Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T16:21:58.312Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 August 2009

Patricia Armati
Affiliation:
University of Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Biology of Schwann Cells
Development, Differentiation and Immunomodulation
, pp. 185 - 246
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, A. M., Atkinson, P. F., Hall, S. M., Hughes, R. A. and Taylor, W. A. (1989). Chronic experimental allergic neuritis in Lewis rats. Neuropathol Appl Neurobiol 15, 249–64.CrossRefGoogle ScholarPubMed
Adams, D., Festenstein, H., Gibson, J. D.et al. (1979). HLA antigens in chronic relapsing idiopathic inflammatory polyneuropathy. J Neurol Neurosurg Psychiatry 42, 184–6.CrossRefGoogle ScholarPubMed
Agresti, C., D'Urso, D. and Levi, G. (1996). Reversible inhibitory effects of interferon-gamma and tumour necrosis factor-alpha on oligodendroglial lineage cell proliferation and differentiation in vitro. Eur J Neurosci 8, 1106–16.CrossRefGoogle ScholarPubMed
Ahmed, M. R., Basha, S. H., Gopinath, D., Muthusamy, R. and Jayakumar, R. (2005). Initial upregulation of growth factors and inflammatory mediators during nerve regeneration in the presence of cell adhesive peptide-incorporated collagen tubes. J Peripher Nerv Syst 10, 17–30.CrossRefGoogle ScholarPubMed
Ahn, M., Lee, Y., Moon, C.et al. (2004). Upregulation of osteopontin in Schwann cells of the sciatic nerves of Lewis rats with experimental autoimmune neuritis. Neurosci Lett 372, 137–41.CrossRefGoogle ScholarPubMed
Ainsworth, P. J., Bolton, C. F., Murphy, B. C., Stuart, J. A. and Hahn, A. F. (1998). Genotype/phenotype correlation in affected individuals of a family with a deletion of the entire coding sequence of the connexin 32 gene. Hum Genet 103, 242–4.CrossRefGoogle ScholarPubMed
Akassoglou, K., Probert, L., Kontogeorgos, G. and Kollias, G. (1997). Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 158, 438–45.Google Scholar
Akassoglou, K., Bauer, J., Kassiotis, G.et al. (1998). Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol 153, 801–13.CrossRefGoogle ScholarPubMed
Akassoglou, K., Bauer, J., Kassiotis, G.et al. (1999). Transgenic models of TNF induced demyelination. Adv Exp Med Biol 468, 245–59.CrossRefGoogle ScholarPubMed
Akassoglou, K., Kombrinck, K. W., Degen, J. L. and Strickland, S. (2000). Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol 149, 1157–66.CrossRefGoogle ScholarPubMed
Akassoglou, K., Yu, W. M., Akpinar, P. and Strickland, S. (2002). Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron 33, 861–75.CrossRefGoogle ScholarPubMed
Al-Din, A. N., Anderson, M., Bickerstaff, E. R. and Harvey, I. (1982). Brainstem encephalitis and the syndrome of Miller Fisher: a clinical study. Brain 105 (Pt 3), 481–95.CrossRefGoogle Scholar
Albrecht, D. E. and Froehner, S. C. (2004). DRP2 and Dp116 Form Spatially Distinct Dystrophin-like Complexes in the Schwann Cells of Peripheral Nerves. American Society for Cell Biology, Washington DC, Abstract.Google Scholar
Allen, D., Giannopoulos, K., Gray, I.et al. (2005). Antibodies to peripheral nerve myelin proteins in chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst 10, 174–80.CrossRefGoogle ScholarPubMed
Allen, N. J., Barres, B. A. (2005). Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15, 542–8.CrossRefGoogle ScholarPubMed
Altevogt, B. M., Kleopa, K. A., Postma, F. R., Scherer, S. S. and Paul, D. L. (2002). Cx29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22, 6458–70.CrossRefGoogle ScholarPubMed
Alvarez-Buylla, A. and Lim, D. A. (2004). For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–6.CrossRefGoogle Scholar
American Academy of Neurology (1991). Research criteria for diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP). Report from an Ad Hoc Subcommittee of the American Academy of Neurology AIDS Task Force. Neurology 41, 617–18.CrossRef
Ammoumi, A. A., Pertschuk, L., Daras, M. and Rosen, A. D. (1980). Guillain–Barré syndrome; results of direct immunofluorescent study. NY State J Med 80, 1434–5.Google ScholarPubMed
Andorfer, B., Kieseier, B. C., Mathey, E.et al. (2001). Expression and distribution of transcription factor NF-kappaB and inhibitor IkappaB in the inflamed peripheral nervous system. J Neuroimmunol 116, 226–32.CrossRefGoogle ScholarPubMed
Andrews, T., Zhang, P. and Bhat, N. R. (1998). TNFalpha potentiates IFNgamma-induced cell death in oligodendrocyte progenitors. J Neurosci Res 54, 574–83.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Anzini, P., Neuberg, D. H., Schachner, M.et al. (1997). Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17, 4545–51.CrossRefGoogle ScholarPubMed
Aoki, E., Semba, R. and Kashiwamata, S. (1991). Evidence for the presence of L-arginine in the glial components of the peripheral nervous system. Brain Res 559, 159–62.CrossRefGoogle ScholarPubMed
Apostolski, S., Sadiq, S. A., Hays, A.et al. (1994). Identification of Gal(beta 1–3)GalNAc bearing glycoproteins at the nodes of Ranvier in peripheral nerve. J Neurosci Res 38, 134–41.CrossRefGoogle ScholarPubMed
Araque, A., Parpura, V., Sanzgiri, R. P. and Haydon, P. G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22, 208–15.CrossRefGoogle ScholarPubMed
Archelos, J. J., Roggenbuck, K., Schneider-Schaulies, J., Linington, C., Toyka, K. V. and Hartung, H. P. (1993). Production and characterization of monoclonal antibodies to the extracellular domain of P0. J Neurosci Res 35, 46–53.CrossRefGoogle ScholarPubMed
Arenander, A. and De Vellis, J. (1999). Development of the nervous system. Siegel, G. (Ed.) Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. Raven Press, New York, pp. 573–606.Google Scholar
Argall, K. G., Armati, P. J., Pollard, J. D. and Bonner, J. (1992a). Interactions between CD4+ T-cells and rat Schwann cells in vitro. 2. Cytotoxic effects of P2-specific CD4+ T-cell lines on Lewis rat Schwann cells. J Neuroimmunol 40, 19–29.CrossRefGoogle Scholar
Argall, K. G., Armati, P. J., Pollard, J. D., Watson, E. and Bonner, J. (1992b). Interactions between CD4+ T-cells and rat Schwann cells in vitro. 1. Antigen presentation by Lewis rat Schwann cells to P2-specific CD4+ T-cell lines. J Neuroimmunol 40, 1–18.CrossRefGoogle Scholar
Armati, P. J. and Pollard, J. D. (1987). Cytotoxic response of serum from patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Acta Neurol Scand 76, 24–7.CrossRefGoogle Scholar
Armati, P. J. and Pollard, J. D. (1996). Immunology of the Schwann cell. Baillieres Clin Neurol 5, 47–64.Google ScholarPubMed
Armati, P. J., Pollard, J. D. and Gatenby, P. (1990). Rat and human Schwann cells in vitro can synthesize and express MHC molecules. Muscle Nerve 13, 106–16.CrossRefGoogle ScholarPubMed
Arroyo, E. J. and Scherer, S. S. (2000). On the molecular architecture of myelinated fibers. Histochem Cell Biol 113, 1–18.CrossRefGoogle ScholarPubMed
Arroyo, E. J., Sirkowski, E. E., Chitale, R. and Scherer, S. S. (2004). Acute demyelination disrupts the molecular organization of PNS nodes. J Comp Neurol 479, 424–34.CrossRefGoogle Scholar
Arteaga, M. F., Gutierrez, R., Avila, J., Mobasheri, A., Diaz-Flores, L. and Martin-Vasallo, P. (2004). Regeneration influences expression of the Na+, K+-atpase subunit isoforms in the rat peripheral nervous system. Neuroscience 129, 691–702.CrossRefGoogle ScholarPubMed
Asbury, A. K. and Cornblath, D. R. (1990). Assessment of current diagnostic criteria for Guillain–Barré syndrome. Ann Neurol 27 Suppl, S21–4.CrossRefGoogle ScholarPubMed
Asbury, A. K., Arnason, B. G. and Adams, R. D. (1969). The inflammatory lesion in idiopathic polyneuritis. Its role in pathogenesis. Medicine (Baltimore) 48, 173–215.CrossRefGoogle ScholarPubMed
Asbury, A. K., Arnason, B. G. W., Karp, H. R. and McFarlin, D. F. (1978). Criteria for diagnosis of Guillain–Barré syndrome. Ann Neurol 3, 565–6.Google Scholar
Astrow, S. H., Son, Y. J. and Thompson, W. J. (1994). Differential neural regulation of a neuromuscular junction-associated antigen in muscle fibers and Schwann cells. J Neurobiol 25, 937–52.CrossRefGoogle ScholarPubMed
Astrow, S. H., Tyner, T. R., Nguyen, M. T. and Ko, C. P. (1997). A Schwann cell matrix component of neuromuscular junctions and peripheral nerves. J Neurocytol 26, 63–75.CrossRefGoogle ScholarPubMed
Astrow, S. H., Qiang, H. and Ko, C. P. (1998). Perisynaptic Schwann cells at neuromuscular junctions revealed by a novel monoclonal antibody. J Neurocytol 27, 667–81.CrossRefGoogle ScholarPubMed
Asundi, V. K., Erdman, R., Stahl, R. C. and Carey, D. J. (2003). Matrix metalloproteinase-dependent shedding of syndecan-3, a transmembrane heparan sulfate proteoglycan, in Schwann cells. J Neurosci Res 73, 593–602.CrossRefGoogle ScholarPubMed
Atanasoski, S., Notterpek, L., Lee, H. Y.et al. (2004). The protooncogene Ski controls Schwann cell proliferation and myelination. Neuron 43, 499–511.CrossRefGoogle ScholarPubMed
Augustien, G. J., Burns, M. E., DeBello, W. M.et al. (1999). Proteins involved in synaptic vesicle trafficking. J Physiol 520, 33–41.CrossRefGoogle Scholar
Auld, D. S. and Robitaille, R. (2003a). Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron 40, 389–400.CrossRefGoogle Scholar
Auld, D. S. and Robitaille, R. (2003b). Perisynaptic Schwann cells at the neuromuscular junction: nerve- and activity-dependent contributions to synaptic efficacy, plasticity, and reinnervation. Neuroscientist 9, 144–57.CrossRefGoogle Scholar
Auld, D. S., Colomar, A., Belair, E. L.et al. (2003). Modulation of neurotransmission by reciprocal synapse–glial interactions at the neuromuscular junction. J Neurocytol 32, 1003–15.CrossRefGoogle ScholarPubMed
Awasaki, T. and Ito, K. (2004). Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr Biol 14, 668–77.CrossRefGoogle ScholarPubMed
Awatramani, R., Shumas, S., Kamholz, J. and Scherer, S. S. (2002). TGFbeta1 modulates the phenotype of Schwann cells at the transcriptional level. Mol Cell Neurosci 19, 307–19.CrossRefGoogle ScholarPubMed
