Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-rbzxz Total loading time: 0.893 Render date: 2022-05-17T02:33:08.497Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

4 - OPTICAL SYSTEMS

Published online by Cambridge University Press:  05 August 2012

John H. Moore
Affiliation:
University of Maryland, College Park
Christopher C. Davis
Affiliation:
University of Maryland, College Park
Michael A. Coplan
Affiliation:
University of Maryland, College Park
Sandra C. Greer
Affiliation:
Mills College, California
Get access

Summary

Physical, chemical, and biological phenomena are regularly studied or induced optically. Such experiments can involve light absorption, light emission, or light scattering. We can characterize any experimental arrangement where light is used, produced, measured, modified, or detected as an overall optical system. Any such optical system will always be reducible to three parts: a source of light, a detector of that light, and everything in between. We will frequently refer to this important and varied intermediary arrangement as the optical system. Consequently, our discussion of overall optical system design and construction will involve three key topics: sources, optical systems, and detectors (to be discussed in detail inChapter 7). The light source may be a laser, lamp, light-emitting diode, or the Sun. The detector may be a vacuum tube, solid-state device, or even the eye. Light intensity may vary from continuous wave (CW) to pulsed, and these pulses may have durations as short as a few femtoseconds. Passive elements in the system may transmit, reflect, combine, polarize, or separate light according to its spectral content. Nonlinear optical elements change the spectral content of light.

It is our aim in this chapter to explain the basic concepts that need to be understood by the experimentalist who uses optical techniques. In addition, we will provide examples of useful techniques for producing, controlling, analyzing, and modulating light.

OPTICAL TERMINOLOGY

Light is one form of electromagnetic radiation, the many categories of which make up the electromagnetic spectrum.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Proceedings of the Symposium on Quasi-Optics, New York, June 8–10, 1964, Fox, J. (Ed.), Polytechnic Press of the Polytechnic Institute of Brooklyn, New York, 1964.
Proceedings of the Symposium on Submillimeter Waves, New York, March 31–April 2, 1970, Fox, J. (Ed.), Polytechnic Press of the Polytechnic Institute of Brooklyn, New York, 1964.
Mortazawi, A, Itoh, T, and Harvey, J, Active Antennas and Quasi-Optical Arrays, Wiley-IEEE Press, New York, 1998.Google Scholar
Lesurf, J., Millimeter-Wave Optics, Devices and Systems, Lavoisier, Chachan, 1990.Google Scholar
Baird, K. M., Smith, D. S., and Whitford, B. G., Confirmation of the currently accepted value 299792458 metres per second for the speed of light, Opt. Commun., 31, 367–368, 1979.CrossRefGoogle Scholar
Cohen, E. R. and Taylor, B. N., Committee on Data for Science and Technology, CODATA Bulletin, No. 63, 1986.Google Scholar
Kaye, G. W. C. and Laby, T. H., Tables of Physical and Chemical Constants, 16th edn., Longman, London: 1995. Now available free online at http://www.kayelaby.npl. co.uk/Google Scholar
Coleman, C. D., Bozman, W. R., and Meggers, W. F., Table of Wavenumbers, US Nat'l. Bur. Std. Monograph 3, Vols. 1–2, 1960.Google Scholar
Urban, M. W., Attenuated Total Reflectance Spectroscopy of Polymers: Theory and Practice, American Chemical Society, Washington, DC, 1996.Google Scholar
Wiesendanger, R., Scanning Probe Microsocopy and Spectroscopy, Cambridge University Press, Cambridge 1994.CrossRefGoogle Scholar
Born, M. and Wolf, E., Principles of Optics, 7th ed., Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar
Wahlstrom, E. E., Optical Crystallography, 5th edn., John Wiley & Sons, Inc., New York, 1979.Google Scholar
Shurcliff, W. A., Polarized Light: Production and Use, Harvard University Press, Cambridge, MA, 1962.CrossRefGoogle Scholar
Yariv, A., Optical Electronics in Modern Communications, 5th edn., Oxford University Press, New York, 1997.Google Scholar
Davis, C. C., Lasers and Electro-Optics, Cambridge University Press, Cambridge, 1996.Google Scholar
Kogelnik, H. and Li, T., Proc. IEEE, 54, 1312–1329, 1966.
Kingslake, R., Optical System Design, Academic Press, Orlando, FL, 1983.Google Scholar
Code, V.Available from Optical Research Associates.
Zemax. Available from Zemax Development Corporation.
Oslo developed by Sinclair Optics, Inc. Distributed by Lambda Research Corporation.
Solstis, Odyssey. Available from Optis.
Optikwerk. Available from Optikwerk, Inc.
Ditchburn, R. W., Light, 3rd edn., Academic Press, New York, 1976.Google Scholar
Levi, L., Applied Optics, Vol.1 John Wiley & Sons, Inc., New York, 1968.Google Scholar
Smith, W. J., Modern Optical Engineering, 3rd edn., SPIE Press, Bellingham, WA, 2000.Google Scholar
Smith, W. J., Modern Lens Design: A Resource Manual, McGraw-Hill, New York, 1992.Google Scholar
Shannon, R. R., The Art and Science of Optical Design, Cambridge University Press, Cambridge, 1997.CrossRefGoogle Scholar
Laikin, M., Lens Design, 3rd edn., Marcel Dekker, New York, 2001.Google Scholar
Ramo, S., Whinnery, J. R., and Duzer, T., Fields and Waves in Communication Electronics, 3rd edn., John Wiley & Sons, Inc., New York, 1994.Google Scholar
Diffraction-limited spherical lenses are available from Melles Griot, Optics for Research, Newport, Special Optics, and J. L. Wood Optical Systems, among others (see following reference).
