Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-8r8mm Total loading time: 0.452 Render date: 2021-12-04T19:57:01.523Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

8 - MEASUREMENT AND CONTROL OF TEMPERATURE

Published online by Cambridge University Press:  05 August 2012

John H. Moore
Affiliation:
University of Maryland, College Park
Christopher C. Davis
Affiliation:
University of Maryland, College Park
Michael A. Coplan
Affiliation:
University of Maryland, College Park
Sandra C. Greer
Affiliation:
Mills College, California
Get access

Summary

There are two levels of concern with temperature in scientific experiments. One is the control of temperature to achieve some secondary (but essential) aim in the apparatus. Examples are the use of a cold trap in a vacuum line, and the use of heaters and coolants in a distillation column. For such needs, the temperature needs only to be known and kept constant to within a few kelvins. In the second case, the measurement of the dependence of physical parameters on temperature is a primary aim of the experiment. A physicist learns about the nature of a material by measuring such properties as density or heat capacity as a function of temperature. An organic chemist studies the kinetics of a chemical reaction by measuring its rate of reaction as a function of temperature. For these experiments, the temperature must be varied over a range and controlled at any point in that range, at resolutions better than 1 K.

Sometimes the temperature must be known accurately. That is, the measurement must be closely calibrated to the International Temperature Scale. Accurate measurements are necessary if the new data are to be used with other measurements on the system under study. If measurements of the density of water are to be combined with measurements of its kinematic viscosity to calculate its shear viscosity as a function of temperature, then the temperature must be measured with the same accuracy in both the density measurements and the kinematic viscosity measurements.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Quinn, T. J., Temperature, 2nd edn., Academic Press, New York, 1990.Google Scholar
Schooley, J. F., Thermometry, CRC Press, Inc., Boca Raton, FL, 1986.CrossRefGoogle Scholar
Childs, P. R. N., Greenwood, J. R., and Long, C. A., Rev. Sci. Instrum., 71, 2959–2978, 2000.CrossRef
Fischer, J. and Fellmuth, B., Rep. Prog. Phys., 68, 1043–1094, 2005.CrossRef
Wise, J. A., Liquid-in-Glass Thermometry, US Government Printing Office, Washington, DC, 1976.CrossRefGoogle Scholar
Handbook of Temperature Measurement: Resistance and Liquid-in-Glass Thermometry, Vol. 2, Bentley, R. E. (Ed.), Springer, Singapore, 1998.
Pollack, D. D., Thermocouples: Theory and Properties, Chemical Rubber Co., Boca Raton, FL, 1991.Google Scholar
Kerlin, T. W., Practical Thermocouple Thermometry, Instrument Society of America, Research Triangle Park, NC, 1999.Google Scholar
Manual on the Use of Thermocouples in Temperature Measurement, 4th edn., American Society for Testing Materials International, West Conshohocken, PA, 1993.
Handbook of Temperature Measurement: Theory and Practice of Thermometric Thermometry, Vol. 3, Bentley, R. E. (Ed.), Springer, Singapore, 1998.
Pollack, D. D., Thermoelectricity: Theory, Thermometry, Tool; ASTM Special Publication 852, American Society for Testing and Materials, Philadelphia, 1985.CrossRefGoogle Scholar