Bachelin, C., Lachapelle, F., Girard, C.et al. (2005). Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain 128, 540–9.CrossRefGoogle ScholarPubMed
Baggiolini, M. (2001). Chemokines in pathology and medicine. J Intern Med 250, 91–104.CrossRefGoogle Scholar
Bai, Y., Ianokova, E., Pu, Q.et al. (in press). R69C mutation in myelin protein zero causes early onset CMT1B with demyelination, dysmyelination and axonal loss. Arch Neurol.Google Scholar
Balarezo, F. S., Muller, R. C., Weiss, R. G.et al. (2003). Soft tissue perineuriomas in children: report of three cases and review of the literature corrected. Pediatr Dev Pathol 6, 137–41.CrossRefGoogle ScholarPubMed
Balice-Gordon, R. J., Bone, L. J. and Scherer, S. S. (1998). Functional gap junctions in the Schwann cell myelin sheath. J Cell Biol 142, 1095–104.CrossRefGoogle ScholarPubMed
Ballesteros, J. A., Abrams, C. K., Oh, S., Verselis, V. K., Weinstein, H. and Bargiello, T. A. (1999). The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions. Biophy J 76, 2887–98.Google Scholar
Bao, J., Wolpowitz, D., Role, L. W. and Talmage, D. A. (2003). Back signaling by the Nrg-1 intracellular domain. J Cell Biol 161, 1133–41.CrossRefGoogle ScholarPubMed
Barohn, R. J., Kissel, J. T., Warmolts, J. R. and Mendell, J. R. (1989). Chronic inflammatory demyelinating polyradiculoneuropathy. Clinical characteristics, course, and recommendations for diagnostic criteria. Arch Neurol 46, 878–84.CrossRefGoogle ScholarPubMed
Baron Van Evercooren, A., Kleiman, H. K., Seppa, J., Rentier, B. and Dubois-Dalcq, M. (1982). Fibronectin promotes rat Schwann cell growth and motility. J Cell Biol 93, 211–16.CrossRefGoogle ScholarPubMed
Baxter, R. V., Ben Othmane, K., Rochelle, J. M.et al. (2001). Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot–Marie–Tooth disease type 4A/8q21. Nat Genet 30, 21–2.CrossRefGoogle ScholarPubMed
Be'eri, H., Reichert, F., Saada, A. and Rotshenker, S. (1998). The cytokine network of wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci 10, 2707–13.CrossRefGoogle ScholarPubMed
Beams, H. W. and Evans, T. C. (1953). Electron micrographs of motor end-plates. Proc Soc Exp Biol Med 82, 344–6.CrossRefGoogle ScholarPubMed
Bellone, E., Di Maria, E., Soriani, S.et al. (1999). A novel mutation (D305V) in the early growth response 2 gene is associated with severe Charcot–Marie–Tooth type 1 disease. Hum Mutat 14, 353–4.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Belmadani, A., Tran, P. B., Ren, D., Assimacopoulos, S., Grove, E. A. and Miller, R. J. (2005). The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J Neurosci 25, 3995–4003.CrossRefGoogle ScholarPubMed
Bennett, V. and Baines, A. J. (2001). Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81, 1353–92.CrossRefGoogle ScholarPubMed
Bennett, C. L., Shirk, A. J., Huynh, H. M.et al. (2004). SIMPLE mutation in demyelinating neuropathy and distribution in sciatic nerve. Ann Neurol 55, 713–20.CrossRefGoogle ScholarPubMed
Berciano, J., Garcia, A., Calleja, J. and Combarros, O. (2000). Clinico-electrophysiological correlation of extensor digitorum brevis muscle atrophy in children with Charcot–Marie–Tooth disease 1A duplication. Neuromuscul Disord 10, 419–24.CrossRefGoogle ScholarPubMed
Bergoffen, J., Scherer, S. S., Wang, S.et al. (1993). Connexin mutations in X-linked Charcot–Marie–Tooth disease. Science 262, 2039–42.CrossRefGoogle ScholarPubMed
Bergsteinsdottir, K., Kingston, A., Mirsky, R. and Jessen, K. R. (1991). Rat Schwann cells produce interleukin-1. J Neuroimmunol 34, 15–23.CrossRefGoogle ScholarPubMed
Bergsteinsdottir, K., Kingston, A. and Jessen, K. R. (1992). Rat Schwann cells can be induced to express major histocompatibility complex class II molecules in vivo. J Neurocytol 21, 382–90.CrossRefGoogle ScholarPubMed
Bermingham, J. R., Scherer, S. S., O'Connell, S.et al. (1996). Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes & Development 10, 1751–62.CrossRefGoogle ScholarPubMed
Bermingham, J. R. Jr., Shearin, H., Pennington, J.et al. (2006). The claw paw mutation reveals a role for Lgi4 in peripheral nerve development. Nat Neurosci 9, 76–84.CrossRefGoogle ScholarPubMed
Berthold, C. H., Fraher, J. P., King, R. H. M. and Rydmark, M. (2005). Microscopic anatomy of the peripheral nervous system. Dyck, P. J., Thomas, P. K. (Eds.) Peripheral Neuropathy, 4th Edn, Elsevier Saunders, Philadelphia, PA, pp. 35–92.Google Scholar
Bigbee, J. W., Yoshino, J. E. and DeVries, G. H. (1987). Morphological and proliferative responses of cultured Schwann cells following rapid phagocytosis of a myelin-enriched fraction. J Neurocytol 16, 487–96.CrossRefGoogle ScholarPubMed
Bigotte, L., Arvidson, B. and Olsson, Y. (1982). Cytofluorescence localization of adriamycin in the nervous system. II. Distribution of the drug in the somatic and autonomic peripheral nervous systems of normal adult mice after intravenous injection. Acta Neuropathol (Berl) 57, 130–6.CrossRefGoogle ScholarPubMed
Birks, R., Huxley, H. E. and Katz, B. (1960a). The fine structure of the neuromuscular junction of the frog. J Physiol 150, 134–44.CrossRefGoogle Scholar
Birks, R., Katz, B. and Miledi, R. (1960b). Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J Physiol 150, 145–68.CrossRefGoogle Scholar
Bishop, D. L., Misgeld, T., Walsh, M. K., Gan, W. B. and Lichtman, J. W. (2004). Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651–61.CrossRefGoogle ScholarPubMed
Bitgood, M. J. and McMahon, A. P. (1995). Hedgehog and Bmp genes are coexpressed at many diverse sites of cell–cell interaction in the mouse embryo. Develop Biol 172, 126–38.CrossRefGoogle ScholarPubMed
Bixby, S., Kruger, G. M., Mosher, J. T., Joseph, N. M. and Morrison, S. J. (2002). Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35, 643–56.CrossRefGoogle ScholarPubMed
Bjartmar, C., Wujek, J. R. and Trapp, B. D. (2003). Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206, 165–71.CrossRefGoogle ScholarPubMed
Blakemore, W. F. (2005). The case for a central nervous system (CNS) origin for the Schwann cells that remyelinate CNS axons following concurrent loss of oligodendrocytes and astrocytes. Neuropathol Appl Neurobiol 31, 1–10.CrossRefGoogle ScholarPubMed
Blanchard, A. D., Sinanan, A., Parmantier, E.et al. (1996). Oct-6 (SCIP/Tst-1) is expressed in Schwann cell precursors, embryonic Schwann cells, and postnatal myelinating Schwann cells: comparison with Oct-1, Krox-20, and Pax-3. J Neurosci Res 46, 630–40.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Boeke, J. (1949). The sympathetic endformation, its synaptology, the interstitial cells, the periterminal network, and its bearing on the neurone theory. Acta Anatomica 8, 18–61.CrossRefGoogle ScholarPubMed
Boerkoel, C. F., Takashima, H., Stankiewicz, P.et al. (2001). Periaxin mutations cause recessive Dejerine–Sottas neuropathy. Am J Hum Genet 68, 325–33.CrossRefGoogle ScholarPubMed
Boiko, T., Rasband, M. N., Levinson, S. R.et al. (2001). Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30, 91–104.CrossRefGoogle ScholarPubMed
Bolin, L. M., Verity, A. N., Silver, J. E., Shooter, E. M. and Abrams, J. S. (1995). Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem 64, 850–8.CrossRefGoogle ScholarPubMed
Bolino, A., Muglia, M., Conforti, F. L. (2000). Charcot–Marie–Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 25, 17–19.CrossRefGoogle ScholarPubMed
Bonetti, B., Valdo, P., Stegagno, C.et al. (2000). Tumor necrosis factor alpha and human Schwann cells: signalling and phenotype modulation without cell death. J Neuropathol Exp Neurol 59, 74–84.CrossRefGoogle ScholarPubMed
Bonnon, C., Goutebroze, L., Denisenko Nehrbass, N., Girault, J. A. and Faivre Sarrailh, C. (2003). The paranodal complex of F3/Contactin and Caspr/Paranodin traffics to the cell surface via a non-conventional pathway. J Biol Chem 278, 48339–47.CrossRefGoogle Scholar
Bouchard, C., Lacroix, C., Plante, V.et al. (1999). Clinicopathologic findings and prognosis of chronic inflammatory demyelinating polyneuropathy. Neurology 52, 498–503.CrossRefGoogle ScholarPubMed
Bourde, O., Kiefer, R., Toyka, K. V. and Hartung, H. P. (1996). Quantification of interleukin-6 mRNA in wallerian degeneration by competitive reverse transcription polymerase chain reaction. J Neuroimmunol 69, 135–40.Google ScholarPubMed
Bourque, M. J. and Robitaille, R. (1998). Endogenous peptidergic modulation of perisynaptic Schwann cells at the frog neuromuscular junction. J Physiol 512 (Pt 1), 197–209.CrossRefGoogle ScholarPubMed
Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W. and Taylor, J. M. (1985). Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76, 1501–13.CrossRefGoogle ScholarPubMed
Bradley, W. G. and Jenkison, M. (1973). Abnormalities of peripheral nerves in murine muscular dystrophy. J Neurol Sci 18, 227–47.CrossRefGoogle ScholarPubMed
Bradley, W. G., Jaros, E. and Jenkison, M. (1977). The nodes of Ranvier in the nerves of mice with muscular dystrophy. J Neuropathol Exp Neurol 36, 797–806.CrossRefGoogle ScholarPubMed
Brady, S. T., Witt, A. S., Kirkpatrick, L. L.et al. (1999). Formation of compact myelin is required for maturation of the axonal cytoskeleton. J Neurosci 19, 7278–88.CrossRefGoogle ScholarPubMed
Braun, N., Sevigny, J., Robson, S. C., Hammer, K., Hanani, M. and Zimmermann, H. (2004). Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45, 124–32.CrossRefGoogle ScholarPubMed
Braunewell, K. H., Martini, R., LeBaron, R.et al. (1995). Up-regulation of a chondroitin sulphate epitope during regeneration of mouse sciatic nerve: evidence that the immunoreactive molecules are related to the chondroitin sulphate proteoglycans decorin and versican. Eur J Neurosci 7, 792–804.CrossRefGoogle ScholarPubMed
Bray, G. M., Perkins, S., Peterson, A. C. and Aguayo, A. J. (1977). Schwann cell multiplication deficit in nerve roots of newborn dystrophic mice. A radioautographic and ultrastructural study. J Neurol Sci 32, 203–12.CrossRefGoogle ScholarPubMed
