of object approach in a decision-making motor circuit. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(13), 34543464. https://doi.org/10.1523/JNEUROSCI.5259-05.2006Google Scholar
Rodieck, R. W. & Watanabe, M. (1993). Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus. The Journal of Comparative Neurology, 338(2), 289303. https://doi.org/10.1002/cne.903380211Google Scholar
Rosa-Salva, O., Regolin, L., & Vallortigara, G. (2007). Chicks discriminate human gaze with their right hemisphere. Behavioural Brain Research, 177(1), 1521. https://doi.org/10.1016/j.bbr.2006.11.020Google Scholar
Rosa-Salva, O., Regolin, L., & Vallortigara, G. (2010). Faces are special for newly hatched chicks: Evidence for inborn domain-specific mechanisms underlying spontaneous preferences for face-like stimuli. Developmental Science, 13(4), 565577. https://doi.org/10.1111/j.1467-7687.2009.00914.xGoogle Scholar
Rosa-Salva, O., Farroni, T., Regolin, L., Vallortigara, G., & Johnson, M. H. (2011). The evolution of social orienting: Evidence from chicks (gallus gallus) and human newborns. PLoS One, 6(4), e18802. https://doi.org/10.1371/journal.pone.0018802Google Scholar
Rosa-Salva, O., Regolin, L., & Vallortigara, G. (2012). Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behavioural Brain Research, 228(1), 133143. https://doi.org/10.1016/j.bbr.2011.11.025Google Scholar
Rosa-Salva, O., Mayer, U., & Vallortigara, G. (2015). Roots of a social brain: Developmental models of emerging animacy-detection mechanisms. Neuroscience & Biobehavioral Reviews, 50, 150168. https://doi.org/10.1016/j.neubiorev.2014.12.015Google Scholar
Rosa-Salva, O., Grassi, M., Lorenzi, E., Regolin, L., & Vallortigara, G. (2016). Spontaneous preference for visual cues of animacy in naïve domestic chicks: The case of speed changes. Cognition, 157, 4960. https://doi.org/10.1016/j.cognition.2016.08.014Google Scholar
Rosa-Salva, O., Hernik, M., Broseghini, A., & Vallortigara, G. (2018). Visually-naïve chicks prefer agents that move as if constrained by a bilateral body-plan. Cognition, 173, 106114. https://doi.org/10.1016/j.cognition.2018.01.004Google Scholar
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., & Kastner, S. (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337(6095), 753756. https://doi.org/10.1126/science.1223082Google Scholar
Sahibzada, N., Dean, P., & Redgrave, P. (1986). Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. Journal of Neuroscience, 6(3), 723733. https://doi.org/10.1523/JNEUROSCI.06-03-00723.1986Google Scholar
Scaife, M. (1976a). The response to eye-like shapes by birds. I. The effect of context: A predator and a strange bird. Animal Behaviour, 24(1), 195199. https://doi.org/10.1016/S0003-3472(76)80115-7Google Scholar
Scaife, M. (1976b). The response to eye-like shapes by birds II. The importance of staring, pairedness and shape. Animal Behaviour, 24(1), 200206. https://doi.org/10.1016/S0003-3472(76)80116-9Google Scholar
Schiff, W., Caviness, J. A., & Gibson, J. J. (1962). Persistent fear responses in rhesus monkeys to the optical stimulus of ‘looming’. Science (New York, N.Y.), 136(3520), 982983.Google Scholar
Schluessel, V., Kortekamp, N., Cortes, J. A. O., Klein, A., & Bleckmann, H. (2015). Perception and discrimination of movement and biological motion patterns in fish. Animal Cognition, 18(5), 10771091. https://doi.org/10.1007/s10071-015-0876-yGoogle Scholar
Schmidt, A. & Bischof, H.-J. (2001). Integration of information from both eyes by single neurons of nucleus rotundus, ectostriatum and lateral neostriatum in the zebra finch (Taeniopygia guttata castanotis Gould). Brain Research, 923(1), 2031. https://doi.org/10.1016/S0006-8993(01)03192-4Google Scholar
Setoh, P., Wu, D., Baillargeon, R., & Gelman, R. (2013). Young infants have biological expectations about animals. Proceedings of the National Academy of Sciences, 110(40), 1593715942. https://doi.org/10.1073/pnas.1314075110Google Scholar
Sewards, T. V. & Sewards, M. A. (2002). The medial pain system: Neural representations of the motivational aspect of pain. Brain Research Bulletin, 59(3), 163180. https://doi.org/10.1016/S0361-9230(02)00864-XGoogle Scholar
Sgadò, P., Rosa-Salva, O., Versace, E., & Vallortigara, G. (2018). Embryonic exposure to valproic acid impairs social predispositions of newly-hatched chicksScientific reports8(1), 5919. https://doi.org/10.1038/s41598-018-24202-8Google Scholar
Shang, C., Liu, Z., Chen, Z., Shi, Y., Wang, Q., Liu, S., … Cao, P. (2015). A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science, 348(6242), 14721477. https://doi.org/10.1126/science.aaa8694Google Scholar
Shang, C., Chen, Z., Liu, A., Li, Y., Zhang, J., Qu, B., … Cao, P. (2018). Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nature Communications, 9(1), 1232. https://doi.org/10.1038/s41467-018-03580-7Google Scholar
Sheehan, M. J. & Tibbetts, E. A. (2011). Specialized face learning is associated with individual recognition in paper wasps. Science, 334(6060), 12721275. https://doi.org/10.1126/science.1211334Google Scholar
Shibai, A., Arimoto, T., Yoshinaga, T., Tsuchizawa, Y., Khureltulga, D., Brown, Z. P., … Hosoda, K. (2018). Attraction of posture and motion-trajectory elements of conspecific biological motion in medaka fish. Scientific Reports, 8(1), 8589. https://doi.org/10.1038/s41598-018-26186-xGoogle Scholar
Shibasaki, M. & Kawai, N. (2009). Rapid detection of snakes by Japanese monkeys (Macaca fuscata): An evolutionarily predisposed visual system. Journal of Comparative Psychology, 123(2), 131135. https://doi.org/10.1037/a0015095Google Scholar
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences, 105(2), 809813. https://doi.org/10.1073/pnas.0707021105Google Scholar
Sokolov, A. A., Erb, M., Gharabaghi, A., Grodd, W., Tatagiba, M. S., & Pavlova, M. A. (2012). Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus. NeuroImage, 59(3), 28242830. https://doi.org/10.1016/j.neuroimage.2011.08.039Google Scholar
Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings of the National Academy of Sciences, 105(1), 394398. https://doi.org/10.1073/pnas.0706079105Google Scholar
Sun, H. & Frost, B. J. (1998). Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nature Neuroscience, 1(4), 296303. https://doi.org/10.1038/1110Google Scholar
Suomi, S. J. & Leroy, H. A. (1982). In memoriam: Harry F. Harlow (1905–1981). American Journal of Primatology, 2(4), 319342. https://doi.org/10.1002/ajp.1350020402Google Scholar
Tamietto, M. & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697709. https://doi.org/10.1038/nrn2889Google Scholar
Taubert, J., Wardle, S. G., Flessert, M., Leopold, D. A., & Ungerleider, L. G. (2017). Face pareidolia in the rhesus monkey. Current Biology, 27(16), 25052509.e2. https://doi.org/10.1016/j.cub.2017.06.075Google Scholar
Topál, J. & Csányi, V. (1994). The effect of eye-like schema on shuttling activity of wild house mice (Mus musculus domesticus): Context-dependent threatening aspects of the eyespot patterns. Animal Learning & Behavior, 22(1), 96102. https://doi.org/10.3758/BF03199961Google Scholar
Trappenberg, T. P., Dorris, M. C., Munoz, D. P., & Klein, R. M. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13(2), 256271. https://doi.org/10.1162/089892901564306Google Scholar
Tsutsumi, S., Ushitani, T., Tomonaga, M., & Fujita, K. (2012). Infant monkeys’ concept of animacy: The role of eyes and fluffiness. Primates; Journal of Primatology, 53(2), 113119. https://doi.org/10.1007/s10329-011-0289-8Google Scholar
Turati, C., Simion, F., Milani, I., & Umiltà, C. (2002). Newborns’ preference for faces: What is crucial? Developmental Psychology, 38(6), 875882. https://doi.org/10.1037/0012-1649.38.6.875Google Scholar
Vallortigara, G. & Zanforlin, M. (1988). Open-field behavior of young chicks (Gallus gallus): Antipredatory responses, social reinstatement motivation, and gender effects. Animal Learning & Behavior, 16(3), 359362. https://doi.org/10.3758/BF03209088Google Scholar
Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biology, 3(7), e208. https://doi.org/10.1371/journal.pbio.0030208Google Scholar
Vallortigara, G. & Regolin, L. (2006). Gravity bias in the interpretation of biological motion by inexperienced chicks. Current Biology, 16, 279280.Google Scholar
Vallortigara, G., Versace, E. (2018). Filial Imprinting. In Vonk, J. & Shackelford, T. (Eds.), Encyclopedia of Animal Cognition and Behavior (pp. 14). Cham, Switzerland: Springer International Publishing. ISBN 978-3-319-47829-6Google Scholar
Van Le, Q., Isbell, L. A., Matsumoto, J., Nguyen, M., Hori, E., Maior, R. S., … Nishijo, H. (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences, 110(47), 1900019005. https://doi.org/10.1073/pnas.1312648110Google Scholar
Verhaal, J. & Luksch, H. (2016). Neuronal responses to motion and apparent motion in the optic tectum of chickens. Brain Research, 1635, 190200. https://doi.org/10.1016/j.brainres.2016.01.022Google Scholar
Versace, E. (2017). Precocial. In Vonk, J. & Shackelford, T. (Eds.), Encyclopedia of Animal Cognition and Behavior (pp. 13). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-47829-6_459–1Google Scholar
Versace, E. & Vallortigara, G. (2015). Origins of knowledge: Insights from precocial species. Frontiers in Behavioral Neuroscience, 9. https://doi.org/10.3389/fnbeh.2015.00338Google Scholar
Versace, E., Schill, J., Nencini, A. M., & Vallortigara, G. (2016). Naïve chicks prefer hollow objects. PLoS One, 11(11), e0166425. https://doi.org/10.1371/journal.pone.0166425Google Scholar
Versace, E., Fracasso, I., Baldan, G., Zotte, A. D., & Vallortigara, G. (2017). Newborn chicks show inherited variability in early social predispositions for hen-like stimuli. Scientific Reports, 7, 40296. https://doi.org/10.1038/srep40296Google Scholar
Versace, E., Damini, S., Caffini, M., & Stancher, G. (2018). Born to be asocial: Newly hatched tortoises avoid unfamiliar individuals. Animal Behaviour, 138, 187192. https://doi.org/10.1016/j.anbehav.2018.02.012Google Scholar
Weerasuriya, A. & Ewert, J.-P. (1981). Prey-selective neurons in the toad’s optic tectum and sensorimotor interfacing: HRP studies and recording experiments. Journal of Comparative Physiology, 144(4), 429434. https://doi.org/10.1007/BF01326828Google Scholar
Westhoff, G., Tzschätzsch, K., & Bleckmann, H. (2005). The spitting behavior of two species of spitting cobras. Journal of Comparative Physiology A, 191(10), 873881. https://doi.org/10.1007/s00359-005-0010-8Google Scholar
Wylie, D., Gutierrez-Ibanez, C., Pakan, J. M., & Iwaniuk, A. N. (2009). The optic tectum of birds: Mapping our way to understanding visual processing. Canadian Journal of Experimental Psychology = Revue Canadienne de Psychologie Experimentale, 63(4), 328338. https://doi.org/10.1037/a0016826Google Scholar
Yilmaz, M. & Meister, M. (2013). Rapid innate defensive responses of mice to looming visual stimuli. Current Biology, 23(20), 20112015. https://doi.org/10.1016/j.cub.2013.08.015Google Scholar
Zhao, X., Liu, M., & Cang, J. (2014). Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron, 84(1), 202213. https://doi.org/10.1016/j.neuron.2014.08.037Google Scholar

References

Allen, J., Weinrich, M., Hoppitt, W., & Rendell, L. (2013). Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science, 340(6131), 485488.Google Scholar
Aplin, L. M., Farine, D. R., Morand-Ferron, J., Cockburn, A., Thornton, A., & Sheldon, B. C. (2015). Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature, 518(7540), 538541.Google Scholar
Asakawa-Haas, K., Schiestl, M., Bugnyar, T., & Massen, J. J. M. (2016). Partner choice in raven (Corvus corax) cooperation. PLoS One, 11(6), e0156962.Google Scholar
Aureli, F., Schaffner, C. M., Boesch, C., Bearder, S. K., Call, J., Chapman, C. A., Connor, R., Di Fiore, A., Dunbar, R. I. M., Henzi, S. P., Holekamp, K., Korstjens, A. H., Layton, R., Lee, P., Lehmann, J., Manson, J. H., Ramos-Fernandez, G., Strier, K. B., & van Schaik, C. P. (2008). Fission-fusion dynamics, new research frameworks. Current Anthropology, 49(4), 627654.Google Scholar