Laser Focus Buyers Guide, published annually by Pennwell Publishing Co., 1421 South Sheridan, Tulsa, OK 74112 01460, lists a large number of suppliers of a wide range of optical components and systems as does the The Photonics Buyers' Guide, published annually by Photonics Spectra, Laurin Publishing Co., Berkshire Common, P.O. Box 4949, Pittsfield, MA 01202-4949. Additional valuable listings of this sort are: Lasers and Optronics Buying Guide, published annually by Cahners, 301 Gibraltar Drive, Box 650, Morris Plains, NJ 07950-0650; and Lightwave, 98 Spit Brook Road, Suite 100, Nashua, NH 03062–5737.
The “float” method for manufacturing plate glass (developed by Pilkington Glass) involves the drawing of the molten glass from a furnace, where the molten glass floats on the surface of liquid tin. The naturally flat surface of the liquid metal ensures the production of much larger sheets of better-flatness glass than was possible by earlier techniques.
Hornberg, Alexander (Ed.), Handbook of Machine Vision, John Wiley & Sons, Inc., New York, 2006.CrossRef
Rempe, G., Thompson, R. J., Kimble, H. J., and Lalezari, R., Opt. Lett., 17, 363–365, 1992.CrossRef
Hood, C. J., Kimble, H. J., and Ye, J., Phys. Rev. A, 64, 033804, 2001.CrossRef
Bilger, H. R., Wells, P. V., and Stedman, G. E., Appl. Opt., 33, 7390–7396, 1994.CrossRef
Cho, H.-J., Shin, M.-J., and Lee, J.-C., Appl. Opt. 45, 1440–1446, 2006.CrossRef
Meinel, A. B., in Applied Optics and Optical Engineering, Vol. 5, Kingslake, R. (Ed.), Academic Press, New York, 1969.Google Scholar
Brouwer, W. and Walther, A., Design of optical instruments, in Advanced Optical Techniques, Heel, A. C. S., (Ed.), North-Bouand, Amsterdam, 1967.Google Scholar
Celestron Telescopes are available from Celestron International, 2835 Columbia Street, P.O. Box 3578, Torrance, CA 90503; (310) 328–9560.
Meade Telescopes are available from Meade Instruments Corporation, 6001 Oak Canyon, Irvine, California 92618–5200, (949) 451–1450.
Wellford, W. T. and Winston, R., High Collection Nonimaging Optics, Academic Press, San Diego, CA, 1989.Google Scholar
Winston, R, Miñano, J C., and Benitez, P G., Nonimaging Optics, Elsevier, Amsterdam, 2005.Google Scholar
Girard, A. and Jacquinot, P., in Advanced Optical Techniques, Heel, A. C. S. (Ed.), North-Bouand, Amsterdam, 1967.Google Scholar
Strong, J. D., Procedures in Experimental Physics, Prentice-Hall, Englewood Cliffs, NJ, 1938.Google Scholar
Lide, David R. (Ed.), Handbook of Chemistry and Physics, 81st. edn., CRC Press, Boca Raton, FL, 2000.
Goff, D. R.Fiber Optic Reference Guide, 3rd edn., Focal Press (Elsevier), Amsterdam, 2002.Google Scholar
Hochuli, U. and Haldemann, P., Rev. Sci. Instr., 43, 1088–1089, 1972.CrossRef
Epoxy-removing solvents are available from Electron Microscopy Services, Oakite, or Hydroclean.
Poulter, T. C., Phys. Rev., 35, 297, 1930.
Paul, W., Meis, W. W., and Besson, J. M.Rev. Sci. Instr., 39, 928–930, 1968.CrossRef
Spain, I. L. and Paawe, J. (Eds.), High Pressure Technology, Dekker, New York, 1967.
Compilation of ASTM Standard Definitions, 3rd edn., American Society for Testing and Materials, Philadelphia, 1976.
Glass, quartz, and sapphire vacuum window assembles are available from Adolf Meller, Ceramaseal, Varian, and Vacuum Generators.
Martin, D. H. (Ed.), Spectroscopic Techniques for Far Infra-Red, Submillimetre and Millimetre Waves, NorthHolland, Amsterdam, 1967.
Moller, K. D. and Rothschild, W. G., Far-Infrared Spectroscopy, Wiley-Interscience, New York, 1971.Google Scholar
Hadni, A., Essentials of Modern Physics Applied to the Study of the Infrared, Pergamon Press, Oxford, 1967.Google Scholar
Fry, G. A., Applied Optics and Optical Engineering, Vol. 2, Kingslake, R. (Ed.), Academic Press, 1965.Google Scholar
Davis, C. C. and McFarlane, R. A., J. Quant. Spect. Rad. Trans., 18, 151–170, 1977.CrossRef
Kruse, P. W., McGlauchlin, L. D., and McQuistan, R. B., Elements of Infrared Technology: Generation, Transmission and Detection, John Wiley & Sons, Inc., New York, 1962.Google Scholar
Hudson, Jr R. D.., Infrared System Engineering, Wiley-Interscience, New York, 1969.Google Scholar
Samson, J. A. R., Techniques of Vacuum Ultraviolet Spectroscopy, John Wiley & Sons, Inc., New York, 1967.Google Scholar
Available from EG&G Optoelectronics, ILC, Verre & Quartz, and Xenon Corporation.
Available from EG&G Optoelectroncs, Verre & Quartz, Resonance, and Xenon Corporation.
Markiewicz, J. P. and Emmett, J. L., IEEE J. Quant. Electron., QE-2, 707–711, 1966.CrossRef
Edwards, J. G., Appl. Opt., 6, 837–843, 1967.CrossRef
Baker, H. J. and King, T. A., J. Phys. E.: Sci. Instr., 8, 219–223, 1975.CrossRef
Silfvast, William T., Laser Fundamentals, 2nd edn., Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
Saleh, B. E. A. and Teich, M. C., Fundamentals of Photonics, John Wiley & Sons, Inc., New York, 1991.CrossRefGoogle Scholar
Siegman, A. E., Lasers, University Science Books, Mill Valley, CA, 1986.Google Scholar
Rabin, H. and Tang, C. L. (Eds.), Quantum Electronics, Vols. 1A and 2A, Nonlinear Optics, Academic Press, New York, 1975.