Brechenmacher, C., Vital, C., Deminiere, C.et al. (1987). Guillain–Barré syndrome: an ultrastructural study of peripheral nerve in 65 patients. Clin Neuropathol 6, 19–24.Google ScholarPubMed
Brennan, A., Dean, C. H., Zhang, A. L., Cass, D. T., Mirsky, R. and Jessen, K. R. (2000). Endothelins control the timing of Schwann cell generation in vitro and in vivo. Develop Biol 227, 545–57.CrossRefGoogle ScholarPubMed
Brett, F. M., Costigan, D., Farrell, M. A.et al. (1998). Merosin-deficient congenital muscular dystrophy and cortical dysplasia. Eur J Paediatr Neurol 2, 77–82.CrossRefGoogle ScholarPubMed
Britsch, S., Li, L., Kirchhoff, S.et al. (1998). The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes & Development 12, 1825–36.CrossRefGoogle ScholarPubMed
Britsch, S., Goerich, D. E., Riethmacher, D.et al. (2001). The transcription factor Sox10 is a key regulator of peripheral glial development. Genes & Development 15, 66–78.CrossRefGoogle ScholarPubMed
Brown, M. C., Holland, R. L. and Hopkins, W. G. (1981). Motor nerve sprouting. Ann Rev Neurosci 4, 17–42.CrossRefGoogle ScholarPubMed
Bruck, W. (1997). The role of macrophages in Wallerian degeneration. Brain Pathol 7, 741–52.CrossRefGoogle ScholarPubMed
Bruzzone, R. and Ressot, C. (1997). Connexins, gap junctions and cell–cell signalling in the nervous system. Eur J Neurosci 9, 1–6.CrossRefGoogle Scholar
Bruzzone, R., White, T. W., Scherer, S. S., Fischbeck, K. H. and Paul, D. L. (1994). Null mutations of connexin32 in patients with X-linked Charcot–Marie–Tooth disease. Neuron 13, 1253–60.CrossRefGoogle ScholarPubMed
Bruzzone, R., White, T. W. and Paul, D. L. (1996). Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238, 1–27.CrossRefGoogle ScholarPubMed
Bult, C., Kibbe, W. A., Snoddy, J.et al. (2004). A genome end-game: understanding gene function in the nervous system. Nat Neurosci 7, 484–5.CrossRefGoogle Scholar
Bunge, M. B. (1993a). Schwann cell regulation of extracellular matrix biosynthesis and assembly. Dyck, P. J., Thomas, P. K., Griffin, J., Low, P. A., Poduslo, J. F. (Eds.) Peripheral Neuropathy, 3rd Edn, W. B. Saunders, Philadelphia, pp. 299–316.Google Scholar
Bunge, R. P. (1993b). Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Current Opin Neurobiol 3, 805–9.CrossRefGoogle Scholar
Bunge, R. P. (1994). The role of the Schwann cell in trophic support and regeneration. J Neurol 242, S19–S21.CrossRefGoogle ScholarPubMed
Bunge, M. W. P. and Wood, P. (2006). Transplantation of Schwann cells and olfactory ensheathing cells to promote regeneration in the CNS. Selzer, M.et al. (Eds.) Textbook of Neural Repair and Rehabilitation. Cambridge University Press, Cambridge. pp. 513–31.Google Scholar
Bunge, R. P. and Bunge, M. B. (1983). Interrelationship between Schwann cell function and extracellular matrix production. Trends Neurosci499–505.CrossRefGoogle Scholar
Byers, T. J., Lidov, H. G. and Kunkel, L. M. (1993). An alternative dystrophin transcript specific to peripheral nerve. Nat Genet 4, 77–81.CrossRefGoogle ScholarPubMed
Caccamo, D. V., Ho, K. L. and Garcia, J. H. (1992). Cauda equina tumor with ependymal and paraganglionic differentiation. Hum Pathol 23, 835–38.CrossRefGoogle ScholarPubMed
Cajal, S. R., DeFelipe, J. and Jones, E. G. (1991). Cajal's Degeneration and Regeneration of the Nervous System. Oxford University Press, Oxford.CrossRefGoogle Scholar
Calabresi, P. A., Fields, N. S., Maloni, H. W.et al. (1998). Phase 1 trial of transforming growth factor beta 2 in chronic progressive MS. Neurology 51, 289–92.CrossRefGoogle ScholarPubMed
Cambier, J. C., Littman, D. R. and Weiss, A. (2001). Antigen presentation to T lymphocytes. Janeway, J. (Ed.) Immunobiology. Garland Publishing, New York.Google Scholar
Cameron-Curry, P. (1995). Glial lineage of the peripheral nervous system. C R Seances Soc Biol Fil 189, 253–61.Google ScholarPubMed
Cameron-Curry, P., Dulac, C. and Douarin, N. M. (1993). Negative regulation of Schwann cell myelin protein gene expression by the dorsal root ganglionic microenvironment. Eur J Neurosci 5, 594–604.CrossRefGoogle ScholarPubMed
Cammer, W. and Tansey, F. A. (1987). Immunocytochemical localization of carbonic anhydrase in myelinated fibers in peripheral nerves of rat and mouse. J Histochem Cytochem 35, 865–70.CrossRefGoogle Scholar
Campana, W. M. and Myers, R. R. (2003). Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur J Neurosci 18, 1497–506.CrossRefGoogle ScholarPubMed
Campana, W. M., Myers, R. R. and Rearden, A. (2003). Identification of PINCH in Schwann cells and DRG neurons: shuttling and signaling after nerve injury. Glia 41, 213–23.CrossRefGoogle ScholarPubMed
Cao, G. and Ko, C. P. (2001). Schwann cell-conditioned medium modulates synaptic activities at Xenopus neuromuscular junctions in vitro. Society for Neuroscience Abstracts, 711, 12.Google Scholar
Carey, D. J. (1997). Syndecans: multifunctional cell-surface co-receptors. Biochem J 327 (Part 1), 1–16.CrossRefGoogle ScholarPubMed
Carey, D. J., Todd, M. S. and Rafferty, C. M. (1986). Schwann cell myelination: induction by exogenous basement membrane-like extracellular matrix. J Cell Biol 102, 2254–63.CrossRefGoogle ScholarPubMed
Carey, D. J., Crumbling, D. M., Stahl, R. C. and Evans, D. M. (1990). Association of cell surface heparan sulfate proteoglycans of Schwann cells with extracellular matrix proteins. J Biol Chem 265, 20627–33.Google ScholarPubMed
Carey, D. J., Evans, D. M., Stahl, R. C.et al. (1992). Molecular cloning and characterization of N-syndecan, a novel transmembrane heparan sulfate proteoglycan. J Cell Biol 117, 191–201.CrossRefGoogle ScholarPubMed
Carey, D. J., Stahl, R. C., Asundi, V. K. and Tucker, B. (1993). Processing and subcellular distribution of the Schwann cell lipid-anchored heparan sulfate proteoglycan and identification as glypican. Exp Cell Res 208, 10–18.CrossRefGoogle ScholarPubMed
Carey, D. J., Stahl, R. C., Cizmeci-Smith, G. and Asundi, V. K. (1994). Syndecan-1 expressed in Schwann cells causes morphological transformation and cytoskeletal reorganization and associates with actin during cell spreading. J Cell Biol 124, 161–70.CrossRefGoogle ScholarPubMed
Castonguay, A. and Robitaille, R. (2001). Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse. J Neurosci 21, 1911–22.CrossRefGoogle ScholarPubMed
Castro, C., Gomez-Hernandez, J. M., Silander, K. and Barrio, L. C. (1999). Altered formation of hemichannels and gap junction channels caused by C-terminal connexin-32 mutations. J Neurosci 19, 3752–60.CrossRefGoogle ScholarPubMed
Causey, G. (1960). The Cell of Schwann. E&S Livingstone Ltd, Edinburgh.Google Scholar
Cavaletti, G., Fabbrica, D., Minoia, C., Frattola, L. and Tredici, G. (1998). Carboplatin toxic effects on the peripheral nervous system of the rat. Ann Oncol 9, 443–7.CrossRefGoogle ScholarPubMed
Ceuterick-de Groote, C., Jonghe, P., Timmerman, V. (2001). Infantile demyelinating neuropathy associated with a de novo point mutation on Ser72 in PMP22 and basal lamina onion bulbs in skin biopsy. Pathol Res Pract 197, 193–8.CrossRefGoogle ScholarPubMed
Chalasani, S. H., Baribaud, F., Coughlan, C. M.et al. (2003a). The chemokine stromal cell-derived factor-1 promotes the survival of embryonic retinal ganglion cells. J Neurosci 23, 4601–12.CrossRefGoogle Scholar
Chalasani, S. H., Sabelko, K. A., Sunshine, M. J., Littman, D. R. and Raper, J. A. (2003b). A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 23, 1360–71.CrossRefGoogle Scholar
Chan, et al. (2006). The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314, 832–6.CrossRefGoogle ScholarPubMed
Chan, J. R., Cosgaya, J. M., Wu, Y. J. and Shooter, E. M. (2001). Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Nat Acad Sci USA 98, 14661–8.CrossRefGoogle ScholarPubMed
Chan, J. R., Watkins, T. A., Cosgaya, J. M.et al. (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43, 183–91.CrossRefGoogle ScholarPubMed
Chance, P. F., Alderson, M. K., Leppig, K. A.et al. (1993). DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72, 143–51.CrossRefGoogle ScholarPubMed
Chandross, K. J., Spray, D. C., Cohen, R. I.et al. (1996). TNF alpha inhibits Schwann cell proliferation, connexin46 expression, and gap junctional communication. Mol Cell Neurosci 7, 479–500.CrossRefGoogle ScholarPubMed
Chao, C. C. and Hu, S. (1994). Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev Neurosci 16, 172–9.CrossRefGoogle ScholarPubMed
Charcot, JM. and Marie, P. (1886). Sure une forme particulaire d'atrophie musculaire progressive souvent familial debutant par les pieds et les jambes et atteingnant plus tard les mains. Rev Med(Paris) 6, 97–138.Google Scholar
Chen, C., Bharucha, V., Chen, Y.et al. (2002). Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits. Proc Nat Acad Sci USA 99, 17072–7.CrossRefGoogle Scholar
Chen, C. L., Westenbroek, R. E., Xu, X. R.et al. (2004). Mice lacking sodium channel beta 1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J Neurosci 24, 4030–42.CrossRefGoogle Scholar
Chen, L. and Ko, C. P. (1994). Extension of synaptic extracellular matrix during nerve terminal sprouting in living frog neuromuscular junctions. J Neurosci 14, 796–808.CrossRefGoogle ScholarPubMed
Chen, L. E., Seaber, A. V., Wong, G. H. and Urbaniak, J. R. (1996). Tumor necrosis factor promotes motor functional recovery in crushed peripheral nerve. Neurochem Int 29, 197–203.Google ScholarPubMed
Chen, L. L., Folsom, D. B. and Ko, C. P. (1991). The remodeling of synaptic extracellular matrix and its dynamic relationship with nerve terminals at living frog neuromuscular junctions. J Neurosci 11, 2920–30.CrossRefGoogle ScholarPubMed
Chen, L. M., Bailey, D. and Fernandez-Valle, C. (2000). Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J Neurosci 20, 3776–84.CrossRefGoogle Scholar