Balda, R. P. & Kamil, A. C. (1989). A comparative study of cache recovery by three corvid species. Animal Behaviour, 39(3), 486495.Google Scholar
Bednekoff, P. A. & Balda, R. P. (1996a). Social caching and observational spatial memory in Pinyon jays. Behaviour, 133(11–12), 807826.Google Scholar
Bednekoff, P. A. & Balda, R. P. (1996b). Observational spatial memory in Clark´s nutcrackers and Mexican jays. Animal Behaviour, 52(4), 833839.Google Scholar
Beran, M. J. (2015). The comparative science of “self-control”: What are we talking about? Frontiers in Psychology6, 51.Google Scholar
Boarman, W. I. & Heinrich, B. (1999). Common raven. The Birds of North America, 476, 131.Google Scholar
Boeckle, M. & Bugnyar, T. (2012) Long-term memory for affiliates in ravens. Current Biology, 22(9), 801806.Google Scholar
Boeckle, M., Szipl, G., & Bugnyar, T. (2018) Raven food calls indicate sender’s age and sex. Frontiers in Zoology, 15, 5.Google Scholar
Boucherie, P. H., Mariette, M. M., Bret, C., & Dufour, V. (2016). Bonding beyond the pair in a monogamous bird: Impact on social structure in adult rooks (Corvus frugilegus). Behaviour, 153(8), 897925.Google Scholar
Boucherie, P. H., Loretto, M.-C., Massen, J. J. M., & Bugnyar, T. (2019). What constitutes ‘social complexity’ and ‘social intelligence’ in birds? Lessons from ravens. Behavioral Ecology & Sociobiology, 73(1), 12.Google Scholar
Braun, A. & Bugnyar, T. (2012). Social bonds and rank acquisition in raven non-breeder aggregations. Animal Behaviour, 84(6), 15071515.Google Scholar
Braun, A., Walsdorff, T., Fraser, O. N., & Bugnyar, T. (2012). Socialized sub-groups in a temporary stable raven flock? Journal of Ornithology, 153(1), 97104.Google Scholar
Brosnan, S. F., Talbot, C., Ahlgren, M., Lambeth, S. P., & Schapiro, S. J. (2010). Mechanisms underlying responses to inequitable outcomes in chimpanzees, Pan troglodytes. Animal Behaviour, 79(6), 12291237.Google Scholar
Bugnyar, T. (2007). An integrative approach to the study of ToM-like abilities in ravens. Japanese Journal of Animal Psychology, 57(1), 1527.Google Scholar
Bugnyar, T. (2011). Knowledge attribution in ravens: Others’ viewpoints matter. Proceedings Royal Society London Series B, 278(1705), 634640.Google Scholar
Bugnyar, T. & Kotrschal, K. (2001a). Movement coordination and signalling in ravens (Corvus corax): An experimental field study. Acta Ethologica, 3, 101109.Google Scholar
Bugnyar, T., Kijne, M., & Kotrschal, K. (2001b). Food calling in ravens: Are yells referential signals? Animal Behaviour, 61(5), 949958.Google Scholar
Bugnyar, T. & Kotrschal, K. (2002a). Observational learning and the raiding of food caches in ravens, Corvus corax: Is it ‘tactical’ deception? Animal Behaviour, 64(2), 185195.Google Scholar
Bugnyar, T. & Kotrschal, K. (2002b). Scrounging tactics in free-ranging ravens. Ethology, 108(11), 9931009.Google Scholar
Bugnyar, T., Stöwe, M., & Heinrich, B. (2004). Ravens, Corvus corax, follow gaze direction of humans around obstacles. Proceedings of the Royal Society of London Series B, 271(1546), 13311336.Google Scholar
Bugnyar, T. & Heinrich, B. (2005). Ravens, Corvus corax, differentiate between knowledgeable and ignorant competitors. Proceedings of the Royal Society of London Series B, 272(1573), 16411646.Google Scholar
Bugnyar, T. & Heinrich, B. (2006). Pilfering ravens, Corvus corax, adjust their behaviour to social context and identity of competitors. Animal Cognition, 9 (4), 369376.Google Scholar
Bugnyar, T., Stöwe, M., & Heinrich, B. (2007a). The ontogeny of caching in ravens, Corvus corax. Animal Behaviour, 74(4), 757767.Google Scholar
Bugnyar, T., Schwab, C., Schlögl, C., Kotrschal, K., & Heinrich, B. (2007b). Ravens judge competitors through experience with play caching. Current Biology, 17 (20), 18041808.Google Scholar
Burkart, J. M., Fehr, E., Efferson, C., & van Schaik, C. P. (2007). Other-regarding preferences in a non-human primate: Common marmosets provision food altruistically. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 1976219766.Google Scholar
Bugnyar, T., Reber, S. A., & Buckner, C. (2016). Ravens attribute visual access to unseen competitors. Nature Communications, 7(1), 10506.Google Scholar
Bugnyar, T. & Massen, J. J. M. (2017). Avian Social Relations, Social Cognition and Cooperation. In Healy, S. & ten Cate, C. J. (Eds.), Avian Cognition (pp. 314336). Cambridge, UK: Cambridge University Press.Google Scholar
Byrne, R. W. & Whiten, A. (1988). Machiavellian Intelligence: Social Complexity and the Evolution of Intellect in Monkeys, Apes and Humans. Oxford: Oxford University Press.Google Scholar
Call, J. & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12(5), 187192.Google Scholar
Cameron, E. Z., Setsaas, T. H., & Linklater, W.L. (2009). Social bonds between unrelated females increase reproductive success in feral horses. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 1385013853.Google Scholar
Cheney, D. L., Seyfarth, R. M., & Smuts, B. (1986). Social relationships and social cognition in non-human primates. Science, 234(4782), 13611366.Google Scholar
Cheney, D. L. & Seyfarth, R. M. (1990). How Monkeys See the World. Chicago: University of Chicago Press.Google Scholar
Cheney, D. L. & Seyfarth, R. M. (2007). Baboon Metaphysics. The Evolution of a Social Mind. Chicago: University of Chicago Press.Google Scholar
Clary, D. & Kelly, D. M. (2011). Cache protection strategies of a non-social food-caching corvid, Clark’s nutcracker (Nucifraga columbiana). Animal Cognition, 14(5), 735744.Google Scholar
Clayton, N. S. (1993). Storage of stones by jays Garrulus glandarius. IBIS, 136(3), 331334.Google Scholar
Clayton, N. S. & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 39(6699)5, 272278.Google Scholar