Nonlinear Optics, Proceedings of the Sixteenth Scottish Universities Summer School in Physics, 1975, Harper, P. G. and Wherrett, B. S. (Eds.), Academic Press, London, 1977.
Bloembergen, N., Nonlinear Optics, Benjamin, New York, 1965.Google Scholar
Zernike, F. and Midwinter, J. E., Applied Nonlinear Optics, John Wiley & Sons, Inc., New York, 1973.Google Scholar
Boyd, R. W., Nonlinear Optics, Academic Press, Boston, 1992.Google Scholar
Röss, D., Lasers, Light Amplifiers and Oscillators, Academic Press, New York, 1969.Google Scholar
Koechner, W., Solid State Laser Engineering, 5th revised and updated edn., Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
Schäfer, F. P. (Ed.), Topics in Applied Physics, Vol. 1, Dye Lasers, 3rd revised and enlarged edn., Springer-Verlag, Berlin, 1990.Google Scholar
Furumoto, H. W. and Ceccon, H. L., Appl. Opt., 8, 1613–1623, 1969.CrossRef
Holzrichter, J. F. and Schawlow, A. L., Ann. N.Y. Acad. Sci., 168, 703–714, 1970.CrossRef
Lucatorto, T. B., McIlrath, T. J., Mayo, S., and Furumoto, H. W., Appl. Opt., 19, 3178–3180, 1980.CrossRef
Davis, C. C. and King, T. A., Advances in Quantum Electronics, Vol. 3, Goodwin, D. W. (Ed.), Academic Press, London, 1975, pp. 169–454.CrossRefGoogle Scholar
Bridges, W. B., Handbook of Laser Science and Technology, Vol. 1: Lasers in All Media, Weber, M. J. (Ed.), CRC Press, Boca Raton, FL, 1982.Google Scholar
Davis, C. C., Handbook of Lasers Science and Technology, Vol. 1, Lasers in All Media, M. J. Weber (Ed.), CRC Press, Boca Raton, FL, 1982.Google Scholar
Tyte, D. C., Advances in Quantum Electronics, Vol. 1, Goodwin, D. W. (Ed.), Academic Press, London, 1970.Google Scholar
Degnan, J. J., Appl. Phys., 11, 1–33, 1976.CrossRef
Seguin, H. and Tulip, J., Appl. Phys. Lett., 21, 414–415, 1972.CrossRef
Cobine, J. D., Gaseous Conductors, Dover, New York, 1958.Google Scholar
Seguin, H. J., Manes, K., and Tulip, J., Rev. Sci. Instr., 43, 1134–1139, 1972.CrossRef
Beaulieu, A. J., Appl. Phys. Lett., 16, 504–505, 1970.CrossRef
Basting, D., Schäfer, F. P., and Steyer, B., Opto-electron., 4, 43–49, 1972.CrossRef
Schenck, P. and Metcalf, H., Appl. Opt., 12, 183–186, 1973.CrossRef
Wang, C. P., Rev. Sci. Instr., 47, 92–95, 1976.CrossRef
Schwab, A. J. and Bouinger, F. W., IEEE J. Quant,. Electron., QE-12, 183–188, 1976.CrossRef
Sam, C. L., Appl. Phys. Lett., 29, 505–506, 1976.CrossRef
Feldman, M., Lebow, P., Raab, F., and Metcalf, H., Appl. Opt., 17, 774–777, 1978.CrossRef
Digonnet, M. J. F. (Ed.), Rare Earth Doped Fiber Lasers And Amplifiers, 2nd Revised edn., Taylor & Francis Ltd., Abingdon, 2001.CrossRefGoogle Scholar
Mollenauer, L. F., Opt. Lett., 1, 164, 1977 (see also Opt. Lett. 3, 48–50, 1978; 4, 247–299, 1979; 5, 188–190, 1980).CrossRef
Greenhow, R. C. and Schmidt, A. J., Advances in Quantum Electronics, Vol. 2, Goodwin, D. W. (Ed.), Academic Press, London, 1973.Google Scholar
Shapiro, S. L. (Ed.), Ultrashort Light Pulses, Picosecond Techniques and Applications, Topics in Applied Physics, Vol. 18, Springer, Berlin, 1977.CrossRef
Lee, C. H. (Ed.), Picosecond Optoelectronic Devices, Academic Press, Orlando, FL, 1984.
Bhattacharya, P., Semiconductor Optoelectronic Devices, 2nd edn., Prentice-Hall, Upper Saddle River, NJ, 1997.Google Scholar
Gowar, J., Optical Communication Systems, 2nd edn., Prentice-Hall, Englewood Cliffs, NJ, 1993.Google Scholar
Wood, D., Optoelectronic Semiconductor Devices, Prentice-Hall, New York, 1994.Google Scholar
Agrawal, G. P. and Dutta, N. K., Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold, New York, 1986.CrossRefGoogle Scholar
Thompson, G. H. B., Physics of Semiconductor Laser Devices, John Wiley & Sons, Ltd, Chichester, 1980.Google Scholar
Chuang, S. L., Physics of Optoelectronic Devices, John Wiley & Sons, Inc., New York, 1995.Google Scholar
Singh, J., Semiconductor Optoelectronics, McGraw-Hill, New York, 1995.Google Scholar
Kressel, H. (Ed.), Semiconductor Devices for Optical Communication, Vol. 39, Topics in Applied Physics, 2nd updated edn., Springer-Verlag, Berlin, 1982.CrossRef
Kapon, E. (Ed.), Semiconductor Lasers, Vols. 1 and 2, Academic Press, San Diego, CA, 1999.
Hinkley, E. D., Nill, K. W., and Blum, F. A., Topics in Applied Physics, Vol. 2, Walther, H. (Ed.), Springer, Berlin, 1976, pp. 125–196.Google Scholar
Faist, J., Capasso, F., Sivco, D. L., et al., Science, 264 (5158), 553–556, 1994.CrossRef
Kane, T. J. and Byer, R. L., Optics Lett., 10, 65–67, 1985.