Chen, S., Rio, C., Ji, R. R., Dikkes, P., Coggeshall, R. E., Woolf, C. J. and Corfas, G. (2003). Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nat Neurosci 6, 1186–93.CrossRefGoogle ScholarPubMed
Chen, Z. L. and Strickland, S. (2003). Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163, 889–99.CrossRefGoogle ScholarPubMed
Cheng, H. L., Russell, J. W. and Feldman, E. L. (1999). IGF-I promotes peripheral nervous system myelination. Ann NY Acad Sci 883, 124–30.CrossRefGoogle ScholarPubMed
Cheng, H. L., Steinway, M., Delaney, C. L., Franke, T. F. and Feldman, E. L. (2000). IGF-I promotes Schwann cell motility and survival via activation of Akt. Mol Cell Endocrinol 170, 211–15.CrossRefGoogle ScholarPubMed
Chernousov, M. A., Rothblum, K., Tyler, W. A., Stahl, R. C. and Carey, D. J. (2000). Schwann cells synthesize type V collagen that contains a novel alpha 4 chain. Molecular cloning, biochemical characterization, and high affinity heparin binding of alpha 4(V) collagen. J Biol Chem 275, 28208–15.Google ScholarPubMed
Chernousov, M. A. and Carey, D. J. (2003). AlphaVbeta8 integrin is a Schwann cell receptor for fibrin. Exp Cell Res 291, 514–24.CrossRefGoogle ScholarPubMed
Chernousov, M. A., Stahl, R. C. and Carey, D. J. (2001). Schwann cell type V collagen inhibits axonal outgrowth and promotes Schwann cell migration via distinct adhesive activities of the collagen and noncollagen domains. J Neurosci 21, 6125–35.CrossRefGoogle ScholarPubMed
Chiba, A., Kusunoki, S., Shimizu, T. and Kanazawa, I. (1992). Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller–Fisher syndrome. Ann Neurol 31, 677–9.CrossRefGoogle ScholarPubMed
Chiba, A., Matsumura, K., Yamada, H.et al. (1997). Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J Biol Chem 272, 2156–62.CrossRefGoogle ScholarPubMed
Chiu, S. Y., Schrager, P. and Ritchie, J. M. (1984). Neuronal-type Na+ and K+ channels in rabbit cultured Schwann cells. Nature 311, 156–7.CrossRefGoogle Scholar
Chow, I. and Poo, M. M. (1985). Release of acetylcholine from embryonic neurons upon contact with muscle cell. J Neurosci 5, 1076–82.CrossRefGoogle ScholarPubMed
Christopherson, K. S., Ullian, E. M., Stokes, C. C.et al. (2005). Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–33.CrossRefGoogle ScholarPubMed
Chun, S. J., Rasband, M. N., Sidman, R. L., Habib, A. A. and Vartanian, T. (2003). Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J Cell Biol 163, 397–408.CrossRefGoogle ScholarPubMed
Cifuentes-Diaz, C., Velasco, E., Meunier, F. A.et al. (1998). The peripheral nerve and the neuromuscular junction are affected in the tenascin-C-deficient mouse. Cell Mol Biol (Noisy-le-Grand) 44, 357–79.Google ScholarPubMed
Ciment, G. (1990). The melanocyte Schwann cell progenitor: a bipotent intermediate in the neural crest lineage. Comments Dev Neurobiol 1, 207–23.Google Scholar
Clegg, D. O., Wingerd, K. L., Hikita, S. T. and Tolhurst, E. C. (2003). Integrins in the development, function and dysfunction of the nervous system. Front Biosci 8, 723–50.CrossRefGoogle Scholar
Colby, J., Nicholson, R., Dickson, K. M.et al. (2000). PMP22 carrying the trembler or trembler-J mutation is intracellularly retained in myelinating Schwann cells. Neurobiol Dis 7, 561–73.CrossRefGoogle ScholarPubMed
Colognato, H., Winkelmann, D. A. and Yurchenco, P. D. (1999). Laminin polymerization induces a receptor-cytoskeleton network. J Cell Biol 145, 619–31.CrossRefGoogle ScholarPubMed
Colomar, A. and Robitaille, R. (2004). Glial modulation of synaptic transmission at the neuromuscular junction. Glia 47, 284–9.CrossRefGoogle ScholarPubMed
Constable, A. L., Armati, P. J., Toyka, K. V. and Hartung, H. P. (1994). Production of prostanoids by Lewis rat Schwann cells in vitro. Brain Res 635, 75–80.CrossRefGoogle ScholarPubMed
Constable, A. L., Armati, P. J. and Hartung, H. P. (1999). DMSO induction of the leukotriene LTC4 by Lewis rat Schwann cells. J Neurol Sci 162, 120–6.CrossRefGoogle ScholarPubMed
Constantin, G., Piccio, L., Bussini, S.et al. (1999). Induction of adhesion molecules on human Schwann cells by proinflammatory cytokines, an immunofluorescence study. J Neurol Sci 170, 124–30.CrossRefGoogle ScholarPubMed
Constantinescu, C. S., Hilliard, B., Lavi, E., Ventura, E., Venkatesh, V. and Rostami, A. (1996). Suppression of experimental autoimmune neuritis by phosphodiesterase inhibitor pentoxifylline. J Neurol Sci 143, 14–18.CrossRefGoogle ScholarPubMed
Cook, D. N., Pisetsky, D. S. and Schwartz, D. A. (2004). Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5, 975–9.CrossRefGoogle ScholarPubMed
Corbin, J. G., Kelly, D., Rath, E. M., Baerwald, K. D., Suzuki, K. and Popko, B. (1996). Targeted CNS expression of interferon-gamma in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol Cell Neurosci 7, 354–70.CrossRefGoogle ScholarPubMed
Corfas, G., Velardez, M. O., Ko, C. P., Ratner, N. and Peles, E. (2004). Mechanisms and roles of axon–Schwann cell interactions. J Neurosci 24, 9250–60.CrossRefGoogle ScholarPubMed
Court, F. A., Sherman, D. L., Pratt, T.et al. (2004). Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431, 191–5.CrossRefGoogle ScholarPubMed
Couteaux, R. (1938). Sur l'origine de la sole des plaques motrices. C R Soc Biol 127, 218–21.Google Scholar
Couteaux, R. (1973). Motor end-plate structure. Bourne, G. H. (Ed.) The Structure and Function of Muscle, 2nd Edn. Academic Press, New York, pp. 483–530.Google Scholar
Coyle, A. J. and Gutierrez-Ramos, J. C. (2001). The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nat Immunol 2, 203–9.CrossRefGoogle ScholarPubMed
Crawford, K. and Armati, P. J. (1982). The development of human fetal dorsal root ganglia in vitro: the first 20 days. Neuropathol Appl Neurobiol 8, 477–88.CrossRefGoogle ScholarPubMed
Cuesta, A., Pedrola, L., Sevilla, T.et al. (2001). The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot–Marie–Tooth type 4A disease. Nat Genet 30, 22–5.CrossRefGoogle ScholarPubMed
Culican, S. M., Nelson, C. C. and Lichtman, J. W. (1998). Axon withdrawal during synapse elimination at the neuromuscular junction is accompanied by disassembly of the postsynaptic specialization and withdrawal of Schwann cell processes. J Neurosci 18, 4953–65.CrossRefGoogle ScholarPubMed
Cummings, J. F., Lahunta, A. and Mitchell, W. J. Jr. (1983). Ganglioradiculitis in the dog. A clinical, light- and electron-microscopic study. Acta Neuropathol (Berl) 60, 29–39.CrossRefGoogle ScholarPubMed
Custer, A. W., Kazarinov-Noyes, K., Sakurai, T.et al. (2003). The role of the ankyrin-binding protein NrCAM in node of Ranvier formation. J Neurosci 23, 10032–9.CrossRefGoogle ScholarPubMed
D'Antonio, M., Drogitti, A., Feltri, M. L.et al. (2006). TGF beta type II recepter signalling controls Schwann cell death and proliferation in developing nerves. J Neurosci 26, 8417–27.CrossRefGoogle Scholar
D'Urso, D., Brophy, P. J., Staugaitis, S. M.et al. (1990). Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron 4, 449–60.CrossRefGoogle ScholarPubMed
Dahl, G., Werner, R., Levine, E. and Rabadan-Diehl, C. (1992). Mutational analysis of gap junction formation. Biophys J 62, 172–80.CrossRefGoogle ScholarPubMed
Dahle, C., Ekerfelt, C., Vrethem, M., Samuelsson, M. and Ernerudh, J. (1997). T helper type 2 like cytokine responses to peptides from P0 and P2 myelin proteins during the recovery phase of Guillain–Barré syndrome. J Neurol Sci 153, 54–60.CrossRefGoogle Scholar
Dalakas, M. C. and Engel, W. K. (1981). Chronic relapsing (dysimmune) polyneuropathy: pathogenesis and treatment. Ann Neurol 9 Suppl, 134–45.CrossRefGoogle ScholarPubMed
Daniloff, J. K., Crossin, K. L., Pincon-Raymond, M., Murawsky, M., Rieger, F. and Edelman, G. M. (1989). Expression of cytotactin in the normal and regenerating neuromuscular system. J Cell Biol 108, 625–35.CrossRefGoogle ScholarPubMed
Darbas, A., Jaegle, M., Walbeehm, E.et al. (2004). Cell autonomy of the mouse claw paw mutation. Develop Biol 272, 470–82.CrossRefGoogle ScholarPubMed
Day, N. C., Wood, S. J., Ince, P. G.et al. (1997). Differential localization of voltage-dependent calcium channel alpha1 subunits at the human and rat neuromuscular junction. J Neurosci 17, 6226–35.CrossRefGoogle ScholarPubMed
Waegh, S. and Brady, S. T. (1990). Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions. J Neurosci 10, 1855–65.CrossRefGoogle Scholar
Waegh, S. M., Lee, V. M. and Brady, S. T. (1992). Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68, 451–63.CrossRefGoogle ScholarPubMed
Dedek, K., Kunath, B., Kananura, C., Reuner, U., Jentsch, T. and Steinlein, O. K. (2001). Myokymia and neonatal epilepsy caused by a mutation in the voltage sensory of the KCNQ2 K − channel. Proc Nat Acad Sci USA 98, 12272–7.CrossRefGoogle Scholar
Delpech, A., Girard, N. and Delpech, B. (1982). Localization of hyaluronectin in the nervous system. Brain Res 245, 251–7.CrossRefGoogle Scholar
Dennis, M. J. and Miledi, R. (1974). Electrically induced release of acetylcholine from denervated Schwann cells. J Physiol 237, 431–52.CrossRefGoogle ScholarPubMed
Deodato, F., Sabatelli, M., Ricci, E.et al. (2002). Hypermyelinating neuropathy, mental retardation and epilepsy in a case of merosin deficiency. Neuromuscul Dis 12, 329–98.CrossRefGoogle Scholar
Desaki, J. and Uehara, Y. (1981). The overall morphology of neuromuscular junctions as revealed by scanning electron microscopy. J Neurocytol 10, 101–10.CrossRefGoogle ScholarPubMed
Descarries, L. M., Cai, S., Robitaille, R., Josephson, E. M. and Morest, D. K. (1998). Localization and characterization of nitric oxide synthase at the frog neuromuscular junction. J Neurocytol 27, 829–40.CrossRefGoogle ScholarPubMed
Deschenes, S. M., Walcott, J. L., Wexler, T. L., Scherer, S. S. and Fischbeck, K. H. (1997). Altered trafficking of mutant connexin32. J Neurosci 17, 9077–84.CrossRefGoogle ScholarPubMed
Devaux, J. J. and Scherer, S. S. (2005). Altered ion channels in an animal model of Charcot–Marie–Tooth disease type IA. J Neurosci 25, 1470–80.CrossRefGoogle Scholar