Clayton, N. S., Dally, J. M., & Emery, N. J. (2007). Social cognition by food caching corvids. The western scrub jay as natural psychologist. Philosophical Transactions of the Royal Society of London, Series B, 362(1480), 507522.Google Scholar
Clutton-Brock, T. (2009). Cooperation between non-kin in animal societies. Nature, 462, 5157.Google Scholar
Coombes, R. A. H. (1948). The flocking of the raven. British Birds, 41(386), 290294.Google Scholar
Coussi-Korbel, S. & Fragaszy, D. M. (1995) On the relation between social dynamics and social learning. Animal Behaviour, 50(6), 14411453.Google Scholar
Cornell, H. N., MarzluffJ. M., & Pecoraro, S. (2012). Social learning spreads knowledge about dangerous humans among American crows. Proceedings of the Royal Society of London, Series B, 279(1728), 499508.Google Scholar
Cronin, K. A. (2012). Prosocial behaviour in animals. The influence of social relationships, communication and reward. Animal Behaviour, 84(5), 10851093.Google Scholar
Dall, S. R. X. & Wright, J. (2009). Rich pickings near large communal roosts favor ‘gang’ foraging by juvenile common ravens, Corvus corax. PLoS One, 4(2), e4530.Google Scholar
Dally, J. M, Emery, N. J., & Clayton, N. S. (2006). Food-caching scrub-jays keep track of who was watching when. Science, 312(5780), 16621665.Google Scholar
De Kort, S. R., Dickinson, A., & Clayton, N. S. (2005). Retrospective cognition by food-caching western scrub-jays. Learning and Motivation, 36(2), 159176.Google Scholar
De Kort, S. R. & Clayton, N. S. (2006). An evolutionary perspective on caching by corvids. Proceedings of the Royal Society London, Series B, 273(1585), 417423.Google Scholar
De Waal, F. B. M. (1982). Chimpanzee Politics: Power and Sex among Apes. Baltimore, VA: John Hopkins University Press.Google Scholar
De Waal, F. B. M. (2000). Attitudinal reciprocity in food sharing among brown capuchin monkeys. Animal Behaviour, 60(2), 253261.Google Scholar
De Waal, F. B. M. & Luttrell, L. M. (1988). Mechanisms of social reciprocity in three primate species: Symmetrical relationship characteristics or cognition? Ethology and Sociobiology, 9(2–4), 101118.Google Scholar
Di Lascio, F., Nyffeler, F., Bshary, R., & Bugnyar, T. (2013). Ravens (Corvus corax) are indifferent to the gains of conspecific recipients or human partners in experimental tasks. Animal Cognition, 16(1), 3543.Google Scholar
Drack, G. & Kotrschal, K. (1995). Aktivitätsmuster und Spiel von freilebenden Kolkraben Corvus corax im inneren Almtal/Oberösterreich. Monticula, 7(71–80), 159174.Google Scholar
Drea, C. M. & Carter, A. N. (2009). Cooperative problem solving in a social carnivore. Animal Behaviour, 78(4), 967977.Google Scholar
Dufour, V., Wascher, C., Braun, A., Miller, R., & Bugnyar, T. (2012). Corvids can decide if a future exchange is worth waiting for. Biology Letters, 8(2), 201204.Google Scholar
Ellis, L. (1995). Dominance and reproductive success among nonhuman animals: A cross-species comparison. Ethology and Sociobiology, 16(4), 257333.Google Scholar
Emery, N. J. (2006). Cognitive ornithology: The evolution of avian intelligence. Philosophical Transactions of the Royal Society of London, Series B, 361(1465), 2343.Google Scholar
Emery, N. J. & Clayton, N. S. (2001). Effects of experience and social context on prospective caching strategies by scrub jays. Nature, 414(6862), 443446.Google Scholar
Emery, N. J. & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306(5703), 19031907.Google Scholar
Emery, N. J. & Clayton, N. S. (2005). Evolution of avian brain and intelligence. Current Biology, 15(23), R946R950.Google Scholar
Emery, N. J., Seed, A. M., von Bayern, A. M. P., & Clayton, N. S. (2007). Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society of London, Series B, 362(1480), 489505.Google Scholar
Essler, J. L., Marshall-Pescini, S., & Range, F. (2017). Domestication does not explain the presence of inequity aversion in dogs. Current Biology, 27(12), 18611865.Google Scholar
Evans, C. S. (1997). Referential Signals. In Owings, D., Beecher, M. D., & Thomson, N. S. (Eds.), Perspectives in Ethology, Vol. 12: Communication (pp. 99143). New York: Plenum.Google Scholar
Fraser, O. N. & Bugnyar, T. (2010a). The quality of social relationships in ravens. Animal Behaviour, 79(4), 927933.Google Scholar
Fraser, O. N. & Bugnyar, T. (2010b). Do ravens show consolation? Responses to distressed other. PLoS One, 5(5), e10605.Google Scholar
Fraser, O. N. & Bugnyar, T. (2011). Ravens reconcile after aggressive conflicts with valuable partners. PLoS One, 6(3), e18118.Google Scholar
Fraser, O. N. & Bugnyar, T. (2012). Reciprocity of agonistic support in ravens. Animal Behaviour, 83(1), 171177.Google Scholar
Fritz, J. & Kotrschal, K. (1999). Social learning in common ravens, Corvus corax. Animal Behaviour, 57(4), 785793.Google Scholar
GouldK. L., KellyD. M., & Kamil, A. C. (2010). What scatter-hoarding animals have taught us about small-scale navigation. Philosophical Transactions of the Royal Society of London, Series B, 365(1542), 901914.Google Scholar
Griesser, M. (2008). Referential calls signal predator behavior in a group-living bird species. Current Biology, 18(1), 6973.Google Scholar
Güntürkün, O. & Bugnyar, T. (2016). Cognition without cortex. Trends in Cognitive Sciences, 20(4), 291303.Google Scholar
Gwinner, E. (1964). Untersuchungen über das Ausdrucks- und Sozialverhalten des Kolkraben (Corvus corax corax L.)Zeitschrift für Tierpsychologie, 21(6), 657748.Google Scholar
Hare, B., Melis, A. P., Woods, V., Hastings, S., & Wrangham, R. (2007). Tolerance allows bonobos to outperform chimpanzees on a cooperative task. Current Biology, 17(7), 619623.Google Scholar
Heinrich, B. (1988). Winter foraging at carcasses by three sympatric corvids, with emphasis on recruitment by the raven, Corvus corax. Behavioral Ecology and Sociobiology, 23(3), 141156.Google Scholar
Heinrich, B. (1989). Ravens in Winter. New York: Simon & Schuster.Google Scholar
Heinrich, B. (1995). An experimental investigation of insight in common ravens (Corvus corax). The Auk, 112(4), 9941003.Google Scholar