McGee, T. D., Principles and Methods of Temperature Measurement, John Wiley & Sons, Inc., New York, 1988.Google Scholar
Seebeck, T. J., Ab. K. Akad. Wiss. Berlin 265, 1822–1823, 1821.
Nicholas, J. V. and White, D. R., Traceable Temperatures: An Introduction to Temperature Measurement and Calibration, 2nd edn., John Wiley & Sons, Inc., New York, 2001.CrossRefGoogle Scholar
Peltier, J. C. A., Ann. Chim. Phys., 56, 371, 1834.
Michalski, L., Eckersdorf, K., Kucharski, J., and McGhee, J., Temperature Measurement, 2nd edn., John Wiley & Sons, Inc., New York, 2001.CrossRefGoogle Scholar
Moiseeva, N. P., Meas. Tech., 47, 915–919, 2004.CrossRef
Low Level Measurements Handbook: Precision DC Current, Voltage, and Resistance Measurements, 6th edn., Keithley Instruments, Cleveland, OH, 2007.
Callendar, H. L., Phil. Trans. Royal Soc. London, 178, 161–230, 1887.CrossRef
Riddle, J. L., Furukawa, G. T., and Plumb, H. H., Platinum Resistance Thermometry, NBS Monograph 126, US Government Printing Office, Washington, DC, 1973.Google Scholar
Preston-Thomas, H., Metrologia, 27, 3–10 (1990).CrossRef
Lushchaev, G. A., Karchkov, V. A., Fandeev, E. I., and Sologyan, I. K., Measurement Techn., 24, 475–479, 1981.CrossRef
Khan, A. A., Alamoud, A. R. M., and Al-Turaigi, M. A., Intl. J. Elec., 67, 931–936, 1989.CrossRef
Verbeke, O. B., Spinnewijn, J., and Strauven, H., Rev. Sci. Instrum., 58, 654–656, 1987.CrossRef
Tombasov, E. A., Chepurnaya, Z. P., and Yakunin, V. V., Measurement Techn., 34, 935–938, 1991.CrossRef
Dauphinee, T. M. and Preston-Thomas, H., Rev. Sci. Instrum., 25, 884–886, 1954.CrossRef
Bourgeois, O., André, E., Macovei, C., and Chaussy, J., Rev. Sci. Instrum., 77, 126 108/126 101–126 108/126 103, 2006.CrossRef
Steinhart, J. S. and Hart, S. R., Deep-Sea Res., 15, 497–503, 1968.
Hoge, H. J., Rev. Sci. Instrum., 59, 975–979, 1988.CrossRef
Edwards, T. J., Rev. Sci. Instrum., 54, 613–617, 1983.CrossRef
Schuderer, J., Schmid, T., Urban, G., Samaras, T., and Kuster, N., Phys. Med. Biol., 49, N83–N92, 2004.CrossRef
Connelly, J. J., in Handbook of Temperature Measurement: Resistance and Liquid-in-Glass Thermometry, Vol. 2, Bentley, R. E. (Ed.), Springer, Singapore, 1998, pp. 55–82.Google Scholar
Pertijs, M. J. and Huijsing, J. H., Precision Temperature Sensors in CMOS Technology, Springer, Dordrecht, 2006.Google Scholar
Tuoriniemi, J. T. and Knuuttila, T. A., Physica B, 280, 474–478, 2000.CrossRef
Rose-Innes, A. C., Low Temperature Techniques, The English Universities Press, Inc., London, 1964.Google Scholar
Richardson, R. C. and Smith, E. N. (Eds.), Experimental Techniques in Condensed Matter Physics at Low Temperatures, Addison Wesley, Reading, MA, 1998.
Pobell, F., Matter and Methods at Low Temperatures, 3rd edn., Springer, New York, 2007.CrossRefGoogle Scholar
Kent, A., Experimental Low-Temperature Physics, AIP Press, New York, 1993.CrossRefGoogle Scholar
Ekin, J., Experimental Techniques: Cryostat Design, Material Properties and Superconductor Critical-Current Testing, Oxford University Press, Oxford, 2006.Google Scholar
White, G. K. and Meeson, P. J., Experimental Techniques in Low-Temperature Physics, 4th edn., Clarendon Press, Oxford, 2002.Google Scholar
Betts, D. S., An Introduction to Millikelvin Technology, Cambridge University Press, Cambridge, 1989.CrossRefGoogle Scholar
Schuster, G., Hechtfischer, D., and Fellmuth, B., Rept Prog. Phys., 57, 187–230, 1994.CrossRef
Sahul, R., Tasovski, V., and Sudarshan, T. S., Sens. Actuat. A: Physical, 125, 358–362, 2006.CrossRef
