Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-12T02:21:53.349Z Has data issue: false hasContentIssue false

6 - Ecological and Physiological Effects of Changing Climate on Aquatic Bryophytes

Published online by Cambridge University Press:  05 October 2012

Janice M. Glime
Affiliation:
Michigan Technological University, USA
Nancy G. Slack
Affiliation:
Sage Colleges, New York
Lloyd R. Stark
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Introduction

If you go hunting for bryophytes in the tropics, you soon learn that streambeds are depauperate and searching is futile. Witness the absence of such aquatic taxa as Fontinalis, Hygroamblystegium, and Rhynchostegium riparioides, so common in temperate mountainous areas. Ruttner (1955) reports that Fontinalis is especially common at 10–15 m depth in alpine lakes, but that in the tropics it is nowhere. And consider the paucity of bryophytes in exposed, warm valley and flatland temperate streams. Ward (1986) described the altitudinal zonation in a Rocky Mountain, USA, stream and noted that bryophytes had the greatest biomass in headwaters, whereas tracheophytes were absent from higher elevations. Suren (1996), in studying 118 streams on South Island, New Zealand, reported that sites with no bryophytes had a lower mean elevation than did sites with bryophytes. Hence rising temperatures are likely to force aquatic bryophytes into higher elevations or more northern locations.

Furthermore, factors that correlate with warmer temperatures may alter bryophyte distributions. Cappelletti and Bowden (2006) suggest that global warming will increase the soluble reactive phosphorus, water temperature, and discharge of Arctic rivers, hence changing other factors that might favor tracheophytes over bryophytes or change the species composition of the aquatic bryophyte communities. Elevated temperatures can be expected to change nutrients, CO2 concentrations, flow rates, flooding depth and frequency, competing primary producers, light penetration, and seasonal coordination.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E. D. & Spence, D. H. N. (1981). The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytologist 87: 269–83.Google Scholar
Andersen, T. & Pedersen, O. (2002). Interactions between light and CO2 enhance the growth of Riccia fluitans. Hydrobiologia 477: 163–70.Google Scholar
Antropova, T. A. (1974). Temperature adaptation studies on the cells of some bryophyte species. Tsitologiya 16: 38–42.Google Scholar
Arscott, D. B., Bowden, W. B. & Finlay, J. C. (2000). Effects of desiccation and temperature/irradiance on the metabolism of 2 Arctic stream bryophyte taxa. Journal of the North American Benthological Society 19: 263–273.Google Scholar
Bain, J. T. & Proctor, M. C. F. (1980). The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: some experimental evidence. New Phytologist 86: 393–400.Google Scholar
Ballesteros, D., García-Sánchez, M. J., Heredia, M. A., Felle, H. & Fernández, J. A. (1998). Inorganic carbon acquisition in Riccia fluitans L. Journal of Experimental Botany 49: 1741–7.Google Scholar
Bewley, J. D. (1974). Protein synthesis and polyribosome stability upon desiccation of the aquatic moss Hygrohypnum luridum. Canadian Journal of Botany 52: 423–7.Google Scholar
Bewley, J. D. (1979). Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology 30: 195–238.Google Scholar
Biggs, B. J. F. & Saltveit, S. J. (eds.). (1996). Hydraulic habitat of plants in streams. Regulated Rivers: Research and Management 12(2–3): 131–144.
Birks, H. H., Battarbee, R. W., Birks, H. J. B.et al. (2000). The development of the aquatic ecosystem at Kraekenes Lake, western Norway, during the late-glacial and early-Holocene – a synthesis. Journal of Paleolimnology 23: 91–114.Google Scholar
Birks, H. J. B., Heegaard, E., Birks, H. H. & Jonsgard, B. (1998). Quantifying bryophyte – environment relationships. In Bryology for the Twenty-first Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 305–319. Maney Publishing and the British Bryological Society, UK.
Bowes, G. (1985). Pathways of CO2 fixation by aquatic organisms. In Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms, ed. Lucas, W. J. & Berry, J. A., pp. 187–210. Rockville, MD: American Society of Plant Physiologists.