Heinrich, B. (1999). Mind of the Raven. New York: Harper-Collins.Google Scholar
Heinrich, B. & Marzluff, J. M. (1991). Do common ravens yell because they want to attract others? Behavioral Ecology and Sociobiology, 28(1), 1321.Google Scholar
Heinrich, B., Kaye, D., Knight, T., & Schaumburg, K. (1994). Dispersal and association among common ravens. The Condor, 96(2), 545551.Google Scholar
Hillemann, F., Bugnyar, T., Kotrschal, K., & Wascher, C. A. F. (2014). Waiting for better, not for more: Corvids respond to quality in two delay maintenance tasks. Animal Behaviour, 90, 110.Google Scholar
Hirata, S. (2003). Cooperation in chimpanzees. Hattatsu, 95 , 103111.Google Scholar
Holekamp, K. E., Boydston, E. E., Szykman, M., Graham, I., Nutt, K., Piskiel, A., & Singh, M. (1999). Vocal recognition in the spotted hyena and its possible implications regarding the evolution of intelligence. Animal Behaviour, 58(2), 383395.Google Scholar
Holekamp, K. E., Sakai, S. T., & Lundrigan, B. L. (2007). Social intelligence in the spotted hyena (Crocuta crocuta). Philosophical Transactions of the Royal Society of London, Series B, 362(1480), 523538.Google Scholar
Horner, V., Carter, J. D., Suchak, M., & de Waal, F. B. M. (2011). Spontaneous prosocial choice by chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 1384713851.Google Scholar
Huber, B. (1991) Bildung, Alterszusammensetzung und Sozialstruktur von Gruppen nichtbrütender Kolkraben. Metelener Schriftenreihe für Naturschutz, 2, 4559.Google Scholar
Humphrey, N. K. (1976). The Social Function of Intellect. In Bateson, P. & Hinde, R. A. (Eds.), Growing Points in Ethology (pp. 303321). Cambridge: Cambridge University Press.Google Scholar
Hunt, G. R. & Gray, R. D. (2003). Diversification and cumulative evolution in New Caledonian crow tool manufacture. Proceedings of the Royal Society of London, Series B, 270(1517), 867874.Google Scholar
Kabadayi, C. & Osvath, M. (2017). Ravens parallel great apes in flexible planning for tool-use and bartering. Science, 357(6347), 202204.Google Scholar
Kim, Y., Martinez, L., Choe, J. C., Lee, D.-J., & Tomonaga, M. (2015). Orangutans (Pongo spp.) do not spontaneously share benefits with familiar conspecifics in a choice paradigm. Primates, 56(2), 193200.Google Scholar
Klump, B. C., Sugasawa, S., St Clair, J. J. H., & Rutz, C. (2015). Hook tool manufacture in New Caledonian crows: Behavioural variation and the influence of raw materials. BMC Biology, 13, 97.Google Scholar
Kondo, N., Izawa, E. -I., & Watanabe, S. (2012). Crows cross-modally recognize group members but not non-group members. Proceedings of the Royal Society London, Series B, 279(1735), 19371942.Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354(6308), 110114.Google Scholar
Kubitza, R. J., Bugnyar, T., & Schwab, C. (2015). Pair-bond characteristics and maintenance in free-flying jackdaws Corvus monedula: Effects of social context and season. Journal of Avian Biology, 45(2), 206215.Google Scholar
Kulhaci, I. G., Rubenstein, D. I., Bugnyar, T., Hoppitt, W., Mikus, N., & Schwab, C. (2016). Social networks predict selective observation and information spread in ravens. Royal Society Open Science, 3(7), 160256.Google Scholar
Kummer, H. (1971). Primate Societies: Group Techniques of Ecological Adaptation. Chicago: Aldine.Google Scholar
Laland, K. L. (2004). Social learning strategies. Learning and Behavior, 32(1), 414.Google Scholar
Lambert, M., Massen, J. J. M., Seed, A., Bugnyar, T., & Slocombe, K. (2017). An ‘unkindness’ of ravens? Measuring prosocial preferences in Corvus corax. Animal Behaviour, 123, 383393.Google Scholar
Lefebvre, L.Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior & Evolution, 63(4), 233246.Google Scholar
Logan, C. J., Emery, N. J., & Clayton, N. S. (2013). Alternative behavioral measures of postconflict affiliationBehavioral Ecology, 24(1), 98112,Google Scholar
Lorenz, K. Z. (1937). The companion in the bird’s world. The Auk, 54(3), 245273.Google Scholar
Lorenz, K. Z. (1961). King Solomon’s Ring. London: Methuen.Google Scholar
Loretto, M.-C., Fraser, O. N., & Bugnyar, T. (2012). Ontogeny of social relations and coalition formation in common ravens (Corvus corax). International Journal of Comparative Psychology, 25(3), 180194.Google Scholar
Loretto, M.-C., Schuster, R., & Bugnyar, T. (2016). GPS tracking of non-breeding ravens reveals the importance of anthropogenic food sources during their dispersal in the Eastern Alps. Current Zoology, 62(4), 337344.Google Scholar
Loretto, M.-C., Schuster, R., Itty, C., Marchand, P., Genero, F., & Bugnyar, T. (2017). Fission-fusion dynamics over large distances in raven non-breeders. Scientific Reports, 7(1), 380.Google Scholar
Marchand, P., Loretto, M.-C., Henry, P.-Y., Duriez, O., Jiguet, F., Bugnyar, T., & Itty, C. (2018). Relocations and one-time disturbance fail to sustainably disperse non-breeding common ravens Corvus corax due to homing behaviour and extensive home ranges. European Journal of Wildlife Research, 64(5), 57.Google Scholar
Marler, P. & Peters, S. (1977). Selective vocal learning in a sparrow. Science, 198(4316), 519521.Google Scholar
Marzluff, J. M. & Heinrich, B. (1991). Foraging by common ravens in the presence and absence of territory holders: An experimental analysis of social foraging. Animal Behaviour, 42(5), 755770.Google Scholar
Marzluff, J. M. & Balda, R. P. (1992). The Pinyon Jay. Behavioral Ecology of a Colonial and Cooperative Corvid. San Diego, CA: Academic Press.Google Scholar
Marzluff, J.M., Heinrich, B., & Marzluff, C. S. (1996). Roosts are mobile information centers. Animal Behaviour, 51(1), 89103.Google Scholar
Marzluff, J. M. & Angell, T. (2005). In the Company of Crows and Ravens. New Haven, CT: Yale University Press.Google Scholar
Marzluff, J. M. & Neatherlin, E. (2006). Corvid response to human settlements and campgrounds: Causes, consequences, and challenges for conservation. Biological Conservation, 130(2), 301314.Google Scholar