Devaux, J., Alcaraz, G., Grinspan, J.et al. (2003). Kv3.1 is a novel component of CNS nodes. J Neurosci 23, 4509–18.CrossRefGoogle Scholar
Devaux, J. J., Kleopas, A. K., Cooper, E. C. and Scherer, S. S. (2004). KCNQ2 is a nodal K+ channel. J Neurosci 24, 1236–44.CrossRefGoogle ScholarPubMed
Di Muzio, A., Angelis, M. V., Di Fulvio, P.et al. (2003). Dysmyelinating sensory-motor neuropathy in merosin-deficient congenital muscular dystrophy. Muscle Nerve 27, 500–6.CrossRefGoogle ScholarPubMed
Dickens, P., Hill, P. and Bennett, M. R. (2003). Schwann cell dynamics with respect to newly formed motor-nerve terminal branches on mature (Bufo marinus) muscle fibers. J Neurocytol 32, 381–92.CrossRefGoogle ScholarPubMed
Doetsch, F. (2003). The glial identity of neural stem cells. Nature Neurosci 6, 1127–34.CrossRefGoogle ScholarPubMed
Donaghy, M., Gray, J. A., Squier, W.et al. (1989). Recurrent Guillain–Barré syndrome after multiple exposures to cytomegalovirus. Am J Med 87, 339–41.CrossRefGoogle ScholarPubMed
Dong, Z., Brennan, A., Liu, N.et al. (1995). Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15, 585–96.CrossRefGoogle ScholarPubMed
Dong, Z., Sinanan, A., Parkinson, D., Parmantier, E., Mirsky, R. and Jessen, K. R. (1999). Schwann cell development in embryonic mouse nerves. J Neurosci Res 56, 334–48.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Dore-Duffy, P., Balabanov, R., Washington, R. and Swanborg, R. H. (1994). Transforming growth factor beta 1 inhibits cytokine-induced CNS endothelial cell activation. Mol Chem Neuropathol 22, 161–75.CrossRefGoogle ScholarPubMed
Dowsing, B. J., Morrison, W. A., Nicola, N. A., Starkey, G. P., Bucci, T. and Kilpatrick, T. J. (1999). Leukemia inhibitory factor is an autocrine survival factor for Schwann cells. J Neurochem 73, 96–104.CrossRefGoogle ScholarPubMed
Duggins, A. J., McLeod, J. G., Pollard, J. D.et al. (1999). Spinal root and plexus hypertrophy in chronic inflammatory demyelinating polyneuropathy. Brain 122 (Part 7), 1383–90.CrossRefGoogle ScholarPubMed
Dulac, C. and Douarin, N. M. (1991). Phenotypic plasticity of Schwann cells and enteric glial cells in response to the microenvironment. Proc Nat Acad Sci USA 88, 6358–62.CrossRefGoogle ScholarPubMed
Dunaevsky, A. and Connor, E. A. (1995). Long-term maintenance of presynaptic function in the absence of target muscle fibers. J Neurosci 15, 6137–44.CrossRefGoogle ScholarPubMed
Dunaevsky, A. and Connor, E. A. (1998). Stability of frog motor nerve terminals in the absence of target muscle fibers. Dev Biol 194, 61–71.CrossRefGoogle ScholarPubMed
Dunaevsky, A. and Connor, E. A. (2000). F-actin is concentrated in nonrelease domains at frog neuromuscular junctions. J Neurosci 20, 6007–12.CrossRefGoogle ScholarPubMed
Dupin, E., Baroffio, A., Dulac, C., Cameron-Curry, P. and Douarin, N. M. (1990). Schwann-cell differentiation in clonal cultures of the neural crest, as evidenced by the anti-Schwann cell myelin protein monoclonal antibody. Proc Nat Acad Sci USA 87, 1119–23.CrossRefGoogle ScholarPubMed
Dupin, E., Glavieux, C., Vaigot, P. and Douarin, N. M. (2000). Endothelin 3 induces the reversion of melanocytes to glia through a neural crest-derived glial-melanocytic progenitor. Proc Nat Acad Sci USA 97, 7882–7.CrossRefGoogle ScholarPubMed
Dupin, E., Real, C., Glavieux-Pardanaud, C., Vaigot, P. and Douarin, N. M. (2003). Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro. Proc Nat Acad Sci USA 100, 5229–33.CrossRefGoogle ScholarPubMed
Dyck, P. J. (1975). Inherited neuronal degeneration and atrophy affecting peripheral motor, sensory and autonomic neurons. Dyck, P. J. (Ed.) Peripheral Neuropathy, 1st Edn. W.B. Saunders, Philadelphia, p. 825.Google ScholarPubMed
Dyck, P. J. and Lambert, E. H. (1968a). Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. I. Neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch Neurol 18, 603–18.CrossRefGoogle Scholar
Dyck, P. J. and Lambert, E. H. (1968b). Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. II. Neurologic, genetic, and electrophysiologic findings in various neuronal degenerations. Arch Neurol 18, 619–25.CrossRefGoogle Scholar
Dyck, P. J., Lais, A. C., Ohta, M., Bastron, J. A., Okazaki, H. and Groover, R. V. (1975). Chronic inflammatory polyradiculoneuropathy. Mayo Clin Proc 50, 621–37.Google ScholarPubMed
Dytrych, L., Sherman, D. L., Gillespie, C. S. and Brophy, P. J. (1998). Two PDZ domain proteins encoded by the murine periaxin gene are the result of alternative intron retention and are differentially targeted in Schwann cells. J Biol Chem 273, 5794–800.CrossRefGoogle ScholarPubMed
Eccleston, P. A. (1992). Regulation of Schwann cell proliferation: mechanisms involved in peripheral nerve development. Expe Cell Res 199, 1–9.CrossRefGoogle ScholarPubMed
Eccleston, P. A., Jessen, K. R. and Mirsky, R. (1989). Transforming growth factor-beta and gamma-interferon have dual effects on growth of peripheral glia. J Neurosci Res 24, 524–30.CrossRefGoogle ScholarPubMed
EFN and PNS Task Force (2005). European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. J Peripher Nerv Syst 10, 220–8.CrossRef
Eichberg, J. and Iyer, S. (1996). Phosphorylation of myelin protein: recent advances. Neurochem Res 21, 527–35.CrossRefGoogle ScholarPubMed
Einheber, S., Milner, T. A., Giancotti, F. and Salzer, J. L. (1993). Axonal regulation of Schwann cell integrin expression suggests a role for alpha 6 beta 4 in myelination. J Cell Biol 123, 1223–6.CrossRefGoogle ScholarPubMed
Einheber, S., Hannocks, M. J., Metz, C. N., Rifkin, D. B. and Salzer, J. L. (1995). Transforming growth factor-beta 1 regulates axon/Schwann cell interactions. J Cell Biol 129, 443–58.CrossRefGoogle ScholarPubMed
Eldridge, C. F., Bunge, M. B., Bunge, R. P. and Wood, P. M. (1987). Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 105, 1023–34.CrossRefGoogle ScholarPubMed
Eldridge, C. F., Bunge, M. B. and Bunge, R. P. (1989). Differentiation of axon-related Schwann cell in vitro: II. Control of myelin formation by basal lamina. J Neurosci 9, 625–38.CrossRefGoogle ScholarPubMed
Elson, K., Ribeiro, R. M., Perelson, A. S., Simmons, A. and Speck, P. (2004). The life span of ganglionic glia in murine sensory ganglia estimated by uptake of bromodeoxyuridine. Exp Neurol 186, 99–103.CrossRefGoogle ScholarPubMed
Empl, M., Renaud, S., Erne, B.et al. (2001). TNF-alpha expression in painful and nonpainful neuropathies. Neurology 56, 1371–7.CrossRefGoogle ScholarPubMed
Engel, A. G. (1994). The neuromuscular junction. Engel, A. G., Franzini-Armstrong, C. (Eds.) Myology. McGraw-Hill Professional, New York.Google Scholar
English, A. W. (2003). Cytokines, growth factors and sprouting at the neuromuscular junction. J Neurocytol 32, 943–60.CrossRefGoogle ScholarPubMed
Erdman, R., Stahl, R. C., Rothblum, K., Chernousov, M. A. and Carey, D. J. (2002). Schwann cell adhesion to a novel heparan sulfate binding site in the N-terminal domain of alpha 4 type V collagen is mediated by syndecan-3. J Biol Chem 277, 7619–25.CrossRefGoogle ScholarPubMed
Ersdal, C., Ulvund, M. J., Espenes, A., Benestad, S. L., Sarradin, P. and Landsverk, T. (2005). Mapping PrPSc propagation in experimental and natural scrapie in sheep with different PrP genotypes. Vet Pathol 42, 258–74.CrossRefGoogle ScholarPubMed
Ervasti, J. M. and Campbell, K. P. (1993). A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122, 809–23.CrossRefGoogle ScholarPubMed
Exley, A. R., Smith, N. and Winer, J. B. (1994). Tumour necrosis factor-alpha and other cytokines in Guillain–Barré syndrome. J Neurol Neurosurg Psych 57, 1118–20.CrossRefGoogle ScholarPubMed
Eylar, E. H., Uyemura, K., Brostoff, S. W., Kitamura, K., Ishaque, A. and Greenfield, S. (1979). Proposed nomenclature for PNS myelin proteins. Neurochem Res 4, 289–93.CrossRefGoogle ScholarPubMed
Fabry, Z., Topham, D. J., Fee, D.et al. (1995). TGF-beta 2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo. J Immunol 155, 325–32.Google ScholarPubMed
Falls, D. L. (2003). Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284, 14–30.CrossRefGoogle ScholarPubMed
Fannon, A. M., Sherman, D. L., Ilyina-Gragerova, G., Brophy, P. J., Friedrich, V. L. Jr. and Colman, D. R. (1995). Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 129, 189–202.CrossRefGoogle ScholarPubMed
Feasby, T. E., Hahn, A. F. and Gilbert, J. J. (1982). Passive transfer studies in Guillain–Barré polyneuropathy. Neurology 32, 1159–67.CrossRefGoogle ScholarPubMed
Feasby, T. E., Gilbert, J. J., Brown, W. F.et al. (1986). An acute axonal form of Guillain–Barré polyneuropathy. Brain 109 (Part 6), 1115–26.CrossRefGoogle ScholarPubMed
Feasby, T. E., Hahn, A. F., Brown, W. F., Bolton, C. F. and Gilbert, J. J. (1988). Two types of axonal degeneration in acute Guillain–Barré syndrome. J Neurol 235, S15.Google Scholar
Feder, N. (1971). Microperoxidase – an ultrastructural tracer of low molecular weight. J Cell Biol 51, 339–43.CrossRefGoogle ScholarPubMed
Feltri, M. L. and Wrabetz, L. (2005). Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10, 128–43.CrossRefGoogle ScholarPubMed
Feltri, M. L., Scherer, S. S., Nemni, R.et al. (1994). β4 integrin expression in myelinating Schwann cells is polarized, developmentally regulated and axonally dependent. Development 120, 1287–1301.Google ScholarPubMed
Feltri, M. L., Arona, M., Scherer, S. S. and Wrabetz, L. (1997). Cloning and sequence of the cDNA encoding the beta 4 integrin subunit in rat peripheral nerve. Gene 186, 299–304.CrossRefGoogle ScholarPubMed
Feltri, M. L., Graus, P. D., Previtali, S. C.et al. (2002). Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. J Cell Biol 156, 199–209.CrossRefGoogle Scholar
Feng, Z. and Ko, C. P. (2004). Transforming growth factor (TGF)-beta 1 mediates Schwann cell-induced synaptogenesis at the neuromuscular junction in vitro. Program No 385 18, Abstract Viewer/Itinerary Planner Washington, DC: Society for Neuroscience.