Hänsch, T. W., Appl. Opt., 11, 895–898, 1972.CrossRef
Wallenstein, R. and Hänsch, T. W., Appl. Opt., 13, 1625–1628, 1974.CrossRef
Wallenstein, R. and Hänsch, T. W., Opt. Commun., 14, 353–357, 1975.CrossRef
Eesley, G. L. and Levenson, M. D., IEEE J. Quant. Electron. QE-12, 440–442, 1976.CrossRef
Littman, M. G. and Metcalf, H. J., Appl. Opt., 17, 2224–2227, 1978.CrossRef
Littman, M. and Montgomery, J., Laser Focus/Electro-optics, 24, 70–86, 1988.
Radunsky, M. B., Laser Focus World, p. 107, October 1995.
Orr, B. J.et al., Tunable Laser Applications, Duarte, F. J. (Ed.), Marcel Dekker, New York, 1995.Google Scholar
Batchko, R. G., Weise, D. R., Plettner, T., et al., Opt. Lett. 23(3), 168, 1998.CrossRef
Klein, M. E., Lee, D.-H., Meyn, J.-P., Boller, K.-J., and Wallenstein, R., Opt. Lett., 24, 1142–1144, 1999.CrossRef
Müller, F., Basum, G., Popp, A., et al., Appl. Phys. 80, 307–313, 2004.CrossRef
Kaminow, I. P., An Introduction to Electro-optic Devices, Academic Press, New York, 1974.Google Scholar
Korpel, A., Acousto-Optics, Marcel Dekker, New York, 1988, see also Acousto-optics–a review of fundamentals, Acousto-Optics – a review of fundamentals, Proc. IEEE., 69, 48–53, 1981.Google Scholar
Chang, I. C., IEEE Trans. Sonics and Ultrasonics, SU-23, 2–22, 1976.CrossRef
American National Standard for Safe Use of Lasers, ANSI Z136-2-2000, Published by the Laser Institute of America, Suite 128, 13501 Ingenuity Drive, Orlando, FL 32826.
Sliney, D. and Wolbarsht, M., Safety with Lasers and Other Optical Sources: A Comprehensive Handbook, Plenum, New York, 1980.CrossRefGoogle Scholar
Weber, M. J. (Ed.), CRC Handbook of Laser Science and Technology, Vol. 1, Lasers and Masers, CRC Press, Boca Raton, FL, 1982.
Jacquinot, P., J. Opt. Soc. Am., 44, 761–765, 1954.CrossRef
Kingslake, R. (Ed.), Applied Optics and Optical Engineering, Vol. 5: Optical Instruments Part II, Academic Press, New York, 1969.
James, J. F. and Sternberg, R. S., The Design of Optical Spectrometers, Chapman and Hall, London, 1969.Google Scholar
The Photonics Design and Applications Handbook, published annually by Laurin Publishing Co. Inc., Pittsfield, MA.
Fastie, W. G., J. Opt. Soc. Am., 42, 641–647, 1952.CrossRef
Ebert, H., Annalen der Physik und Chemie, 38, 489–493, 1889.CrossRef
Seya, M., Sci. Light (Tokyo), 2, 8–17, 1952.
Namioka, T., Sci. Light (Tokyo), 3, 15–24, 1952.
Atherton, P., Reay, N., Ring, J., and Hicks, T., Opt. Eng., 20, 806, 1981.CrossRef
Available from numerous suppliers of vacuum equipment – for example, Ceram Tec (Ceramaseal Division), Edwards, Ferrofluidics Corp., Perkin Elmer, Vacuum Generators (VG), Varian, and Veeco.
Available from Carpenter Technology, P.O. Box 14662, Reading, PA 19612–4662; Tel: (800) 338–4592 and (610) 208–2000, FAX: (610) 208–2361.
Available from Burleigh.
Available from Heraeus-Amersil, Dynasil, Esco, and Quartz Scientific, among others.
Available from Corning Glass Works, Optical Products Department.
Piezoelectric transducers are available from American Piezo Ceramics, Burleigh, EDO, Polytec, Queensgate Instruments, and Xinetics, among others.
Bruce, C. F., Appl. Opt., 5, 1447–1452, 1966.CrossRef
Commercial Fabry–Perot Interferometers that can incorporate this feature are available from Burleigh.
Hariharan, P., Optical Interferometry, 2nd edn., Academic Press, 2003.CrossRefGoogle Scholar
Meggitt, B. T. and Grattan, K. T. V., Optical Fiber Sensor Technology, Springer, New York, 1999.Google Scholar
James C. Wyant, White light interferometry, paper presented at AeroSense, Orlando, Florida, 1–5 April 2002. (Available online at fttp://www.optics.arizona.edu/jcwyant/pdf/Meeting_papers/WhiteLightInterferometry.pdf)
Ladenburg, R. and Bershader, D., High Speed Aerodynamics and Jet Propulsion, Vol. 9, Physical Measurements in Gas Dynamics and Combustion, Ladenburg, R. (Ed.), Princeton University Press, Princeton, NJ, 1954.Google Scholar
Longaker, P. R. and Litvak, M. M., J. Appl. Phys., 40, 4033–4041, 1969.CrossRef
Smith, D. C., IEEE J. Quant. Electron., QE-5, 600–607, 1969.CrossRef
Kuhn, H., Rep. Prog. Phys., 14, 64–94, 1951.CrossRef
Born, M. and Wolf, E., Principles of Optics, 7th edn., Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar
Hecht, E., Optics, 3rd edn., Addison-Wesley, Reading, MA, 1998.Google Scholar
Ditchburn, R. W., Light, 3rd edn., Academic Press, New York, 1976.Google Scholar
Jenkins, F. A. and White, H. E., Fundamentals of Optics, 4th edn., McGraw-Hill, New York, 1976.Google Scholar
Klein, M. V. and Furtak, T. E., Optics, 2nd edn., John Wiley & Sons, Inc., New York, 1986.Google Scholar
Longhurst, R. S., Geometrical and Physical Optics, 3rd edn., Longman, London, 1973.Google Scholar
Smith, F. G. and Thomson, J. H., Optics, 2nd edn., John Wiley & Sons, Inc., Chichester, 1988.Google ScholarPubMed
Strong, J., Concepts of Classical Optics, Freeman, San Francisco, CA, 1958.Google Scholar
Smith, W. J., Modern Optical Engineering, 3rd edn., SPIE Press, Bellingham, WA, 2000.Google Scholar
Kingslake, R. (Ed.), Applied Optics and Optical EngineeringAcademic, New York, Vol. 1, 1965; Vol. 2, 1965; Vol. 3, 1965; Vol. 4, 1967; Vol. 5, 1969.