Brittain, J. & Saltveit, S. J. (1989). A review of the effect of river regulation on mayflies (Ephemeroptera). Regulated Rivers: Research & Management 3: 191–204.Google Scholar
Broady, P. A. (1977). The Signy Island terrestrial reference sites: VII. The ecology of the algae of site 1, a moss turf. Bulletin of the British Antarctic Survey 45: 47–62.Google Scholar
Burr, G. O. (1941). Photosynthesis of algae and other aquatic plants. In Symposium on Hydrobiology, ed. Needham, J. G., pp. 163–81. Madison, WI: University of Wisconsin Press.
Cappelletti, C. K. & Bowden, W. B. (2006). Implications of global warming on photosynthesis and respiration in an Arctic tundra river: Consequences to the C cycle. NABStracts, North American Benthological Society Meeting, 2006.
Carballeira, A., Díaz, S., Vázquez, M. D. & López, J. (1998). Inertia and resilience in the responses of the aquatic bryophyte Fontinalis antipyretica Hedw. to thermal stress. Archives of Environmental Contamination and Toxicology 34: 343–9.Google Scholar
Chambers, P. A. & Kalff, J. (1985). Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Canadian Journal of Fisheries and Aquatic Science 42: 701–9.Google Scholar
Chantha, S.-C., Cloutier, L. & Cattaneo, A. (2000). Epiphytic algae and invertebrates on aquatic mosses in a Quebec stream. Archives of Hydrobiology 147: 143–60.Google Scholar
Claveri, B. & Mouvet, C. (1995). Temperature effects on copper uptake and CO2 assimilation by the aquatic moss Rhynchostegium riparioides. Archives of Environmental Contamination and Toxicology 28: 314–20.Google Scholar
Conboy, D. A. & Glime, J. M. (1971). Effects of drift abrasives on Fontinalis novae-angliae Sull. Castanea 36: 111–14.Google Scholar
Cowie, B. & Winterbourn, M. J. (1979). Biota of a subalpine springbrook in the Southern Alps. New Zealand Journal of Marine and Freshwater Research 13: 295–301.Google Scholar
Crum, H. A. & Anderson, L. E. (1981). Mosses of Eastern North America, 2 vols. New York: Columbia University Press.
Dhindsa, R. S. (1985). Non-autotrophic CO2 fixation and drought tolerance in mosses. Journal of Experimental Botany 36: 980–8.Google Scholar
Dilks, T. J. K. & Proctor, M. C. F. (1975). Comparative experiments on temperature responses of bryophytes: assimilation, respiration and freezing damage. Journal of Bryology 8: 317–36.Google Scholar
Dilks, T. J. K. & Proctor, M. C. F. (1976). Effects of intermittent desiccation on bryophytes. Journal of Bryology 9: 249–64.Google Scholar
Englund, G. (1991). Effects of disturbance on stream moss and invertebrate community structure. Journal of the North American Benthological Society 10: 143–53.Google Scholar
Englund, G., Jonsson, B. G. & Malmqvist, B. (1997). Effects of flow regulation on bryophytes in North Swedish rivers. Biological Conservation 79: 79–86.Google Scholar
Everitt, D. T. & Burkholder, J. M. (1991). Seasonal dynamics of macrophyte communities from a stream flowing over granite flatrock in North Carolina, USA. Hydrobiologia 222: 159–72.Google Scholar
Farmer, A. M., Maberly, S. C. & Bowes, G. (1986). Activities of carboxylation enzymes in freshwater macrophytes. Journal of Experimental Botany 37: 1568–1573.Google Scholar
Felley, J. (2003). Climate change undermines recovering lakes. Environmental Science and Technology 37: 346a–347a.Google Scholar
Finlay, J. C. & Bowden, W. B. (1994). Controls on production of bryophytes in an Arctic tundra stream. Freshwater Biology 32: 455–66.Google Scholar
Fogg, G. E. (1977). Aquatic primary production in the Antarctic. Philosophical Transactions of the Royal Society of London B 279: 27–38.Google Scholar
Fornwall, M. D. & Glime, J. M. (1982). Cold and warm-adapted phases in Fontinalis duriaei Schimp. as evidenced by net assimilatory and respiratory responses to temperature. Aquatic Botany 13: 165–77.Google Scholar