Massen, J. J. M., van den Berg, L. M., Spruijt, B. M., & Sterck, E. H. M. (2010). Generous leaders and selfish underdogs: Pro-sociality in despotic macaques. PLoS One, 5(3), e9734.Google Scholar
Massen, J. J. M., Pasukonis, A., Schmidt, J., & Bugnyar, T. (2014a). Ravens notice dominance reversals among conspecifics within and outside their social group. Nature Communications, 5(1), 3679.Google Scholar
Massen, J. J. M., Szipl, G., Spreafico, M., & Bugnyar, T. (2014b). Ravens intervene in others’ bonding attempts. Current Biology, 24(22), 14.Google Scholar
Massen, J. J. M., Ritter, C., & Bugnyar, T. (2015a). Tolerance and reward equity predict cooperation in ravens. Scientific Reports, 5, 15021.Google Scholar
Massen, J. J. M., Lambert, M., Schiestl, M., & Bugnyar, T. (2015b). Subadult ravens generally don’t transfer valuable tokens to conspecifics when there is nothing to gain for themselves. Frontiers in Comparative Psychology, 6, 885.Google Scholar
McComb, K., Moss, C., Sayialel, S., & Baker, L. (2000). Unusually extensive networks of vocal recognition in African elephants. Animal Behaviour, 59(6), 11031109.Google Scholar
Melis, A. P., Hare, B., & Tomasello, M. (2006). Engineering cooperation in chimpanzees: Tolerance constraints on cooperation. Animal Behaviour, 72(2), 275286.Google Scholar
Moll, H. & Tomasello, M. (2007). Cooperation and human cognition: The Vygotskian intelligence hypothesis. Philosophical Transactions of the Royal Society of London, Series B, 362(1480), 639648.Google Scholar
Müller, J. J. A., Massen, J. J. M., Bugnyar, T., & Osvath, M. (2017). Ravens remember the nature of a single reciprocal interaction sequence over 2 days and even after a month. Animal Behaviour, 128, 6978.Google Scholar
Noë, R. (2006). Cooperation experiments: Coordination through communication versus acting apart together. Animal Behaviour, 71(1), 118.Google Scholar
Olkowicz, S., Kocourek, M., Lučan, R. K.Porteš, M., Fitch, W. T.Herculano-Houzel, S., & Němec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences of the United States of America, 113(26), 72557260.Google Scholar
Ostojic, L., Shaw, R. C., Cheke, L. G., & Clayton, N. S. (2013). Evidence suggesting that desire-state attribution may govern food sharing in Eurasian jays. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 41234128.Google Scholar
Paz-y-Miño, G., Bond, A. B., Kamil, A. C., & Balda, R. P. (2004). Pinyon jays use transitive inference to predict social dominance. Nature, 430(7001), 778781.Google Scholar
Peters, S. S., Searcy, W. A., & Marler, P. (1980). Species song discrimination in choice experiments with territorial male swamp and song sparrows. Animal Behaviour, 28(2), 393404.Google Scholar
Plotnik, J. M., Lair, R., Suphachoksahakun, W., & de Waal, F. B. M. (2011). Elephants know when they need a helping trunk in a cooperative task. Proceedings of the National Academy of Sciences of the United States of America, 108(12), 51165121.Google Scholar
Pollok, B., Prior, H., & Güntürkün, O. (2000). Development of object permanence in food-storing magpies (Pica pica). Journal of Comparative Psychology, 114(2), 148157.Google Scholar
Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Planning for the future by Western scrub jays. Nature, 445(7130), 919921.Google Scholar
Range, F., Horn, L., Viranyi, Z., & Huber, L. (2009). The absence of reward induces inequity aversion in dogs. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 340345.Google Scholar
Ratcliffe, D. (1997). The Raven: A Natural History in Britain and Ireland. London: T. & A. D. Poyser.Google Scholar
Scheiber, I. B. R., Weiß, B. M., Frigerio, D., & Kotrschal, K. (2005). Active and passive support in families of greylag geese (Anser anser). Behaviour, 142(11–12), 15351557.Google Scholar
Scheid, C., Range, F., & Bugnyar, T. (2007). When, what, and whom to watch? Quantitive measures of attention to conspecifics in ravens (Corvus corax) and jackdaws (Corvus monedula). Journal of Comparative Psychology, 121(4), 380386.Google Scholar
Scheid, C. & Bugnyar, T. (2008). Short-term observational spatial memory in jackdaws and ravens. Animal Cognition, 11(4), 691698.Google Scholar
Scheid, C., Schmidt, J., & Noe, R. (2008). Distinct patterns of food offering and co-feeding in rooks. Animal Behaviour, 76(5), 17011707.Google Scholar
Schino, G. & Aureli, F. (2009). Reciprocal altruism in primates: Partner choice, cognition and emotions. Advances in the Study of Behavior, 39, 4569.Google Scholar
Schino, G., Polizzi di Sorrentino, E., & Tiddi, B. (2007). Grooming and coalitions in Japanese macaques (Macaca fuscata): Partner choice and the time frame of reciprocation. Journal of Comparative Psychology, 121(2), 181188.Google Scholar
Schloegl, C., Kotrschal, K., & Bugnyar, T. (2007). Gaze following in common ravens (Corvus corax): Ontogeny and habituation. Animal Behaviour, 74(4), 769778.Google Scholar
Schloegl, C., Dierks, A., Gaydon, G. K., Huber, L., Kotrschal, K., & Bugnyar, T. (2009). What you see is what you get? Inference by exclusion in ravens (Corvus corax) and keas (Nestor notabilis). PLoS One, 4(8), e6368.Google Scholar
Schmelz, M., Call, J., & Tomasello, M. (2011). Chimpanzees know that others make inferences. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 30773079.Google Scholar
Schwab, C., Bugnyar, T., & Kotrschal, K. (2008b). Learning from non-affiliated individuals as a relevant source of information in jackdaws (Corvus monedula). Behavioural Processes, 79(3), 148155.Google Scholar
Schwab, C., Swoboda, R., Kotrschal, K., & Bugnyar, T. (2012). Recipients affect prosocial and altruistic choices in jackdaws. PLoS One, 7(4), e34922.Google Scholar
Seed, A. M., Clayton, N. S., & Emery, N. J. (2007). Post-conflict third-party affiliation in rooks, Corvus frugilegus. Current Biology, 17(2), 152158.Google Scholar
Seed, A. M., Clayton, N. S., & Emery, N. J. (2008). Cooperative problem solving in rooks (Corvus frugilegus). Proceedings of the Royal Society of London, Series B, 275(1641), 14211429.Google Scholar