Levi, L., Applied Optics, John Wiley & Sons, Inc., New York, Vol. 1, 1968; Vol. 2, 1980.Google Scholar
Smith, W. J., Modern Lens Design: A Resource Manual, McGraw-Hill, New York, 1992.Google Scholar
Shannon, R. R., The Art and Science of Optical Design, Cambridge University Press, Cambridge, 1997.CrossRefGoogle Scholar
Laikin, M., Lens Design, 3rd edn., Marcel Dekker, New York, 2001.Google Scholar
Karim, M. A., Electro-Optical Devices and Systems, PWS-Kent Publishing, Boston, MA, 1990.Google Scholar
Kaminow, I. P., An Introduction to Electro-Optics, Academic Press, New York, 1974.Google Scholar
Yariv, A., Optical Electronics in Modern Communications, 5th edn., Oxford University Press, New York, 1997.Google Scholar
Kimmitt, M. F., Far-Infrared Techniques, Routledge, 1970.Google Scholar
Hadni, A., Essentials of Modern Physics Applied to the Study of the Infrared, Pergamon Press, Oxford, 1967.Google Scholar
Möller, K. D. and Rothschild, W. G., Far-Infrared Spectroscopy, Wiley-Interscience, New York, 1971.Google Scholar
Robinson, L. C., Physical Principles of Far-Infrared Radiation, Methods in Experimental Physics, Vol. 10, Marton, L. (Ed.), Academic Press, New York, 1973.Google Scholar
Hecht, J., Understanding Fiber Optics, 3rd edn., Prentice-Hall, Upper Saddle River, NJ, 1999.Google Scholar
Ghatak, A. and Thyagarajan, K., Introduction to Fiber Optics, Cambridge University Press, Cambridge, 1998. A. Ghatak, A, Sharma, and R. Tewari, Understanding Fiber Optics on a PC, Viva Books Private Ltd., New Delhi, 1994. P.K. Cheo, Fiber Optics and Optoelectronics, 2nd edn., Prentice-Hall, Englewood Cliffs, NJ, 1990. L. Kazovsky, S. Benedetto, and A. Willner, Optical Fiber Communication Systems, Artech House, Boston, MA, 1996.CrossRefGoogle Scholar
Gowar, J., Optical Communication Systems, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ, 1993.Google Scholar
Barnoski, M. K., (Ed.,) Introduction to Integrated Optics, Plenum, New York, 1974.CrossRef
Marcuse, D., Principles of Optical Fiber Measurements, Academic Press, San Diego, CA., 1981.Google Scholar
Okoshi, T., Optical Fibers, Academic Press, New York, 1982.Google Scholar
Gloge, D. (Ed.), Optical Fiber Technology, IEEE, New York, 1976.
Palais, J. C., Fiber Optic Communications, 5th edn., Prentice-Hall, Upper Saddle River, NJ, 2004.Google Scholar
Snyder, A. D. and Love, J. D., Optical Waveguide Theory, Chapman and Hall, London and New York, 1983.Google Scholar
Lide, D. R. (Ed.), Handbook of Chemistry and Physics, 87th edn., Taylor and Francis, Boca Raton, Florida, 2000. Also available on line at http://www.hbcpnetbase.com/help/default.asp
Pressley, R. J. (Ed.), Handbook of Lasers, CRC Press, Cleveland, OH, 1971.Google Scholar
Levi, L., Applied Optics, Vol. 2, John Wiley & Sons, Inc., New York, 1980.Google Scholar
Macleod, H. A., Thin-Film Optical Filters, American Elsevier, New York, 1969.Google Scholar
Bowen, E. J., Chemical Aspects of Light, 2nd revised edn., The Clarendon Press, Oxford, 1946.Google Scholar
Griffiths, P. and deHaseth, J., Fourier Transform Infrared Spectroscopy, John Wiley & Sons, Inc., New York, 1986.Google Scholar
Smith, B. C., Fundamentals of Fourier Transform Infrared Spectroscopy, CRC Press Inc., Boca Raton, IL, 1996.Google Scholar
Heel, A. C. S. (Ed.), Advanced Optical Techniques, North-Bouand, Amsterdam, 1967.