Feng, G., Mellor, R. H., Bernstein, M.et al. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51.CrossRefGoogle ScholarPubMed
Feng, Z., Koirala, S. and Ko, C. P. (2005). Synapse–glia interactions at the vertebrate neuromuscular junction. Neuroscientist 11, 503–13.CrossRefGoogle ScholarPubMed
Fenzi, F., Benedetti, M. D., Moretto, G. and Rizzuto, N. (2001). Glial cell and macrophage reactions in rat spinal ganglion after peripheral nerve lesions: an immunocytochemical and morphometric study. Arch Ital Biol 139, 357–65.Google ScholarPubMed
Fernandez-Valle, C., Gwynn, L., Wood, P. M., Carbonetto, S. and Bunge, M. B. (1994). Anti-beta 1 integrin antibody inhibits Schwann cell myelination. J Neurobiol 25, 1207–26.CrossRefGoogle ScholarPubMed
Fernandez-Valle, C., Tang, Y., Ricard, J.et al. (2002). Paxillin binds Schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31, 354–62.CrossRefGoogle ScholarPubMed
Fields, R. D. and Stevens, B. (2000). ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23, 625–33.CrossRefGoogle ScholarPubMed
Fields, R. D. and Stevens-Graham, B. (2002). New insights into neuron–glia communication. Science 298, 556–62.CrossRefGoogle ScholarPubMed
Filbin, M. T., Walsh, F. S., Trapp, B. D., Pizzey, J. A. and Tennekoon, G. I. (1990). Role of myelin P0 protein as a homophilic adhesion molecule. Nature 344, 871–2.CrossRefGoogle ScholarPubMed
Filbin, M. T., Zhang, K., Li, W. and Gao, Y. (1999). Characterization of the effect on adhesion of different mutations in myelin P0 protein. Ann NY Acad Sci 883, 160–7.CrossRefGoogle ScholarPubMed
Fisher, M. (1956). Syndrome of ophthalmoplegia, ataxia and areflexia. New Engl J Med 255, 57–65.CrossRefGoogle ScholarPubMed
Foote, A. K. and Blakemore, W. F. (2005). Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128, 528–39.CrossRefGoogle ScholarPubMed
Forsberg, E., Ek, B., Engstrom, A. and Johansson, S. (1994). Purification and characterization of integrin alpha 9 beta 1. Exp Cell Res 213, 183–90.CrossRefGoogle ScholarPubMed
Fortun, J., Dunn, W. A. Jr., Joy, S., Li, J. and Notterpek, L. (2003). Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci 23, 10672–80.CrossRefGoogle ScholarPubMed
Fortun, J., Li, J., Go, J., Fenstermaker, A., Fletcher, B. S. and Notterpek, L. (2005). Impaired proteasome activity and accumulation of ubiquitinated substrates in a hereditary neuropathy model. J Neurochem 92, 1531–41.CrossRefGoogle Scholar
Fragoso, G., Robertson, J., Athlan, E., Tam, E., Almazan, G. and Mushynski, W. E. (2003). Inhibition of p38 mitogen-activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell myelination. Exp Neurol 183, 34–46.CrossRefGoogle ScholarPubMed
Frampton, G., Winer, J. B., Cameron, J. S. and Hughes, R. A. (1988). Severe Guillain–Barré syndrome: an association with IgA anti-cardiolipin antibody in a series of 92 patients. J Neuroimmunol 19, 133–9.CrossRefGoogle Scholar
Franklin, R. J. (2002). Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res Bull 57, 827–32.CrossRefGoogle ScholarPubMed
Franzke, C. W., Tasanen, K., Schumann, H. and Bruckner-Tuderman, L. (2003). Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biol 22, 299–309.CrossRefGoogle ScholarPubMed
Frei, R., Dowling, J., Carenini, S., Fuchs, E. and Martini, R. (1999). Myelin formation by Schwann cells in the absence of beta4 integrin. Glia 27, 269–74.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
French Cooperative Group on Plasma Exchange in Guillain–Barré syndrome (1987). Efficiency of plasma exchange in Guillain–Barré syndrome: role of replacement fluids. Ann Neurol 22, 753–61.CrossRef
Frostick, S. P., Yin, Q. and Kemp, G. J. (1998). Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18, 397–405.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Fu, S. Y. and Gordon, T. (1997). The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14, 67–116.CrossRefGoogle ScholarPubMed
Fujii, K., Tsuji, M. and Murota, K. (1986). Isolation of peripheral nerve collagen. Neurochem Res 11, 1439–46.CrossRefGoogle ScholarPubMed
Fujioka, T., Purev, E. and Rostami, A. (1999a). Chemokine mRNA expression in the cauda equina of Lewis rats with experimental allergic neuritis. J Neuroimmunol 97, 51–9.CrossRefGoogle Scholar
Fujioka, T., Kolson, D. L. and Rostami, A. M. (1999b). Chemokines and peripheral nerve demyelination. J Neurovirol 5, 27–31.CrossRefGoogle Scholar
Fuller, G. N., Spies, J. M., Pollard, J. D. and McLeod, J. G. (1994). Demyelinating neuropathies triggered by melanoma immunotherapy. Neurology 44, 2404–5.CrossRefGoogle ScholarPubMed
Gaboreanu, A., Hrstka, R., Xu, W.et al. (2004). A New Protein that Interacts with the Cytoplasmic Domain of P0. Am Society for Cell Biology Annual Meeting, Washington DC.Google Scholar
Gabriel, C. M., Hughes, R. A., Moore, S. E., Smith, K. J. and Walsh, F. S. (1998). Induction of experimental autoimmune neuritis with peripheral myelin protein-22. Brain 121 (Part 10), 1895–902.CrossRefGoogle ScholarPubMed
Gabriel, C. M., Gregson, N. A. and Hughes, R. A. (2000). Anti-PMP22 antibodies in patients with inflammatory neuropathy. J Neuroimmunol 104, 139–46.CrossRefGoogle ScholarPubMed
Gadient, R. A. and Otten, U. (1996). Postnatal expression of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) mRNAs in rat sympathetic and sensory ganglia. Brain Res 724, 41–6.CrossRefGoogle ScholarPubMed
Gambardella, A., Bono, F., Muglia, M., Valentino, P. and Quattrone, A. (1999). Autosomal recessive hereditary motor and sensory neuropathy with focally folded myelin sheaths (CMT4B). Ann NY Acad Sci 883, 47–55.CrossRefGoogle Scholar
Garbay, B., Heape, A. M., Sargueil, F. and Cassagne, C. (2000). Myelin synthesis in the peripheral nervous system. Prog Neurobiol 61, 267–304.CrossRefGoogle ScholarPubMed
Garbern, J. Y., Cambi, F., Tang, X. M.et al. (1997). Proteolipid protein is necessary in peripheral as well as central myelin. Neuron 19, 205–18.CrossRefGoogle ScholarPubMed
Garratt, A. N., Britsch, S. and Birchmeier, C. (2000a). Neuregulin, a factor with many functions in the life of a Schwann cell. Bioessays 22, 987–96.3.0.CO;2-5>CrossRefGoogle Scholar
Garratt, A. N., Voiculescu, O., Topilko, P., Charnay, P. and Birchmeier, C. (2000b). A dual role of erbB2 in myelination and in expansion of the Schwann cell precursor pool. J Cell Biol 148, 1035–46.CrossRefGoogle Scholar
Gatto, C. L., Walker, B. J. and Lambert, S. (2003). Local ERM activation and dynamic growth cones at Schwann cell tips implicated in efficient formation of nodes of Ranvier. J Cell Biol 162, 489–98.CrossRefGoogle ScholarPubMed
George, A., Schmidt, C., Weishaupt, A., Toyka, K. V. and Sommer, C. (1999). Serial determination of tumor necrosis factor-alpha content in rat sciatic nerve after chronic constriction injury. Exp Neurol 160, 124–32.CrossRefGoogle ScholarPubMed
George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. and Hynes, R. O. (1993). Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–91.Google ScholarPubMed
Georges-Labouesse, E. N., George, E. L., Rayburn, H. and Hynes, R. O. (1996). Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207, 145–56.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Georgiou, J. and Charlton, M. P. (1999). Non-myelin-forming perisynaptic Schwann cells express protein zero and myelin-associated glycoprotein. Glia 27, 101–9.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Georgiou, J., Robitaille, R., Trimble, W. S. and Charlton, M. P. (1994). Synaptic regulation of glial protein expression in vivo. Neuron 12, 443–55.CrossRefGoogle ScholarPubMed
Ghabriel, M. N. and Allt, G. (1981). Incisures of Schmidt–Lanterman. Prog Neurobiol 17, 25–58.CrossRefGoogle ScholarPubMed
Ghazvini, M., Mandemakers, W., Jaegle, M.et al. (2002). A cell type-specific allele of the POU gene Oct-6 reveals Schwann cell autonomous function in nerve development and regeneration. EMBO J 21, 4612–20.CrossRefGoogle ScholarPubMed
Ghislain, J., Desmarquet-Trin-Dinh, C., Jaegle, M., Meijer, D., Charnay, P. and Frain, M. (2002). Characterisation of cis-acting sequences reveals a biphasic, axon-dependent regulation of Krox20 during Schwann cell development. Development 129, 155–66.Google ScholarPubMed
Giese, K. P., Martini, R., Lemke, G., Soriano, P. and Schachner, M. (1992). Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71, 565–76.CrossRefGoogle ScholarPubMed
Gillespie, C. S., Sherman, D. L., Blair, G. E. and Brophy, P. J. (1994). Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. Neuron 12, 497–508.CrossRefGoogle ScholarPubMed
Girard, C., Bemelmans, A. P., Dufour, N.et al. (2005). Grafts of brain-derived neurotrophic factor and neurotrophin 3-transduced primate Schwann cells lead to functional recovery of the demyelinated mouse spinal cord. J Neurosci 25, 7924–33.CrossRefGoogle ScholarPubMed
Girault, J. A., Oguievetskaia, K., Carnaud, M., Denisenko-Nehrbass, N. and Goutebroze, L. (2003). Transmembrane scaffolding proteins in the formation and stability of nodes of Ranvier. Biol Cell 95, 447–52.CrossRefGoogle ScholarPubMed
Gleichmann, M., Gillen, C., Czardybon, M.et al. (2000). Cloning and characterization of SDF-1gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur J Neurosci 12, 1857–66.CrossRefGoogle Scholar
Godschalk, P. C., Heikema, A. P., Gilbert, M.et al. (2004). The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain–Barré syndrome. J Clin Invest 114, 1659–65.CrossRefGoogle ScholarPubMed
Gold, R., Toyka, K. V. and Hartung, H. P. (1995). Synergistic effect of IFN-gamma and TNF-alpha on expression of immune molecules and antigen presentation by Schwann cells. Cell Immunol 165, 65–70.CrossRefGoogle ScholarPubMed
Gold, R., Archelos, J. J. and Hartung, H. P. (1999). Mechanisms of immune regulation in the peripheral nervous system. Brain Pathol 9, 343–60.CrossRefGoogle ScholarPubMed
Gold, R., Hartung, H. P. and Toyka, K. V. (2000). Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today 6, 88–91.CrossRefGoogle ScholarPubMed
Gollan, L., Salomon, D., Salzer, J. L. and Peles, E. (2003). Caspr regulates the processing of contactin and inhibits its binding to neurofascin. J Cell Biol 163, 1213–18.CrossRefGoogle ScholarPubMed
Gonzalez-Martinez, T., Perez-Pinera, P., Diaz-Esnal, B. and Vega, J. A. (2003). S-100 proteins in the human peripheral nervous system. Microsc Res Tech 60, 633–8.CrossRefGoogle ScholarPubMed
Goodyear, C. S., O'Hanlon, G. M., Plomp, J. J.et al. (1999). Monoclonal antibodies raised against Guillain–Barré syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle–nerve preparations. J Clin Invest 104, 697–708.CrossRefGoogle ScholarPubMed
Gorson, K. C., Allam, G. and Ropper, A. H. (1997). Chronic inflammatory demyelinating polyneuropathy: clinical features and response to treatment in 67 consecutive patients with and without a monoclonal gammopathy. Neurology 48, 321–8.CrossRefGoogle ScholarPubMed
Gorson, K. C. and Chaudhry, V. (1999). Chronic inflammatory demyelinating polyneuropathy. Curr Treat Options Neurol 1, 251–62.CrossRefGoogle ScholarPubMed
Gotz, M. (2003). Glial cells generate neurons – master control within CNS regions: developmental perspectives on neural stem cells. Neuroscientist 9, 379–97.CrossRefGoogle ScholarPubMed
Gotz, M. and Barde, Y. A. (2005). Radial glial cells: defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 46, 369–72.CrossRefGoogle ScholarPubMed
Goutebroze, L., Carnaud, M., Denisenko, N., Boutterin, M. C. and Girault, J. A. (2003). Syndecan-3 and syndecan-4 are enriched in Schwann cell perinodal processes. BMC Neurosci 4, 29.CrossRefGoogle ScholarPubMed
Greenfield, S., Brostoff, S., Eylar, E. H. and Morell, P. (1973). Protein composition of myelin of the peripheral nervous system. J Neurochem 20, 1207–16.CrossRefGoogle ScholarPubMed
Gregorian, S. K., Lee, W. P., Beck, L. S., Rostami, A. and Amento, E. P. (1994). Regulation of experimental autoimmune neuritis by transforming growth factor-beta 1. Cell Immunol 156, 102–12.CrossRefGoogle ScholarPubMed
