Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 0.333 Render date: 2021-12-04T21:17:26.185Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

5 - CHARGED-PARTICLE OPTICS

Published online by Cambridge University Press:  05 August 2012

John H. Moore
Affiliation:
University of Maryland, College Park
Christopher C. Davis
Affiliation:
University of Maryland, College Park
Michael A. Coplan
Affiliation:
University of Maryland, College Park
Sandra C. Greer
Affiliation:
Mills College, California
Get access

Summary

Fifty years ago devices employing charged-particle beams were confined to the purview of a small group of physicists studying elementary processes. Today chemists, biologists, and engineers employ beams of ions or electrons to probe various materials and to investigate discrete processes. Physicists are constructing beam machines to control the momentum of interacting particles with energies from a few tenths of an electron volt to trillions of electron volts. Chemists routinely use mass spectrometers as analytical tools and various electron spectrometers to probe molecular structures. The electron microscope is one of the primary tools of the modern biologist. Furthermore charged-particle beam technology has spread to industry, where electron-beam machines are used for cleaning surfaces and welding, and ion-beam devices are used in the preparation of semiconductors.

The properties of charged-particle beams are analogous in many respects to those of photon beams: hence the appellation charged-particle optics. In the following sections the laws of geometrical optics will be covered insofar as they apply to charged-particle beams. The consequences of the coulombic interaction of charged particles will be considered. In addition we shall discuss the design of electron and ion sources, as well as the design of electrodes that constitute optical elements for manipulating beams of charged particles. We shall consider primarily electrostatic focusing by elements of cylindrical symmetry and restrict discussion to particles of sufficiently low kinetic energies that relativistic effects can be ignored.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spangenberg, K. R., Vacuum Tubes, McGraw-Hill, New York, 1948.Google Scholar
Pierce, J. R., Theory and Design of Electron Beams, 2nd edn., Van Nostrand, New York, 1954.Google Scholar
Klemperer, O. and Barnett, M. E., Electron Optics, 3rd edn., Cambridge University Press, Cambridge, 1971.Google Scholar
Cosslett, V. E., Introduction to Electron Optics, Oxford University Press, Oxford, 1946.Google Scholar
Roy, D. and Carette, J. D., Electron Spectroscopy, Ibach, H., (Ed.), Topics in Current Physics, Springer, Berlin, 1977, Chapter 2.Google Scholar
Hughes, V. W. and Schultz, H. L. (Eds.), Methods of Experimental Physics, Vol. 4A, Atomic Sources and DetectorsAcademic Press, New York, 1967.
Harting, E. and Read, F. H., Electrostatic Lenses, Elsevier, New York, 1976.Google Scholar
Read, F. H., J. Phys, E2, 165, 1969; (b) Read, F. H., J. Phys., E2, 679, 1969; (c) Read, F. H., Adams, A., and Soto-Montiel, J. R., J. Phys., E4, 625, 1971; (d) Adams, A., and Read, F. H., J. Phys., E5, 150, 1972; (e) Adams, A. and Read, F. H., J. Phys., E5, 156, 1972.
Natali, S., DiChio, D., Uva, E., and Kuyatt, C. E., Rev. Sci. Instr., 43, 80, 1972; DiChio, D.Natali, S. V., and Kuyatt, C. E., Rev. Sci. Instr., 45, 559, 1974.CrossRef
Heddle, D. W. O., Tables of Focal Properties of Three-Element Electrostatic Cylinder Lenses, J.I.L.A. Report No. 104, University of Colorado, Boulder, 1970.Google Scholar