Kingslake, R. (Ed.), Applied Optics and Optical Engineering, Vol. 1, Academic Press, New York, 1965.Google Scholar
Pressley, R. J. (Ed.), Handbook of Lasers, CRC Press, West Palm Beach, FL, 1971.Google Scholar
Levi, L., Applied Optics, Vol. 1, John Wiley & Sons, Inc., New York, 1968.Google Scholar
DeCusatis, C., Handbook of Applied Photometry, AIP Press, New York, (1997).Google Scholar
Rea, M. (Ed.), Lighting Handbook: Reference and Application, 8th edn., Illuminating Engineering Society of North America, New York, 1993.Google Scholar
Wolfe, W. L. and Zissis, G. J. (Eds.), The Infrared Handbook, Office of Naval Research, Washington, DC, 1985.Google Scholar
Jha, A. R., Infrared Technology, John Wiley & Sons, Inc., New York, 2000.Google Scholar
Hadni, A., Essentials of Modern Physics Applied to the Study of the Infrared, Pergamon Press, Oxford, 1967.Google Scholar
Hudson, R. D., Infrared System Engineering, Wiley-Interscience, New York, 1969.Google Scholar
Kruse, P. W., McGlauchlin, L. D., and McQuistan, R. B., Elements of Infrared Technology, John Wiley & Sons, Inc., New York, 1962.Google Scholar
Hariharan, P., Optical Interferometry, Academic Press, Orlando, FL, 1985.Google Scholar
Hernandez, G., Fabry–Perot Interferometers, Cambridge University Press, Cambridge, 1986.Google Scholar
Jones, R. and Wykes, C., Holographic and Speckle Interferometry, 2nd edn., Cambridge University Press, Cambridge, 1989.CrossRefGoogle Scholar
Dainty, J. C. (Ed.), Laser Speckle and Related Phenomena, Topics in Applied Physics, Vol. 9, Springer-Verlag, Berlin; New York, 1975.
Francon, M., Laser Speckle and Applications in Optics, Academic Press, New York, 1979.Google Scholar
Born, M. and Wolf, E., Principles of Optics, 7th edn., Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar
Francon, M., Optical Interferometry, Academic Press, New York, 1966.Google Scholar
Steel, W. H., Interferometry, 2nd edn., Cambridge University Press, Cambridge, 1983.Google Scholar
Tolansky, S., An Introduction to Interferometry, Longman, London, 1955.Google Scholar
Vaughan, J. M., The Fabry–Perot Interferometer: History, Theory, Practice and Applications, Adam Hilger, Bristol, UK, 1989.Google Scholar
Goodman, J., Introduction to Fourier Optics, 2nd edn., McGraw-Hill, New York, 1996.Google Scholar
Hariharan, P., Optical Holography, Cambridge University Press, Cambridge, 1984.Google Scholar
Yariv, A., Optical Electronics in Modern Communications, 5th edn., Oxford University Press, New York, 1997.Google Scholar
Davis, C. C., Lasers and Electro-Optics, Cambridge University Press, Cambridge, 1996.Google Scholar
Pollack, C. R., Fundamentals of Optoelectronics, Irwin, Chicago, 1995.Google Scholar
Silfvast, W. T., Laser Fundamentals, 2nd edn., Cambridge University Press, 2004.CrossRefGoogle Scholar
Saleh, B. E. A. and Teich, M. C., Fundamentals of Photonics, 2nd edn., John Wiley & Sons, Inc., New York, 2007.Google Scholar
Weber, M. (Ed.), Handbook of Laser Science and Technology, Vol. 1, Lasers and Masers; Vol. II, Gas Lasers, CRC Press, Boca Raton, FL, 1982.
Maitland, A. and Dunn, M. H., Laser Physics, North Holland, Amsterdam, 1969.Google Scholar
O'Shea, D. C., Callen, W. R., and Rhodes, W. T., Introduction to Lasers and Their Applications, Addison-Wesley, Reading, MA, 1977.Google Scholar
Verdeyen, J. T., Laser Electronics, 3rd edn., Prentice-Hall, Englewood Cliffs, NJ, 1995.Google Scholar
Yariv, A., Quantum Electronics, 3rd edn., John Wiley & Sons, Inc., New York, 1989.Google Scholar
Siegman, A. E., Lasers, University Science Books, Mill Valley, CA, 1986.Google Scholar
Boyd, R. W., Nonlinear Optics, Academic Press, Boston, MA, 1992.Google Scholar
Bloembergen, N., Nonlinear Optics, Benjamin, New York, 1965.Google Scholar
Harper, P. G. and Wherrett, B. S. (Eds.), Nonlinear Optics, Academic Press, New York, 1977.
Tang, C. L. and Rabin, H., (Eds.), Quantum Electronics, Vols. 1A and 2A Nonlinear Optics, Academic Press, New York, 1975.
Zernike, F. and Midwinter, J. E., Applied Non-Linear Optics, John Wiley & Sons, Inc., New York, 1973.Google Scholar
Shen, Y. R., The Principles of Nonlinear Optics, John Wiley & Sons, Inc., New York, 1984.Google Scholar
Heel, A. C. S. (Ed.), Advanced Optical Techniques, North Holland, Amsterdam, 1967.
Kingslake, R. (Ed.), Applied Optics and Optical Engineering, Academic Press, New York, Vol. 3, 1965; Vol. 4, 1967; Vol. 5, 1969.
Rogalksi, A., Infrared Detectors, Gordon and Breadh, Amsterdam, 2000.Google Scholar
Gowar, J., Optical Communication Systems, 2nd edn., Prentice-Hall, Englewood Cliffs, NJ, 1993.Google Scholar
Dereniak, E. L. and Boreman, G. D., Infrared Detectors and Systems, John Wiley & Sons, Inc., New York, 1996.Google Scholar
Dereniak, E. L. and , G., Optical Radiation Detectors, John Wiley & Sons, Inc., New York, 1984.Google Scholar
Graeme, J., Photodiode Amplifiers, McGraw-Hill, New York, 1996.Google Scholar
Dance, J. B., Photoelectronic Devices, Iliffe, London, 1969.Google Scholar
Kruse, P. W., McGlauchlin, L. D., and McQuistan, R. B., Elements of Infrared Technology, John Wiley & Sons, Inc., New York, 1962.Google Scholar
Levi, L., Applied Optics, Vol. 2, John Wiley & Sons, Inc., New York, 1980.Google Scholar
Keyes, R. S. (Ed.), Optical and Infrared Detectors, Topics in Applied Physics, Vol. 19, Springer, Berlin, 1977.CrossRef
Kingslake, R. (Ed.), Applied Optics and Optical Engineering, Vol. 1, Academic Press, New York, 1965.
Weber, M. (Ed.), Handbook of Laser Science and Technology, Vols. III–V, Optical Materials, CRC Press, Boca Raton, FL, 1986–87.