Frahm, J.-P. (1997). Zur Ausbreitung von Wassermoosen am Rhein (Deutschland) und an seinen Nebenflüssen seit dem letzten Jahrhundert. [The spreading of aquatic bryophytes along the Rhine (Germany) and its tributaries since the last century.]Limnologica 27: 251–61.Google Scholar
Furness, S. B. & Grime, J. P. (1982). Growth rate and temperature responses in bryophytes. Journal of Ecology 70: 513–23.Google Scholar
Geissler, P. (1982). Alpine communities. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 167–90. New York: Chapman and Hall.CrossRef
Glime, J. M. (1971). Response of two species of Fontinalis to field isolation from stream water. Bryologist 74: 383–6.Google Scholar
Glime, J. M. (1982). Response of Fontinalis hypnoides to seasonal temperature variations. Journal of the Hattori Botanical Laboratory 53: 181–93.Google Scholar
Glime, J. M. (1984). Physio-ecological factors relating to reproduction and phenology in Fontinalis dalecarlica. Bryologist 87: 17–23.Google Scholar
Glime, J. M. (1987a). Phytogeographic implications of a Fontinalis (Bryopsida) growth model based on temperature and flow conditions for six species. Memoirs of the New York Botanic Garden 45: 154–70.Google Scholar
Glime, J. M. (1987b). Growth model for Fontinalis duriaei based on temperature and flow conditions. Journal of the Hattori Botanical Laboratory 62: 101–9.Google Scholar
Glime, J. M. (1987c). Temperature optima of Fontinalis novae-angliae: Implications for its distribution. Symposia Biologica Hungarica 35: 569–76.Google Scholar
Glime, J. M. (2007). Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. <http://www.bryoecol.mtu.edu/>.
Glime, J. M. & Acton, D. W. (1979). Temperature effects on assimilation and respiration in the Fontinalis duriaei – periphyton association. Bryologist 82: 382–92.Google Scholar
Glime, J. M. & Carr, R. E. (1974). Temperature survival of Fontinalis novae-angliae Sull. Bryologist 77: 17–22.Google Scholar
Glime, J. M. & Knoop, B. C. (1986). Spore germination and spore development of Fontinalis squamosa. Journal of the Hattori Botanical Laboratory 61: 487–97.Google Scholar
Glime, J. M. & Raeymaekers, G. (1987). Temperature effects on branch and rhizoid production in six species of Fontinalis. Journal of Bryology 14: 779–90.Google Scholar
Glime, J. M. & Vitt, D. H. (1984). The physiological adaptations of aquatic Musci. Lindbergia 10: 41–52.Google Scholar
Glime, J. M., Nissila, P. C., Trynoski, S. E. & Fornwall, M. D. (1979). A model for attachment of aquatic mosses. Journal of Bryology 10: 313–20.Google Scholar
Gupta, R. K. (1977). A study of photosynthesis and leakage of solutes in relation to the desiccation effects in bryophytes. Canadian Journal of Botany 55: 1186–94.Google Scholar
Harder, R. (1925). Über die Assimilation von Kalte- und Warmeindividuen der Gleichen Pflanzenspecies. Jahrbuch für Wissenschaftlichen Botanik 64: 169–200.Google Scholar
Hawes, I., Andersen, D. T. & Pollard, W. H. (2002). Submerged aquatic bryophytes in Colour Lake, a naturally acidic polar lake with occasional year-round ice-cover. Arctic 55: 380–8.Google Scholar
Heggenes, J. & Saltveit, S. J. (2002). Effect of aquatic mosses on juvenile fish density and habitat use in the regulated River Suldalslågen, western Norway. River Research and Applications 18: 249–64.Google Scholar
Irmscher, E. (1912). Über die Resistenz der Laubmoose gegen Austrocknung und Kalte. Jahrbuch für Wissenschaftlichen Botanik 50: 387–449.Google Scholar
James, W. O. (1928). Experimental researches on vegetable assimilation and respiration. XIX. The effect of variations of carbon dioxide supply upon the rate of assimilation of submerged water plants. Proceedings of the Royal Society of London B 103: 1–42.Google Scholar
Jenkins, J. T. (1982). Effects of flowrate on the ecology of aquatic bryophytes. Ph.D. Thesis, University of Exeter, UK.