Grewal, P. K., Holzfeind, P. J., Bittner, R. E. and Hewitt, J. E. (2001). Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet 28, 151–4.CrossRefGoogle ScholarPubMed
Grieco, T. M., Malhotra, J. D., Chen, C., Isom, L. L. and Raman, I. M. (2005). Open-channel block by the cytoplasmic tail of sodium channel β4 as a mechanism for resurgent sodium current. Neuron 45, 233–44.CrossRefGoogle ScholarPubMed
Griffin, J. W. and Sheikh, K. (2005). The Guillain–Barré syndromes. Dyck, P. (Ed.) Peripheral Neuropathy, 4th Edn. Elsevier Saunders, Philadelphia, pp. 2197–219.Google Scholar
Griffin, J. W., Stoll, G., Li, C. Y., Tyor, W. and Cornblath, D. R. (1990). Macrophage responses in inflammatory demyelinating neuropathies. Ann Neurol 27 Suppl, S64–S68.CrossRefGoogle ScholarPubMed
Griffin, J. W., George, R., Lobato, C., Tyor, W. R., Yan, L. C. and Glass, J. D. (1992). Macrophage responses and myelin clearance during Wallerian degeneration: relevance to immune-mediated demyelination. J Neuroimmunol 40, 153–65.CrossRefGoogle ScholarPubMed
Griffin, J. W., George, R. and Ho, T. (1993a). Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol 52, 553–60.CrossRefGoogle Scholar
Griffin, J. W., Kidd, G. J. and Trapp, B. D. (1993b). Interactions between axons and Schwann cells. Dyck, P. J., Thomas, P. K. (Eds.) Peripheral Neuropathy, 3rd Edn. WB Saunders, Philadelphia, pp. 317–30.Google Scholar
Griffin, J. W., Li, C. Y., Ho, T. W.et al. (1995). Guillain–Barré syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain 118 (Part 3), 577–95.CrossRefGoogle ScholarPubMed
Griffin, J. W., Li, C. Y., Ho, T. W.et al. (1996a). Pathology of the motor-sensory axonal Guillain–Barré syndrome. Ann Neurol 39, 17–28.CrossRefGoogle Scholar
Griffin, J. W., Li, C. Y., Macko, C.et al. (1996b). Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain–Barré syndrome. J Neurocytol 25, 33–51.CrossRefGoogle Scholar
Griffiths, I., Dickinson, P. and Montague, P. (1995). Expression of the proteolipid protein gene in glial cells of the post-natal peripheral nervous system of rodents. Neuropathol Appl Neurobiol 21, 97–110.CrossRefGoogle ScholarPubMed
Griffiths, I., Klugmann, M., Anderson, T., Thomson, C., Vouyiouklis, D. and Nave, K. A. (1998). Current concepts of PLP and its role in the nervous system. Microsc Res Technique 41, 344–58.3.0.CO;2-Q>CrossRefGoogle Scholar
Grim, M., Halata, Z. and Franz, T. (1992). Schwann cells are not required for guidance of motor nerves in the hindlimb in Splotch mutant mouse embryos. Anat Embryol 186, 311–18.CrossRefGoogle Scholar
Grinspan, J. B., Marchionni, M. A., Reeves, M., Coulaloglou, M. and Scherer, S. S. (1996). Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins. J Neurosci 16, 6107–18.CrossRefGoogle ScholarPubMed
Groneberg, D. A., Doring, F., Nickolaus, M., Daniel, H. and Fischer, A. (2001). Expression of PEPT2 peptide transporter mRNA and protein in glial cells of rat dorsal root ganglia. Neurosci Lett 304, 181–4.CrossRefGoogle ScholarPubMed
Groschup, M. H., Beekes, M., McBride, P. A., Hardt, M., Hainfellner, J. A. and Budka, H. (1999). Deposition of disease-associated prion protein involves the peripheral nervous system in experimental scrapie. Acta Neuropathol (Berl) 98, 453–7.CrossRefGoogle ScholarPubMed
Grothe, C., Meisinger, C., Hertenstein, A., Kurz, H. and Wewetzer, K. (1997). Expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 messenger RNAs in spinal ganglia and sciatic nerve: regulation after peripheral nerve lesion. Neuroscience 76, 123–35.CrossRefGoogle ScholarPubMed
Guenard, V., Dinarello, C. A., Weston, P. J. and Aebischer, P. (1991). Peripheral nerve regeneration is impeded by interleukin-1 receptor antagonist released from a polymeric guidance channel. J Neurosci Res 29, 396–400.CrossRefGoogle ScholarPubMed
Guenard, V., Rosenbaum, T., Gwynn, L. A., Doetschman, T., Ratner, N. and Wood, P. M. (1995a). Effect of transforming growth factor-beta 1 and -beta 2 on Schwann cell proliferation on neurites. Glia 13, 309–18.CrossRefGoogle Scholar
Guenard, V., Gwynn, L. A. and Wood, P. M. (1995b). Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro. J Neurosci 15, 419–28.CrossRefGoogle Scholar
Guilbot, A., Williams, A., Ravise, N.et al. (2001). A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot–Marie–Tooth disease. Hum Mol Genet 10, 415–21.CrossRefGoogle ScholarPubMed
Guillain, G., Barré, J. A. and Strohl, A. (1916). Sur un syndrome de radiculo-névrite avec hyperalbuminose du liquide céphalo-rachidien sans réaction cellulaire. Remarques sur les caractéres cliniques et graphiques des réflexes tendineux. Bull Soc Méd Hôp Paris 40, 1462–70.Google Scholar
Guillain–Barré Syndrome Study Group (1985). Plasmapheresis and acute Guillain–Barré syndrome. Neurology 35, 1096–104.CrossRef
Guiloff, R. J. (1977). Peripheral nerve conduction in Miller–Fisher syndrome. J Neurol Neurosurg Psychiatry 40, 801–7.CrossRefGoogle ScholarPubMed
Haas, L. F. (1999). Neurological stamp. Theodore Schwann (1810–82). J Neurol Neurosurg Psychiatry 66, 103.CrossRefGoogle Scholar
Hadden, R. D., Karch, H., Hartung, H. P.et al. (2001). Preceding infections, immune factors, and outcome in Guillain–Barré syndrome. Neurology 56, 758–65.CrossRefGoogle ScholarPubMed
Hafer-Macko, C., Hsieh, S. T., Li, C. Y.et al. (1996a). Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 40, 635–44.CrossRefGoogle Scholar
Hafer-Macko, C. E., Sheikh, K. A., Li, C. Y.et al. (1996b). Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 39, 625–35.CrossRefGoogle Scholar
Hagedorn, L., Suter, U. and Sommer, L. (1999). P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors. Development 126, 3781–94.Google Scholar
Hagedorn, L., Paratore, C., Brugnoli, G.et al. (2000). The Ets domain transcription factor Erm distinguishes rat satellite glia from Schwann cells and is regulated in satellite cells by neuregulin signaling. Dev Biol 219, 44–58.CrossRefGoogle ScholarPubMed
Hahn, A. F. (1998). Guillain–Barré syndrome. Lancet 352, 635–41.CrossRefGoogle ScholarPubMed
Hahn, A. F., Bolton, C. F., White, C. M.et al. (1999). Genotype/phenotype correlations in X-linked dominant Charcot–Marie–Tooth disease. Ann NY Acad Sci 883, 366–82.CrossRefGoogle ScholarPubMed
Hahn, A. F., Ainsworth, P. J., Naus, C. C., Mao, J. and Bolton, C. F. (2000). Clinical and pathological observations in men lacking the gap junction protein connexin 32. Muscle Nerve 23, S39–S48.3.0.CO;2-C>CrossRefGoogle Scholar
Hahn, A. F., Ainsworth, P. J., Bolton, C. F., Bilbao, J. M. and Vallat, J. M. (2001). Pathological findings in the x-linked form of Charcot–Marie–Tooth disease: a morphometric and ultrastructural analysis. Acta Neuropathol (Berl) 101, 129–39.Google ScholarPubMed
Hahn, A., Ciskind, C., Krajewski, K., Lewis, R. and Me, S. (2005). Genotype–phenotype correlations in CMTX1 (Abstract). J Peripher Nerv Syst 10 (Suppl 1), 31–2.Google Scholar
Halfter, W., Dong, S., Schurer, B. and Cole, G. J. (1998). Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 273, 25404–12.CrossRefGoogle ScholarPubMed
Hall, S. M. and Williams, P. L. (1970). Studies on the “incisures” of Schmidt and Lanterman. J Cell Sci 6, 767–91.Google ScholarPubMed
Hallows, J. L. and Tempel, B. L. (1998). Expression of Kv1.1, a Shaker-like potassium channel, is temporally regulated in embryonic neurons and glia. J Neurosci 18, 5682–91.CrossRefGoogle ScholarPubMed
Halstead, S. K., O'Hanlon, G. M., Humphreys, P. D.et al. (2004). Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain 127, 2109–23.CrossRefGoogle Scholar
Halstead, S. K., Morrison, I., O'Hanlon, G. M.et al. (2005). Anti-disialosyl antibodies mediate selective neuronal or Schwann cell injury at mouse neuromuscular junctions. Glia 52, 177–89.CrossRefGoogle ScholarPubMed
Hammarberg, H., Lidman, O., Lundberg, C.et al. (2000). Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20, 5283–91.CrossRefGoogle Scholar
Hanani, M., Huang, T. Y., Cherkas, P. S., Ledda, M. and Pannese, E. (2002). Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114, 279–83.CrossRefGoogle ScholarPubMed
Hanani, M. (2005). Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48, 457–76.CrossRefGoogle Scholar
Hanemann, C. O., Bergmann, C., Senderek, J., Zerres, K. and Sperfeld, A. D. (2003). Transient, recurrent, white matter lesions in X-linked Charcot–Marie–Tooth disease with novel connexin 32 mutation. Arch Neurol 60, 605–9.CrossRefGoogle ScholarPubMed
Harboe, M., Aseffa, A. and Leekassa, R. (2005). Challenges presented by nerve damage in leprosy. Lepr Rev 76, 5–13.Google ScholarPubMed
Harding, A. E. and Thomas, P. K. (1980a). Genetic aspects of hereditary motor and sensory neuropathy (types I and II). J Med Genet 17, 329–36.CrossRefGoogle Scholar
Harding, A. E. and Thomas, P. K. (1980b). The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 103, 259–80.CrossRefGoogle Scholar
Harrison, B. M., Hansen, L. A., Pollard, J. D. and McLeod, J. G. (1984). Demyelination induced by serum from patients with Guillain–Barré syndrome. Ann Neurol 15, 163–70.CrossRefGoogle ScholarPubMed
Harrison, R. G. (1908). Embryonic transplantation and development of nervous system. Anat Rec 2, 385–410.CrossRefGoogle Scholar
Harrison, R. G. (1924). Neuroblast versus sheath cell in the development of peripheral nerves. J Comp Neurol 37, 123–205.CrossRefGoogle Scholar
Hartung, H. P., Pollard, J. D., Harvey, G. K. and Toyka, K. V. (1995a). Immunopathogenesis and treatment of the Guillain–Barré syndrome–Part II. Muscle Nerve 18, 154–64.CrossRefGoogle Scholar
Hartung, H. P., Pollard, J. D., Harvey, G. K. and Toyka, K. V. (1995b). Immunopathogenesis and treatment of the Guillain–Barré syndrome–Part I. Muscle Nerve 18, 137–153.CrossRefGoogle Scholar
Hartung, H. P., Zielasek, J., Jung, S. and Toyka, K. V. (1996a). Effector mechanisms in demyelinating neuropathies. Rev Neurol (Paris) 152, 320–7.Google Scholar
Hartung, H. P., Kiefer, R., Gold, R. and Toyka, K. V. (1996b). Autoimmunity in the peripheral nervous system. Baillieres Clin Neurol 5, 1–45.Google Scholar
Hartung, H. P., Willison, H., Jung, S., Pette, M., Toyka, K. V. and Giegerich, G. (1996c). Autoimmune responses in peripheral nerve. Springer Semin Immunopathol 18, 97–123.CrossRefGoogle Scholar
Hartung, H. P., Meche, F. G. and Pollard, J. D. (1998). Guillain–Barré syndrome, CIDP and other chronic immune-mediated neuropathies. Curr Opin Neurol 11, 497–513.CrossRefGoogle ScholarPubMed
Harvey, G. K., Pollard, J. D., Schindhelm, K. and Antony, J. (1987). Chronic experimental allergic neuritis. An electrophysiological and histological study in the rabbit. J Neurol Sci 81, 215–25.CrossRefGoogle ScholarPubMed
Harvey, G. K., Toyka, K. V., Zielasek, J., Kiefer, R., Simonis, C. and Hartung, H. P. (1995). Failure of anti-GM1 IgG or IgM to induce conduction block following intraneural transfer. Muscle Nerve 18, 388–94.CrossRefGoogle ScholarPubMed
Hase, A., Saito, F., Yamada, H., Arai, K., Shimizu, T. and Matsumura, K. (2005). Characterization of glial cell line-derived neurotrophic factor family receptor alpha-1 in peripheral nerve Schwann cells. J Neurochem 95, 537–43.CrossRefGoogle ScholarPubMed
Hassan, S. M., Jennekens, F. G., Veldman, H. and Oestreicher, B. A. (1994). GAP-43 and p75NGFR immunoreactivity in presynaptic cells following neuromuscular blockade by botulinum toxin in rat. J Neurocytol 23, 354–63.CrossRefGoogle ScholarPubMed
Hatton, G. I. and Parpura, V. (2004). Glial Neuronal Signaling. Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
Haydon, P. G. (2001). Glia: listening and talking to the synapse. Nat Rev Neurosci 2, 185–93.CrossRefGoogle ScholarPubMed
Hays, A. P., Lee, S. S. and Latov, N. (1988). Immune reactive C3d on the surface of myelin sheaths in neuropathy. J Neuroimmunol 18, 231–44.CrossRefGoogle ScholarPubMed
Hayworth, C. R., Moody, S. E., Chodosh, L. A., Krieg, P. A., Rimer, M. and Thompson, W. (2006). Induction of neuregulin signaling in mouse Schwann cells in vivo mimics responses to denervation J Neurosci26, 6873–84.