Kruse, P. W., McGlauchlin, L. D., and McQuistan, R. B., Elements of Infrared Technology, John Wiley & Sons, Inc., New York, 1962.Google Scholar
Moses, A. J., Optical Material Properties, IFI/Plenum, New York, 1971.Google Scholar
Weber, M. J. (Ed.), Handbook of Laser Science and Technology, Vol. 1, Lasers and Masers, CRC Press, Boca Raton, FL, 1982.
Sliney, D. and Wolbarsht, M., Safety with Lasers and Other Optical Sources: A Comprehensive Handbook, Plenum, New York, 1980.CrossRefGoogle Scholar
Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light, North-Bouand, Amsterdam, 1977.Google Scholar
Goldstein, D., Polarized Light, CRC Press, Boca Raton, FL, 2003.Google Scholar
Shurcliff, W. A., Polarized Light, Harvard University Press, Cambridge, MA, 1962.CrossRefGoogle Scholar
Wahlstrom, E., Optical Crystallography, 5th edn., John Wiley & Sons, Inc., New York, 1979.Google Scholar
Yariv, A. and Yeh, P., Optical Waves in Crystals, John Wiley & Sons, Inc., New York, 1983.Google Scholar
Colthup, N. B., Daly, L. H., and Wiberley, S. E., Introduction to Infrared and Raman Spectroscopy, 2nd edn., Academic Press, New York, 1975.Google Scholar
Francis, M. Mirabella Jr., (Ed.), Internal Reflection Spectroscopy. Theory and Applications, CRC Press, Boca Raton, 1993.
James, J. F. and Sternberg, R. S., The Design of Optical Spectrometers, Chapman & Hall, London, 1969.Google Scholar
Strobel, H. S. and Heineman, W. R., Chemical Instrumentation, 3rd edn., John Wiley & Sons, Inc., New York, 1989.Google Scholar
Pinta, M. (Ed.), Atomic Absorption Spectrometry, John Wiley & Sons, Inc., New York, 1975.
Edisbury, J. R., Practical Hints on Absorption Spectrometry, Hilger and Watts, London, 1966.CrossRefGoogle Scholar
Reynolds, R. J. and Aldous, K., Atomic Absorption Spectroscopy, Barnes and Noble, New York, 1970.Google Scholar
Smith, A. Lee, Applied Infrared Spectroscopy: Fundamentals, Techniques and Analytical Problem-Solving, Vol. 54 (Chemical Analysis, Vol. 21), John Wiley & Sons, Inc., New York, 1979.Google Scholar
Sawyer, R. A., Experimental Spectroscopy, Prentice-Hall, Englewood Cliffs, NJ, 1951.Google Scholar
Williams, D. (Ed.), Methods of Experimental Physics, Vol. 13, Spectroscopy, Parts A and B, Academic Press, New York, 1968.
Walker, S. and Straw, H., Spectroscopy, Vol. I, Microwave and Radio Frequency Spectroscopy; Vol. II, Ultraviolet, Visible, Infrared and Raman Spectroscopy, Macmillan, New York, 1962.Google Scholar
Button, K. J., Infrared and Millimeter Waves: Submillimeter Techniques, Academic Press, New York, 1980.Google Scholar
Chantry, G. W., Submillimeter Spectroscopy, Academic Press, New York, 1971.Google Scholar
Kollberg, E. (Ed.), Instrumentation for submillimeter spectroscopy, SPIE Proceedings, Vol. 598, SPIE, Bellingham, WA, 1986.
Martin, D. H. (Ed.), Spectroscopic Techniques, North-Holland, Amsterdam, 1967.
Kaye, G. W. C. and Laby, T. H., Tables of Physical and Chemical Constants, 16th edn., Longman, London, 1995. Now available free online at http://www.kayelaby.npl.co.uk/Google Scholar
Weber, M. J., Handbook of Lasers, CRC Press, Boca Raton, FL, 2001.Google Scholar
Weber, M. J., Handbook of Laser Wavelengths, CRC Press, Boca Raton, FL, 1999.Google Scholar
Harrison, G. R., MIT Wavelength Tables, MIT Press, Cambridge, MA, 1969.Google Scholar
Striganov, A. R. and Sventitskii, N. S., Tables of Spectral Lines of Neutral and Ionized Atoms, IFI/Plenum, New York, 1968.CrossRefGoogle Scholar
Zaidel', A. N., Prokof'ev, V. K., Raiskii, S. M., Slavnyi, V. A., and Shreider, E. Ya., Tables of Spectral Lines, IFI/Plenum, New York, 1970.CrossRefGoogle Scholar
Green, A. E. S. (Ed.), The Middle Ultraviolet: Its Science and Technology, John Wiley & Sons, Inc., New York, 1966.
, J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy, John Wiley & Sons, Inc., New York, 1967.
Several of the suppliers listed will supply lenses, prisms, and other components fabricated from these materials:
AMTIR (GeAsSe Glass): Harrick Scientific, Janos, REFLEX Analytical
Arsenic trisulfide: Infrared Optical Products, REFLEX Analytical, Spectrum Thin Films Corp.
Arsenic triselenide: Infrared Optical Products, REFLEX Analytical, Spectrum Thin Films Corp.
Barium fluoride: Crystran, Del Mar Photonics, Harrick Scientific, Infrared Optical Products, ISP Optics, Janos, Koch Crystal Finishing, Molecular Technology.
Cadmium sulfide: Cleveland Crystals, Molecular Technology.
Cadmium selenide: Cleveland Crystals, Molecular Technology.
Cadmium telluride (Irtran 6): Cleveland Crystals, ISP Optics, Janos, Laser Research Optics, Molecular Technology.
Calcium carbonate (calref): Crystran, Karl Lambrecht Corp (KLC), Photox, Thin Film Lab.