Collins, R. E., Aubrey, B. B., Eisner, P. N., and Celotta, R. J., Rev. Sci. Instr., 41, 1403, 1970.CrossRef
DiChio, D., Natali, S.V., Kuyatt, C. E., and Galejs, A., Rev. Sci. Instr., 45, 566, 1974.CrossRef
Simpson, J. A., Methods of Experimental Physics, Vol. 4A, Hughes, V. W. and Schultz, H. L. (Eds.), Academic Press, New York, 1967, Section 1.15.Google Scholar
An estimation of image expansion at the space-charge limit can be obtained from the data of W. Glaser, Grundlagen der Elektronenoptik, Springer, Vienna, 1952, p. 75.
Wilson, R. G. and Brewer, G. R., Ion Beams, Wiley, New York, 1973.Google Scholar
Moak, C. D., Banta, H. E., Thurston, J. N., Johnson, J. W., and King, R.F., Rev. Sci. Instr., 30, 694, 1959; Ardenne, M., Tabellen der Electronenghysit IonengRysik und Ubermilroskopie, Deutscher Verlag der Wissenschaften, Berlin, 1956.CrossRef
Aberth, W. and Peterson, J. R., Rev. Sci. Instr., 38, 745, 1967.CrossRef
Simpson, J. A., Rev. Sci. Instr., 32, 1283, 1961.CrossRef
Rudd, M. E., Low Energy Electron Spectrometry, by K. D. Sevier (Ed.), Wiley-Interscience, New York, 1972, Chapter 2. Section 3; Poulin, A. and Roy, D, J. Phys., E11, 35, 1978.Google Scholar
Green, T. S. and Proca, G. A., Rev. Sci. Instr., 41, 1409, 1970; Proca, G. A.Green, T. S., Rev. Sci. Instr., 41, 1778, 1970.CrossRef
Zashkvara, V. V., Korsunskii, M. I., and Kosmachev, O. S., Soviet Phys. Tech. Phys., 11, 96, 1966; Sar-el, H., Rev. Sci. Instr., 38, 1210, 1967, and 39, 533, 1968; Risley, J. S., Rev. Sci. Instr., 43, 95, 1972.
Kuyatt, C. E. and Simpson, J. A., Rev. Sci. Instr., 38, 103, 1967.CrossRef
Kuyatt, C. E., unpublished lecture notes; see also Williams, A. J., and Doering, J. P., J. Chem. Phys., 51, 2859, 1969; Moore, J. H., J. Chem. Phys., 55, 2760, 1971.
Herzog, R. F., Z. Physis., 89, 447, 1934; 97, 596, 1935; Phys. Z., 41, 18, 1940.
Wollnik, H. and Ewald, H., Nucl. Instr. Meth., 36, 93, 1965.CrossRef
Stamatovic, A. and Schulz, G. J., Rev. Sci. Instr., 39, 1752, 1968; Stamatovic, A. and Schulz, G. J., Rev. Sci. Instr41, 423, 1970: Sanche, L. and Schulz, G. J., Phys. Rev. A, 5, 1672, 1972; D. Roy, Rev. Sci. Instr., 43, 535, 1972.CrossRef
Seliger, R. L., J. Appl. Phys., 43, 2352, 1972.CrossRef
Segre, E., Experimental Nuclear Physics, Vol. 1, Wiley, New York, 1953, part V.Google Scholar
Boersch, H., Geiger, J., and Stickel, W., Z. Phys., 180, 415, 1964.CrossRef
Blauth, E. W., Dynamic Mass Spectrometers, Elsevier, Amsterdam, 1966; Dawson, P. H., Quadrupole Mass Spectrometer,Elsevier, Amsterdam, 1976.Google Scholar
Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd edn., John Wiley & Sons, Inc., New York, 1976, Chapter 17.Google Scholar
Millman, J. and Taub, H., Pulse, Digital, and Switching Waveforms, McGraw-Hill, New York, 1965, Chapter 3. C. N. Winningstad, IRE Trans. Nucl. Sci., NS43, 26, 1959; C. L. Ruthroff, Proc. IRE, 47, 1337, 1959.Google Scholar
Richter, L. J. and Ho, W., Rev. Sci. Instr., 57, 1469, 1986; Tromp, R. M.Copel, M., Reuter, M. C., et al. Rev. Sci. Instr., 62, 2679, 1991.CrossRef
Cacak, R. K. and Craig, J. R., Rev. Sci. Instr., 40, 1468, 1969.CrossRef
Caprari, R., Meas. Sci. Technol., 6, 593, 1995.CrossRef
The Definitive Guide to Magnetic Shielding, Amuneal Manufacturing Corp., 4737 Darrah Street, Philadelphia PA 19124.
Schmidt, V., Electron Spectrometry of Atoms using Synchrotron Radiation, Cambridge University Press, Cambridge, 1997, 403–407.CrossRefGoogle Scholar
Wadey, W.G., Rev. Sci. Instr., 27, 910, 1956.CrossRef
1
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×