Seed, A. M., Emery, N. J., & Clayton, N. S. (2009). Intelligence in corvids and apes: A case of convergent evolution? Ethology, 115(5), 401420.Google Scholar
Silk, J. B., Alberts, S. C., & Altmann, J. (2003). Social bonds of female baboons enhance infant survival. Science, 302(5648), 12311234.Google Scholar
Silk, J. B., Brosnan, S. F., Vonk, J., Henrich, J., Povinelli, D., Lambeth, S., Richardson, A., Mascaro, J., & Shapiro, S. (2005). Chimpanzees are indifferent to the welfare of unrelated group members. Nature, 437(7063), 13571359.Google Scholar
Silk, M. J., Croft, D. P., Tregenza, T., & Bearhop, S. (2014). The importance of fission-fusion social group dynamics in birds. Ibis, 156(4), 701715.Google Scholar
Sima, M. J., Pika, S., & Bugnyar, T. (2016). Experimental manipulation of food accessibility affects conflict management behaviour in ravens. Ethology, 122(2), 114126.Google Scholar
Sima, M. J., Matzinger, T., Bugnyar, T., & Pika, S. (2018). Reconciliation and third-party affiliation in carrion crows. Ethology, 124(1), 3344.Google Scholar
Singer, T. & Steinbeis, N. (2009). Differential roles of fairness‐ and compassion‐based motivations for cooperation, defection, and punishment. Annals of the New York Academy of Sciences, 1167(1), 4150.Google Scholar
Stahler, D., Heinrich, B., & Smith, D. (2002). Common ravens, Corvus corax, preferentially associate with grey wolves, Canis lupus, as a foraging strategy in winter. Animal Behaviour, 64(2), 283290.Google Scholar
Stocker, M., Munteanu, A., Stöwe, M., Schwab, C., Palme, R., & Bugnyar, T. (2016). Loner or socializer? Ravens’ andrenocortical response to individual separation depends on social integration. Hormones and Behavior, 78, 194199.Google Scholar
Suchak, M., Eppley, T. M., Campbell, M. W., & de Waal, F. B. M. (2014). Ape duos and trios: Spontaneous cooperation with free partner choice in chimpanzees. PeerJ, 2, e417.Google Scholar
Szabo, B., Bugnyar, T., & Auersperg, A. M. I. (2017). Within-group relationships and lack of social enhancement during object manipulation in captive Goffin’s cockatoos (Cacatua goffiniana). Learning and Behavior, 45(1), 719.Google Scholar
Szipl, G., Boeckle, M., Wascher, C. A. F., & Bugnyar, T. (2015). With whom to dine? Ravens’ responses to food-associated calls depend on individual characteristics of the caller. Animal Behaviour, 99, 3342.Google Scholar
Szipl, G., Ringler, E., Spreafico, M., & Bugnyar, T. (2017). Calls during agonistic interactions vary with arousal and raise audience attention in ravens. Frontiers in Zoology, 14(1), 57.Google Scholar
Szipl, G., Ringler, E., & Bugnyar, T. (2018). Attacked ravens flexibly adjust signaling behavior according to audience composition. Proceedings of the Royal Society London, Series B, 285(1880), 20180375.Google Scholar
Taylor, A. H., Hunt, G. R., Holzhaider, J. C., & Gray, R. D. (2007). Spontaneous metatool use by New Caledonian crows. Current Biology, 17(17), 15041507.Google Scholar
Townsend, S. W., Allen, C., & Manser, M. B. (2012). A simple test of vocal individual recognition in wild meerkats. Biology Letters, 8(2), 179182.Google Scholar
Uhl, F., Ringler, M., Miller, R., Deventer, S., Bugnyar, T., & Schwab, C. (2019). Counting crows: Population structure and group size variation in an urban population of crows. Behavioral Ecology, 30(1), 5767.Google Scholar
Vail, A. L., Manica, A., & Bshary, R. (2014). Fish choose appropriately when and with whom to collaborate. Current Biology, 24(17), 791793.Google Scholar
Van de Waal, E., ReneveyN., Favre, C. M., & Bshary, R. (2010). Selective attention to philopatric models causes directed social learning in wild vervet monkeys. Proceedings of the Royal Society of London, Series B, 277(1691), 21052111.Google Scholar
Vander Wall, S. B. & Balda, R. P. (1981). Ecology and evolution of food‐storage behavior in conifer‐seed‐caching corvids. Zeitschrift für Tierpsychologie, 6 (3), 217242.Google Scholar
Van Schaik, C. P. & Burkart, J. M. (2011). Social learning and evolution: The cultural intelligence hypotheses. Proceedings of the Royal Society of London, Series B, 366(1567), 10081016.Google Scholar
Verhulst, S. & Salomons, H. M. (2004). Why fight? Socially dominant jackdaws Corvus monedula have low fitness. Animal Behaviour, 68(4), 777783.Google Scholar
Von Bayern, A. M. P., de Kort, S. R., Clayton, N. S., & Emery, N. J. (2007). The role of food- and object-sharing in the development of social bonds in juvenile jackdaws (Corvus monedula). Behaviour, 144(6), 711733.Google Scholar
Vucetich, J. A., Peterson, R. O., & Waite, T. A. (2004). Raven scavenging favours group foraging in wolves. Animal Behaviour, 67(6), 11171126.Google Scholar
Walker, L. E., Marzluff, J. M., Metz, M.C., Wirsing, A. J., Moskal, L.M., Stahler, D. R., & Smith, D.W. (2018). Population responses of common ravens to reintroduced gray wolves. Ecology and Evolution, 8 (22), 1115811168.Google Scholar
Wascher, C. A. F. & Bugnyar, T. (2013). Behavioral responses to inequity in reward distribution and working effort in crows and ravens. PLoS One, 8(2), e56885.Google Scholar
Webb, W. C, Marzluff, J. M., & Hepinstall-Cymerman, J. (2012). Differences in space use by Common Ravens in relation to sex, breeding status, and kinship. Condor, 114(3), 584594.Google Scholar
Weir, A. A. S., Chappell, J., & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crows. Science, 297(5583), 981.Google Scholar
Wright, J., Stone, R. E., & Brown, N. (2003). Communal roosts as structured information centres in the raven, Corvus corax. Journal of Animal Ecology, 72(6), 10031014.Google Scholar
Yamamoto, S., Humle, T., & Tanaka, M. (2012). Chimpanzees’ flexible targeted helping based on an understanding of conspecifics’ goals. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 35883592.Google Scholar

References

Alexander, R. D. (1987). The Biology of Moral Systems. New York: AldineTransaction.Google Scholar