Jenkins, J. T. & Proctor, M. C. F. (1985). Water velocity, growth-form and diffusion resistances to photosynthetic CO2 uptake in aquatic bryophytes. Plant, Cell & Environment 8: 317–23.Google Scholar
Johansson, C. (1980). Attached algal vegetation in some streams from the Narssaq area, south Greenland. Acta Phytogeographica Suecica 68: 89–96.Google Scholar
Johnson, T. (1978). Aquatic mosses and stream metabolism in a north Swedish river. Internationale Vereinigung für Theoretische und Angewandte Limnologie 20: 1471–7.Google Scholar
Jonsgard, B. & Birks, H. H. (1995). Late-glacial mosses and environmental reconstructions at Kråkenes, western Norway. Lindbergia 20: 64–82.Google Scholar
Keeley, J. E. & Bowes, G. (1982). Gas exchange characteristics of the submerged aquatic crassulacean acid metabolism plant, Isoetes howellii. Plant Physiology 70: 1455–8.Google Scholar
Kelly, M. G. & Whitton, B. A. (1987). Growth rate of the aquatic moss Rhynchostegium riparioides in northern England. Freshwater Biology 18: 461–8.Google Scholar
Kinugawa, K. & Nakao, S. (1965). Spore germination and protonemal growth of Bryum pseudo-triquetrum as a long-day plant. Miscellanea Bryologica et Lichenologica 3: 136–7.Google Scholar
Light, J. J. (1975). Clear lakes and aquatic bryophytes in the mountains of Scotland. Journal of Ecology 63: 937–43.Google Scholar
Maberly, S. C. (1985a). Photosynthesis by Fontinalis antipyretica. I. Interactions between photon irradiance, concentration of carbon dioxide and temperature. New Phytologist 100: 127–40.Google Scholar
Maberly, S. C. (1985b). Photosynthesis by Fontinalis antipyretica. II. Assessment of environmental factors limiting photosynthesis and production. New Phytologist 100: 141–55.Google Scholar
Madsen, T. V., Enevoldsen, H. O. & Jorgensen, T. B. (1993). Effects of water velocity on photosynthesis and dark respiration in submerged stream macrophytes. Plant, Cell & Environment 16: 317–22.Google Scholar
Martins, R. J. E., Pardo, R. & Boaventura, R. A. R. (2004). Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Research 38: 693–9.Google Scholar
McIntire, C. D., Phinney, H. K., Larson, G. L. & Buktenica, M. (1994). Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon. Northwest Science 68(1): 11–21.Google Scholar
Mills, C. A. (1981). The spawning of roach Rutilus rutilus (L.) in a chalk stream. Fisheries Management 12: 49–54.Google Scholar
Mouvet, C. (1986). Métaux lourds et mousses aquatiques. Synthese Methodologique. Metz: Agence de l'Eau, Rhone-Med-Corse.