Hu, Y., in Experimental Techniques in Condensed Matter Physics at Low Temperatures, Richardson, R. C., Feynman, R. P., and Smith, E. N. (Eds.), Westview Press, New York, 1998, pp. 308–320.Google Scholar
Ziercher, E. L., Blum, K. I., and Hu, Y., in Experimental Techniques in Condensed Matter Physics at Low Temperatures, Richardson, R. C., Feynman, R. P., and Smith, E. N. (Eds.), Westview Publisher, New York, 1998.Google Scholar
Pavese, F. and Molinar, G., Modern Gas-Based Temperature and Pressure Measurements, Plenum Press, New York, 1982.Google Scholar
Ni, W., Xia, J. S., Adams, E. D., Haskins, P. S., and McKisson, J. E., J. Low Temp. Phys., 101, 305–310, 1995.CrossRef
Pentii, E., Tuoriniemi, J., Salmela, A., and Sebedash, A., Rev. Sci. Instrum., 146, 71–83, 2007.
Soulen, R. J., Fogle, W. E., and Colwell, J. H., J. Low Temp. Phys., 94, 385–487, 1994.CrossRef
Spietz, L., Schoelkopf, R. J., and Pari, P., Appl. Phys. Lett., 89, 183123/1–183123/3 (2006).CrossRef
Kauppinen, J. P., Loberg, K. T., Manninen, A. J., and Pekola, J. P., Rev. Sci. Instrum., 69, 4166–4175, 1998.CrossRef
Buchal, C., Hanssen, J., Mueller, R. M., and Pobell, F., Rev. Sci. Instrum., 49, 1360–1361, 1978.CrossRef
DeWitt, D. P. and Nutter, G. D., Theory and Practice of Radiation Thermometry, Wiley Interscience, New York, 1988.CrossRefGoogle Scholar
Ballico, M. J., in Handbook of Temperature Measurement: Temperature and Humidity Measurement, Vol. 2, Bentley, R. E. (Eds.), Springer, Singapore, 1998, pp. 67–98.Google Scholar
Poulsen, P. and Ault, S. K., Rev. Sci. Instrum., 77, 094901/1–094901/6, 2006.CrossRef
Grattan, K. T. V. and Zhang, Z. Y., Fiber Optic Fluorescence Thermometry, Chapman and Hall, London, 1995.Google Scholar
Jigami, T., Kobayashi, M., Taguchi, Y., and Nagasaka, Y., Intl. J. Thermophys., 28, 968–979, 2007.CrossRef
Marcus, G. A. and Schwettman, H. A., J. Phys. Chem. B, 111, 3048–3054, 2007.CrossRef
Lee, J.Kotov, N. A., Nano Today, 2, 48–51, 2007.CrossRef
Mangum, B. W., Furukawa, G. T., Kreider, K. G., et al. J. Res. Natl. Inst. Stand. Tech., 106, 105–149, 2001.CrossRef
Wilson, E. B., An Introduction to Scientific Research, McGraw-Hill, New York, 1952.Google Scholar
Rondeau, R. E., J. Chem. Eng. Data, 11, 124, 1966.CrossRef
Phipps, A. M. and Hume, D. N., J. Chem. Ed., 45, 664, 1968.CrossRef
Coyne, G. S., The Laboratory Companion: A Practical Guide to Materials, Equipment, and Technique, 2nd edn., Wiley-Interscience, New York, 2005.Google Scholar
Tapping, J., in Handbook of Temperature Measurement: Temperature and Humidity Measurement, Vol. 1, Bentley, R. E. (Ed.), Springer,Singapore, 1998, pp. 203–214.Google Scholar
Sloman, A.W., Buggs, P., Malloy, J., and Stewart, D., Meas. Sci. Tech., 7, 1653–1664, 1996.CrossRef
West, E. D., in Treatise in Analytical Chemistry, Kolthoff, I. M. and Elving, P. J. (Eds.), John Wiley & Sons, Inc., New York, 1967.Google Scholar
Kutz, M., Temperature Control, John Wiley & Sons, Inc., New York, 1968.Google Scholar
Swaay, M. V., J. Chem. Ed. 46, A515–A518, 1969.CrossRef
Roots, W. K., Fundamentals of Temperature Control, Academic Press, New York, 1969.Google Scholar
Forgan, E. M., Cryogenics, 14, 207–214, 1974.CrossRef
Leigh, J. R., Temperature Measurement and Control, Peter Peregrinus Ltd., London, 1988.CrossRefGoogle Scholar
Sarid, D. and Cannell, D. S., Rev. Sci. Instrum., 45, 1082–1088, 1974.CrossRef
Bruschi, L., Storti, R., and Torzo, G., Rev. Sci. Instrum., 56, 427–429, 1985.CrossRef
Unni, P. K. M., Gunasekaran, M. K., and Kumar, A., Rev. Sci. Instrum., 74, 231–242, 2003.CrossRef