Calcium fluoride (Irtran 3): Argus International, Coherent, Inc., Crystran, Edmund Optics, EKSPLA, Gooch and Housego, Hellma International, Infrared Optical Products, ISP Optics, Janos, KLC, Koch Crystal Finishing, Lambda Research Optics, Meller Optics, Molecular Technology, Newport, Optimax, Opto-Sigma, Photox, REFLEX Analytical, Rocky Mountain Instruments, Spectrum Thin Films, Thorlabs.
Cesium bromide: Argus International, Crystran, Harrick Scientific, Janos.
Cesium iodide: Crystran, Koch Crystal Finishing, Molecular Technology, REFLEX Analytical.
Diamond: Argus International, Gist Optics, Coherent Photonics Group, II-VI Infrared, ISP Optics, Laser Power Optics, REFLEX Analytical, Optics for Research, Newport/Oriel.
Gallium arsenide: Argus International, Crystran, Infrared Optical Products, II-VI Infrared, ISP Optics, Lambda Research Optics, Laser Power Optics, Laser Research Optics, Meller Optics, REFLEX Analytical, Rocky Mountain Instruments, Sterling Precision Optics.
Germanium: Argus International, Coherent, Inc., Crystran, Edmund Optics, Gooch and Housego, II-VI Infrared, ISP Optics, Janos, Laser Power Optics, Laser Research Optics, Meller Optics, Photox, REFLEX Analytical, Rocky Mountain Instruments, Spectrogon, Spectrum Thin Films Corporation, Sterling Precision Optics, Unicore.
Glasses: Coherent, Ealing, Edmund Optics, Newport, Opto-Sigma, Rocky Mountain Instruments, Rolyn, Schott, Sterling Precision Optics, Thorlabs.
Lithium fluoride: Argus International, Crystran, Coherent, Inc., EKSPLA, Hellma International, Infrared Optical Products, ISP Optics, Lambda Research Optics, Macrooptica, Molecular Technology, OPCO, Photox, REFLEX Analytical, Rocky Mountain Instrument Co., Sterling Precision Optics.
Magnesium fluoride (Irtran 1): Argus International, Coherent, Inc., Crystran, Edmund Optics, EKSPLA, Gooch and Housego, Hellma International, Infrared Optical Products, ISP Optics, KLC, Lambda Research Optics, Macrooptica, Meller Optics, Molecular Technology, Newport, Optimax, Photox, REFLEX Analytical, Rocky Mountain Instruments, Sterling Precision Optics.
Magnesium oxide (Irtran 5): Crystran, Harrick Scientific.
Potassium bromide: Argus International, Crystran, EKSPLA, Hilger Crystals, Infrared Optical products, ISP Optics, Janos, Koch Crystal Finishing, Lambda Research Optics, Macrooptica, Molecular Technology, OPCO, Photox, REFLEX Analytical Corp., Spectrum Thin Films Corp., Thorlabs.
Potassium chloride: Crystran, ISP Optics, Janos, Koch Crystal Finishing, Macrooptica, Molecular Technology, Optovac, Photox.
Potassium iodide: Crystran.
Quartz (crystalline): Crystran, Esco, Infrared Optical Products, ISP Optics, Janos, Meller Optics, Molecular Technology, Newport, Opto-Sigma, Photox, REFLEX Analytical, Sterling Precision Optics, Continental Optical, Optics for Research, Newport/Oriel, Adolf Meller.
Sapphire: Crystran, Infrared Optical Products, ISP Optics, Laser Power Optics, Meller Optics, Newport, Opto-Sigma, REFLEX Analytical, Rocky Mountain Instruments, Rolyn, Sterling Precision Optics.
Silica (fused): Esco, ISP Optics, Janos, Macrooptica, Meller Optics, Newport, Opto-Sigma, Photox, REFLEX Analytical, Rolyn, Schott, Sterling Precision Optics, Thorlabs, Continental Optical, Optical Coating Lab (OCLI).
Silicon: Crystran, Infrared Optical Products, ISP Optics, Janos, Laser Power Optics, Macrooptica, Meller Optics, Molecular Technology, Photox, REFLEX Analytical, Rocky Mountain Instruments, Sterling Precision Optics.
Silver bromide: Crystran, Harrick Scientific, ISP Optics, REFLEX Analytical.
Silver chloride: Crystran, Harrick Scientific, ISP Optics, REFLEX Analytical.
Sodium chloride: Crystran, ISP Optics, Koch Crystal Finishing, Macrooptica, Molecular Technology, Photox.
Sodium fluoride: Crystran.
Strontium fluoride: Crystran, Harrick Scientific.
Strontium titanate: Commercial Crystal Labs, Harrick Scientific, Hibshman-Pacific Optical, Photox.
Tellurium: Molecular Technology.
Thallium bromide: Crystran, Korth Kristalle GmbH.
Thallium bromoiodide (KRS-5): Argus International, Crystran, Infrared Optical Products, ISP Optics, Janos, Koch Crystal Finishing, Macrooptica, Molecular Technology, Perkin-Elmer.
Thallium chlorobromide (KRS-6): Crystran, Macrooptica, Molecular Technology.
Titanium dioxide (rutile): Commercial Crystal Labs, Crystran, Harrick Scientific, ISP Optics, Molecular Technology, Thin Film Lab.
Zinc selenide (Irtran 4): Argus International, Coherent, Inc., Crystran, CVI Laser, Edmund Optics, EKSPLA, Gooch and Housego, Harrick Scientific, Hellma International, II-VI Infrared, Infrared Optical Products, ISP Optics, Janos, Laser Power Optics, Laser Research Optics, Meller Optics, Molecular Technology, REFLEX Analytical, Rocky Mountain Instruments, Sterling Precision Optics.
Zinc sulfide (Irtran 2): Crystran, Gooch and Housego, Infrared Optical Products, Laser Power Optics, Laser Research Optics, Meller, OPCO, Optimax, REFLEX Analytical, Rocky Mountain Instruments, Sterling Precision Optics,
Zirconium dioxide: Insaco.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×