Muotka, T. & Virtanen, R. (1995). The stream as a habitat templet for bryophytes: species' distributions along gradients in disturbance and substratum heterogeneity. Freshwater Biology 33: 141–60.Google Scholar
Odland, A., Birks, H. H., Botnen, A., Tønsberg, T. & Vevle, O. (1991). Vegetation change in the spray zone of a waterfall following river regulation in Aurland, western Norway. Regulated Rivers: Research & Management 6: 147–62.Google Scholar
Oliver, M. J. & Bewley, J. D. (1984). Plant desiccation and protein synthesis. IV. RNA synthesis, stability, and recruitment of RNA into protein synthesis during desiccation and rehydration of the desiccation-tolerant moss, Tortula ruralis. Plant Physiology 74: 21–5.Google Scholar
Osmond, C. B., Valanne, N., Haslam, S. M., Uotila, P. & Roksandic, Z. (1981). Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland; some implications for photosynthetic processes in aquatic plants. Oecologia 50: 117–24.Google Scholar
Pentecost, A. (1991). Algal and bryophyte flora of a Yorkshire (U.K.) hill stream: a comparative approach using biovolume estimations. Archives of Hydrobiology 121: 181–201.Google Scholar
Pentecost, A. & Zhang, Z. (2002). Bryophytes from some travertine-depositing sites in France and the U.K.: relationships with climate and water chemistry. Journal of Bryology 24: 233–41.Google Scholar
Peñuelas, J. (1985). HCO3 as an exogenous carbon source for aquatic bryophytes Fontinalis antipyretica and Fissidens grandifrons. Journal of Experimental Botany 36: 441–8.Google Scholar
Peterson, W. L. & Mayo, J. M. (1975). Moisture stress and its effect on photosynthesis in Dicranum polysetum. Canadian Journal of Botany 53: 2897–900.Google Scholar
Prins, H. B. A. & Elzenga, J. T. M. (1989). Bicarbonate utilization: function and mechanism. Aquatic Botany 34: 59–83.Google Scholar
Proctor, M. C. F. (1981). Physiological ecology of bryophytes. In Advances in Bryology, ed. Schultze-Motel, W., pp. 79–166. Vaduz: J. Cramer.
Proctor, M. C. F. (1982). Physiological ecology: water relations, light and temperature responses, carbon balance. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 333–82. London: Chapman & Hall.CrossRef
Proctor, M. C. F. (1984). Structure and ecological adaptation. In The Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G., pp. 9–37. New York: Academic Press.
Raven, J. A. (1991). Implications of inorganic carbon utilization: ecology, evolution, and geochemistry. Canadian Journal of Botany 69: 908–24.Google Scholar
Raven, J. A., Griffiths, H., Smith, E. C. & Vaughn, K. C. (1998). New perspectives in the biophysics and physiology of bryophytes. In Bryology for the Twenty-first Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 261–75. Leeds: Maney Publishing and the British Bryological Society.
Richards, P. W. (1946). The introduction of Fontinalis antipyretica Hedw. into South Africa and its biological effects. Transactions of the British Bryological Society 1: 16.Google Scholar
Riis, T. & Sand-Jensen, K. (1997). Growth reconstruction and photosynthesis of aquatic mosses: influence of light, temperature and carbon dioxide at depth. Journal of Ecology 85: 359–72.Google Scholar
Ruttner, F. (1947). Zur Frage der Karbonatassimilation der Wasserpflanzen. I. Teil: Die beiden Haupttypen der Kohlenstaufnahme. Österreichische Botanische Zeitschrift 94: 265–94.Google Scholar
Ruttner, F. (1955). Zur Ökologie tropischer Wassermoose. Archives of Hydrobiology, Suppl. 21: 343–81.Google Scholar
Saitoh, M. K., Narita, K. & Isikawa, S. (1970). Photosynthetic nature of some aquatic plants in relation to temperature. Botanical Magazine 83: 10–12.Google Scholar
Sand-Jensen, K. & Rasmussen, L. (1978). Macrophytes and chemistry of acidic streams from lignite mining areas. Botanisk Tidsskrift 72: 105–11.Google Scholar
Sanford, G. R. (1979). Temperature related growth patterns in Amblystegium riparium. Bryologist 82: 525–32.Google Scholar
Sanford, G. R., Bayer, D. E. & Knight, A. W. (1974). An evaluation of environmental factors affecting the distribution of two aquatic mosses in the Sacramento River near Anderson, California. University of California Departments of Botany, Water Science, and Engineering.