Thysse, B. J., J. Chem. Phys., 74, 4678–4692, 1981.
Zhu, X., Krochmann, E., and Chen, J., Rev. Sci. Instrum., 63, 1999–2003, 1992.CrossRef
Strem, R. B., Das, B. K., and Greer, S. C., Rev. Sci. Instrum., 52, 1705–1708, 1981.CrossRef
Kojima, A., Ishii, C., Tozaki, K., et al. Rev. Sci. Instrum., 68, 2301–2304, 1997.CrossRef
Cofrancesco, P., Ruffina, U., Villa, M., Grossi, P., and Scattolini, R., Rev. Sci. Instrum., 62, 1311–1316, 1991.CrossRef
Ogasawara, H., Rev. Sci. Instrum., 57, 3048–3052, 1986.CrossRef
Harrigan, E. C., Calibration enclosures, in Handbook of Temperature Measurement: Resistance and Liquid-in-Glass Thermometry, Vol. 2, Bentley, R. E. (Ed.), Springer, Singapore, 1998, pp. 145–160.Google Scholar
Experimental Thermodynamics, Vol. 1, McCullough, J. P. and Scott, D. W. (eds.), Butterworth's, London, 1969.
Ginnings, D. C., Precision Measurement and Calibration: Selected NBS Papers on Heat, US Government Printing Office, Washington, DC, 1970.CrossRefGoogle Scholar
Hemmerich, J. L., Loos, J.-C., Miller, A., and Milverton, P., Rev. Sci. Instrum., 67, 3877–3884, 1996.CrossRef
Sporton, T. M., J. Phys. E. Sci. Instrum., 5, 317–321, 1972.CrossRef
,American Society for Testing Materials International, Manual on the Use of Thermocouples in Temperature Measurement, West Conshohocken, PA, 1993.Google Scholar
Bentley, R. E., Handbook of Temperature Measurement, Springer-Verlag, Singapore, 1998.Google Scholar
Childs, Peter R. N., Practical Temperature Measurements, Butterworth-Heinemann, Oxford, 2001.Google Scholar
Ekin, Jack W., Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties, and Superconductor Critical Current Testing, Oxford University Press, Oxford, 2006.CrossRefGoogle Scholar
McGee, Thomas D., Principles and Methods of Temperature Measurement, John Wiley & Sons, Inc., New York, 1988.Google Scholar
Michalski, L., Eckersdorf, K., Kucharski, J., and McGhee, J., Temperature Measurement, 2nd edn., John Wiley & Sons, Inc., New York, 2001.CrossRefGoogle Scholar
National Institute of Standards and Technology, Gaithersburg, MD, Thermometry Group Website.
Nicholas, J. V. and White, D. R., Traceable Temperatures: An Introduction to Temperature Measurement and Calibration, 2nd edn., John Wiley & Sons, Inc., New York, 2001.CrossRefGoogle Scholar
Pobell, Frank, Matter and Methods at Low Temperatures, Springer, Berlin, 1996.CrossRefGoogle Scholar
Pollack, Daniel D., Thermocouples: Theory and Properties, CRC Press, Boca Raton, FL 1991.Google Scholar
Richardson, Robert C. and Smith, Eric N. (Eds.), Experimental Techniques in Condensed Matter Physics at Low Temperatures, Addison-Wesley, Reading, MA, 1998.
Quinn, T. J., Temperature, 2nd edn., Academic, New York, 1990.Google Scholar
Schooley, J. F. (Ed.), Temperature: Its Measurement and Control in Science and Industry, Vol. 5, American Institute of Physics, New York, 1982. See also other volumes in this series.
Schooley, J. F., Thermometry, CRC Press, Boca Raton, FL, 1986.CrossRefGoogle Scholar
Swindells, J. F. (Ed.), Precision Measurement and Calibration, Selected NBS Papers on Temperature, NBS Special Publication 300, Vol. 2, US Government Printing Office, Washington, DC, 1968.CrossRef
Temperatures.com, a website with information and resources on thermometry.
Wise, J. A., Liquid-in-Glass Thermometry, NBS Monograph 150, US Government Printing Office, Washington, DC, 1976.CrossRefGoogle Scholar

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×