Amici, F., Aureli, F., Mundry, R., Amaro, A. S., Barroso, A. M., Ferretti, J., & Call, J. (2014). Calculated reciprocity? A comparative test with six primate species. Primates, 55(3), 447457.Google Scholar
Axelrod, R. & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211, 13901396.Google Scholar
Barnett, S. A. (1963). The Rat: A Study in Behavior. New Jersey: AldineTransaction.Google Scholar
Barnett, S. A. & Spencer, M. M. (1951). Feeding, social behaviour and interspecific competition in wild rats. Behaviour, 3(3), 229242.Google Scholar
Ben-Ami Bartal, I., Decety, J., & Mason, P. (2011). Empathy and pro-social behavior in rats. Science, 334, 14271430.Google Scholar
Ben-Ami Bartal, I., Rodgers, D. A., Bernardez Sarria, M. S., Decety, J., & Mason, P. (2014). Pro-social behavior in rats is modulated by social experience. eLife, e01385–01385.Google Scholar
Ben-Ami Bartal, I., Shan, H., Molasky, N. M. R., Murray, T. M., Williams, J. Z., Decety, J., & Mason, P. (2016). Anxiolytic treatment impairs helping behavior in rats. Frontiers in Psychology, 7, 850.Google Scholar
Berdoy, M. & Smith, P. (1993). Arms race and rat race: Adaptations against poisoning in the brown rat. Ecological Reviews, 48, 215228.Google Scholar
Bowles, S. & Gintis, H. (2011). A Cooperative Species: Human Reciprocity and Its Evolution. Princeton, NJ: Princeton University Press.Google Scholar
Boyd, R. & Richerson, P. J. (1989). The evolution of indirect reciprocity. Social Networks, 11, 213236.Google Scholar
Brenes, J. C. & Fornaguera, J. (2008). Effects of environmental enrichment and social isolation on sucrose consumption and preference: Associations with depressive-like behavior and ventral striatum dopamine. Neuroscience Letters, 436, 278282.Google Scholar
Brosnan, S. F. & de Waal, F. B. M. (2002). A proximate perspective on reciprocal altruism. Human Nature, 13(1), 129152.Google Scholar
Brudzynski, S. M. (2009). Communication of adult rats by ultrasonic vocalization: Biological, sociobiological, and neuroscience approaches. The Neurobiology of Social Behavior, 50(1), 4350.Google Scholar
Burkart, J. M. & van Schaik, C. P. (2013). Group service in macaques (Macaca fuscata), capuchins (Cebus apella) and marmosets (Callithrix jacchus): A comparative approach to identifying proactive prosocial motivations. Journal of Comparative Psychology, 127(2), 212225.Google Scholar
Carter, G. G. (2014). The reciprocity controversy. Animal Behavior and Cognition, 1(3), 368386.Google Scholar
Clements, K. C. & Stephens, D. W. (1995). Testing models of non-kin cooperation: Mutualism and the prisoner’s dilemma. Animal Behaviour, 50(2), 527535.Google Scholar
Clutton-Brock, T. (2009). Cooperation between non-kin in animal societies. Nature, 462(7269), 5157.Google Scholar
Colin, C. & Desor, D. (1986). Differenciations comportementales dans des groupes de rats soumis a une difficulte d’acces de la nourriture. Behavioral Processes, 13, 85100.Google Scholar
Cox, L. & Tamara Montrose, V. (2016). Quantity discrimination in domestic rats, Rattus norvegicus. Animals, 6, 46.Google Scholar
Cronin, K. A., Schroeder, K. K. E., & Snowdon, C. T. (2010). Prosocial behaviour emerges independent of reciprocity in cottontop tamarins. Proceedings of the Royal Society B: Biological Sciences, 277(1701), 38453851.Google Scholar
Crystal, J. D. (2018). Comparative cognition: Rats pay back quid pro quo. Current Biology, 28(4), 153155.Google Scholar
Darwin, C. (1859). On the Origins of Species. London: John Murray.Google Scholar
Davis, H. & Bradford, S. A. (1986). Counting behavior by rats in a simulated natural environment. Ethology, 73(4), 265280.Google Scholar
Dolivo, V. & Taborsky, M. (2015a). Cooperation among Norway rats: The importance of visual cues for reciprocal cooperation, and the role of coercion. Ethology, 121, 10711080.Google Scholar
Dolivo, V. & Taborsky, M. (2015b). Norway rats reciprocate help according to the quality of help they received. Biology Letters, 11, 20140959.Google Scholar
`Dolivo, V., Rutte, C., & Taborsky, M. (2016). Ultimate and proximate mechanisms of reciprocal altruism in rats. Learning & Behavior, 44, 223226.Google Scholar
Dugatkin, L. A. (1997). Cooperation among Animals: An Evolutionary Perspective. Oxford: Oxford University Press.Google Scholar
Gerber, N., Schweinfurth, M. K., & Taborsky, M. (2020). The smell of cooperation: Rats increase helpful behaviour when receiving odour cues of a conspecific performing a cooperative task. Procedures of the Royal Society B, 287, 20202327.Google Scholar
Gheusi, G., Goodall, G., & Dantzer, R. (1997). Individually distinctive odours represent individual conspecifics in rats. Animal Behaviour, 53(5), 935944.Google Scholar
Grasmuck, V. & Desor, D. (2002). Behavioural differentiation of rats confronted to a complex diving-for-food situation. Behavioural Processes, 58(1–2), 6777.Google Scholar
Hamilton, W. D. (1964). The genetical evolution of social behaviour. I. Journal of Theoretical Biology, 7(1), 116.Google Scholar
Hammerstein, P. (2003). Why Is Reciprocity so Rare in Social Animals? In Hammerstein, P. (Ed.), Genetic and Cultural Evolution of Cooperation (pp. 8393). Cambridge, MA: MIT Press.Google Scholar
Hemelrijk, C. K. (1994). Support for being groomed in long-tailed macaques, Macaca fascicularis. Animal Behaviour, 48, 479481.Google Scholar
Hernandez-Lallement, J., van Wingerden, M., Marx, C., Srejic, M., & Kalenscher, T. (2015). Rats prefer mutual rewards in a prosocial choice task. Frontiers in Neuroscience, 8, 443.Google Scholar
Hopp, S. L., Owren, M. J., & Marion, J. R. (1985). Olfactory discrimination of individual littermates in rats (Rattus norvegicus). Journal of Comparative Psychology, 99(2), 248251.Google Scholar
Horn, L., Scheer, C., Bugnyar, T., & Massen, J. J. M. (2016). Proactive prosociality in a cooperatively breeding corvid, the azure-winged magpie (Cyanopica cyana). Biology Letters, 12(10), 20160649.Google Scholar
House, B., Henrich, J., Sarnecka, B., &