Schiller, J. (1938). Die Förderung des Wachstums von Moosen im Gasteiner Thermalwasser. Osterreichische Botanische Zeitschrift 87: 114–18.Google Scholar
Sommer, C. & Winkler, S. (1982). Reaktionen im Gaswechsel von Fontinalis antipyretica Hedw. nach experimentellen Belastungen mit Schwermetallverbindungen. Archiv für Hydrobiologie 93: 503–14.Google Scholar
Sonesson, M. (1966). On Drepanocladus trichophyllus in the Tornetrask area. Botaniska Notiser 119: 379–400.Google Scholar
Steemann Nielsen, E. (1947). Photosynthesis of aquatic plants with special reference to the carbon sources. Dansk BotaniskArkiv 12: 5–71.Google Scholar
Steere, W. C. (1976). Ecology, phytogeography and floristics of Arctic Alaskan bryophytes. Journal of the Hattori Botanical Laboratory 41: 47–72.Google Scholar
Steinman, A. D. & Boston, H. L. (1993). The ecological role of aquatic bryophytes in a heterotrophic woodland stream. Journal of the North American Benthological Society 12: 17–26.Google Scholar
Suren, A. M. (1988). Ecological role of bryophytes in high alpine streams of New Zealand. Internationale Vereinigung für Theoretische und Angewandte Limnologie 23: 1412–16.Google Scholar
Suren, A. M. (1991). Bryophytes as invertebrate habitat in two New Zealand alpine streams. Freshwater Biology 26: 399–418.Google Scholar
Suren, A. M. (1996). Bryophyte distribution patterns in relation to macro-, meso-, and micro-scale variables in South Island, New Zealand streams. New Zealand Journal of Marine and Freshwater Research 30: 501–23.Google Scholar
Suren, A. M. & Ormerod, S. J. (1999). Aquatic bryophytes in Himalayan streams: testing a distribution model in a highly heterogeneous environment. Freshwater Biology 40: 697–716.Google Scholar
Szarek, E. (1994). The effect of abiotic factors on chlorophyll a in attached algae and mosses in the Sucha Woda stream (High Tatra Mts., southern Poland). Acta Hydrobiologica (Cracow) 36: 309–22.Google Scholar
Tremp, H. (2003). Ecological traits of aquatic bryophytes and bioindication. Accessed on 31 October 2003 at <http://www.uni-hohenheim.de/www320/german/homepages/horst/image/pdfs/aquatic_bryophytes.pdf>.
Vanderpoorten, A., Klein, J.-P., Stieperaere, H. & Trémolières, M. (1999). Variations of aquatic bryophyte assemblages in the Rhine Rift related to water quality. I. The Alsatian Rhine floodplain. Journal of Bryology 21: 17–23.Google Scholar
Vitt, D. H., Glime, J. M. & LaFarge-England, C. (1986). Bryophyte vegetation and habitat gradients of montane streams in western Canada. Hikobia 9: 367–85.Google Scholar
Ward, J. V. (1986). Altitudinal zonation in a Rocky Mountain stream. Archiv für Hydrobiologie Supplement 74: 133–99.Google Scholar
Watanabe, R. (1957). On some mosses growing in hotspring water. Miscellanea Bryologica et Lichenologica 13: 2.Google Scholar
Welch, W. H. (1960). A Monograph of the Fontinalaceae. The Hague: Martinus Nijhoff.CrossRef
Westlake, D. F. (1981). Temporal changes in aquatic macrophytes and their environment. In Dynamique de Populations et Qualite de l'Eau (Actes du Symposium de l'Institute d'Ecologie du Bassin de la Somme, Chantilly, 1979), ed. Hoestlandt, H., pp. 110–38. Paris: Gauthier-Villars.
Zanten, B. O. (1978a). Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. In Congres International de Bryologie, Bryophytorum Bibliotheca 13: 715–33.Google Scholar
Zanten, B. O. (1978b). Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. Journal of the Hattori Botanical Laboratory 44: 455–82.Google Scholar
Zanten, B. O. (1984). Some considerations on the feasibility of long-distance transport in bryophytes. Acta Botanica Neerlandica 33: 231–2.Google Scholar
Zanten, B. O. & Gradstein, S. R. (1987). Feasibility of long-distance transport in Colombian hepatics, preliminary report. Symposia Biologica Hungarica 35: 315–22.Google Scholar
Zanten, B. O. & Gradstein, S. R. (1988). Experimental dispersal geography of neotropical liverworts. Nova Hedwigia, suppl. 90: 41–94.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×