Herrera, A. A., Banner, L. R. and Nagaya, N. (1990). Repeated, in vivo observation of frog neuromuscular junctions: remodelling involves concurrent growth and retraction. J Neurocytol 19, 85–99.CrossRefGoogle Scholar
Herrera, A. A., Qiang, H. and Ko, C. P. (2000). The role of perisynaptic Schwann cells in development of neuromuscular junctions in the frog (Xenopus laevis). J Neurobiol 45, 237–54.3.0.CO;2-J>CrossRefGoogle Scholar
Heumann, R., Lindholm, D., Bandtlow, C.et al. (1987a). Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Nat Acad Sci USA 84, 8735–9.CrossRefGoogle Scholar
Heumann, R., Korsching, S., Bandtlow, C. and Thoenen, H. (1987b). Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 104, 1623–31.CrossRefGoogle Scholar
Heuser, J. E., Reese, T. S. and Landis, D. M. (1976). Preservation of synaptic structure by rapid freezing. Cold Spring Harb Symp Quant Biol 40, 17–24.CrossRefGoogle ScholarPubMed
Heuss, D., Engelhardt, A., Gobel, H. and Neundorfer, B. (1995). Light-microscopic study of phosphoprotein B-50 in myopathies. Virchows Arch 426, 69–76.Google ScholarPubMed
Hill, C. E., Moon, L. D., Wood, P. M. and Bunge, M. B. (2006). Labeled Schwann cell transplantation: cell loss, host Schwann cell replacement, and strategies to enhance survival. Glia 53, 338–43.CrossRefGoogle ScholarPubMed
Hirata, K., Zhou, C., Nakamura, K. and Kawabuchi, M. (1997). Postnatal development of Schwann cells at neuromuscular junctions, with special reference to synapse elimination. J Neurocytol 26, 799–809.CrossRefGoogle ScholarPubMed
Hirata, K., Mitoma, H., Ueno, N., He, J. W. and Kawabuchi, M. (1999). Differential response of macrophage subpopulations to myelin degradation in the injured rat sciatic nerve. J Neurocytol 28, 685–95.CrossRefGoogle ScholarPubMed
Hirota, H., Kiyama, H., Kishimoto, T. and Taga, T. (1996). Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med 183, 2627–34.CrossRefGoogle ScholarPubMed
Hisahara, S., Shoji, S., Okano, H. and Miura, M. (1997). ICE/CED-3 family executes oligodendrocyte apoptosis by tumor necrosis factor. J Neurochem 69, 10–20.CrossRefGoogle ScholarPubMed
Ho, T. W., Mishu, B., Li, C. Y.et al. (1995). Guillain–Barré syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 118 (Part 3), 597–605.CrossRefGoogle ScholarPubMed
Ho, T. W., Hsieh, S. T., Nachamkin, I.et al. (1997a). Motor nerve terminal degeneration provides a potential mechanism for rapid recovery in acute motor axonal neuropathy after Campylobacter infection. Neurology 48, 717–24.CrossRefGoogle Scholar
Ho, T. W., Li, C. Y., Cornblath, D. R.et al. (1997b). Patterns of recovery in the Guillain–Barré syndromes. Neurology 48, 695–700.CrossRefGoogle Scholar
Ho, T. W., McKhann, G. M. and Griffin, J. W. (1998). Human autoimmune neuropathies. Ann Rev Neurosci 21, 187–226.CrossRefGoogle ScholarPubMed
Ho, T. W., Willison, H. J., Nachamkin, I.et al. (1999). Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain–Barré syndrome. Ann Neurol 45, 168–73.3.0.CO;2-6>CrossRefGoogle Scholar
Hodgkinson, S. J., Westland, K. W. and Pollard, J. D. (1994). Transfer of experimental allergic neuritis by intra neural injection of sensitized lymphocytes. J Neurol Sci 123, 162–72.CrossRefGoogle ScholarPubMed
Hoebe, K., Janssen, E. and Beutler, B. (2004). The interface between innate and adaptive immunity. Nat Immunol 5, 971–4.CrossRefGoogle ScholarPubMed
Hofler, H., Walter, G. F. and Denk, H. (1984). Immunohistochemistry of folliculo-stellate cells in normal human adenohypophyses and in pituitary adenomas. Acta Neuropathol (Berl) 65, 35–40.CrossRefGoogle ScholarPubMed
Hoke, A. and Keswani, S. C. (2005). Neuroprotection in the PNS: erythropoietin and immunophilin ligands. Ann NY Acad Sci 1053, 491–501.CrossRefGoogle ScholarPubMed
Hoke, A., Ho, T., Crawford, T. O., Lebel, C., Hilt, D. and Griffin, J. W. (2003). Glial cell line-derived neurotrophic factor alters axon Schwann cell units and promotes myelination in unmyelinated nerve fibers. J Neurosci 23, 561–7.CrossRefGoogle ScholarPubMed
Holen, T. and Mobbs, C. V. (2004). Lobotomy of genes: use of RNA interference in neuroscience. Neurosci 126, 1–7.CrossRefGoogle ScholarPubMed
Holland, N. R., Crawford, T. O., Hauer, P., Cornblath, D. R., Griffin, J. W. and McArthur, J. C. (1998). Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol 44, 47–59.CrossRefGoogle ScholarPubMed
Homma, S., Yaginuma, H. and Oppenheim, R. W. (1994). Programmed cell death during the earliest stages of spinal cord development in the chick embryo: a possible means of early phenotypic selection. J Comp Neurol 345, 377–95.CrossRefGoogle ScholarPubMed
Hong, C. S. and Saint-Jeannet, J. P. (2005). Sox proteins and neural crest development. Semin Cell Dev Biol 16, 694–703.CrossRefGoogle ScholarPubMed
Hoogendijk, J. E., Janssen, E. A., Gabreels-Festen, A. A.et al. (1993). Allelic heterogeneity in hereditary motor and sensory neuropathy type Ia (Charcot–Marie–Tooth disease type 1a). Neurology 43, 1010–15.CrossRefGoogle Scholar
Houlden, H., King, R. H., Wood, N. W., Thomas, P. K. and Reilly, M. M. (2001). Mutations in the 5′ region of the myotubularin-related protein 2 (MTMR2) gene in autosomal recessive hereditary neuropathy with focally folded myelin. Brain 124, 907–15.CrossRefGoogle ScholarPubMed
Hsiao, L. L., Peltonen, J., Jaakkola, S., Gralnick, H., Uitto, J. (1991). Plasticity of integrin expression by nerve-derived connective tissue cells. Human Schwann cells, perineurial cells, and fibroblasts express markedly different patterns of beta 1 integrins during nerve development, neoplasia, and in vitro. J Clin Invest 87, 811–20.CrossRefGoogle Scholar
Hsieh, S. T., Kidd, G. J., Crawford, T. O.et al. (1994). Regional modulation of neurofilament organization by myelination in normal axons. J Neurosci 14, 6392–401.CrossRefGoogle ScholarPubMed
Hu, H. M., O'Rourke, K., Boguski, M. S. and Dixit, V. M. (1994). A novel RING finger protein interacts with the cytoplasmic domain of CD40. J Biol Chem 269, 30069–72.Google ScholarPubMed
Hu, W., Ramacher, M., Hartung, H.-P. and Kieseier, B. C. (2004). Schwann cells express Toll-like receptors. J Neuroimmunol 154, 48.Google Scholar
Huang, E. J. and Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Ann Rev Neurosci 24, 677–736.CrossRefGoogle ScholarPubMed
Hughes, B. W., Kusner, L. L. and Kaminski, H. J. (2005a). Molecular architecture of the neuromuscular junction. Muscle Nerve 33, 445–61.CrossRef
Hughes, P. M., Wells, G. M., Clements, J. M.et al. (1998). Matrix metalloproteinase expression during experimental autoimmune neuritis. Brain 121 (Part 3), 481–94.CrossRefGoogle ScholarPubMed
Hughes, R. (1990). Guillain–Barré Syndrome. Springer-Verlag, Heidelberg.
Hughes, R. (2004). Treatment of Guillain–Barré syndrome with corticosteroids: lack of benefit?Lancet 363, 181–2.CrossRefGoogle Scholar
Hughes, R. and Meche, F. G. (2000). Corticosteroids for treating Guillain–Barré syndrome. Cochrane Database Syst Rev CD001446.Google Scholar
Hughes, R., Sanders, E., Hall, S., Atkinson, P., Colchester, A. and Payan, P. (1992). Subacute idiopathic demyelinating polyradiculoneuropathy. Arch Neurol 49, 612–16.CrossRefGoogle ScholarPubMed
Hughes, R., Atkinson, P. F., Gray, I. A. and Taylor, W. A. (1987). Major histocompatibility antigens and lymphocyte subsets during experimental allergic neuritis in the Lewis rat. J Neurol 234, 390–5.CrossRefGoogle ScholarPubMed
Hughes, R., Hadden, R. D., Gregson, N. A. and Smith, K. J. (1999). Pathogenesis of Guillain–Barré syndrome. J Neuroimmunol 100, 74–97.CrossRefGoogle ScholarPubMed
Hughes, R., Raphael, J. C., Swan, A. V. and Doorn, P. A. (2001). Intravenous immunoglobulin for Guillain–Barré syndrome. Cochrane Database Syst Rev CD002063.Google Scholar
Hughes, R., Swan, A. V. and Doorn, P. A. (2003). Cytotoxic drugs and interferons for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev CD003280.Google Scholar
Hughes, R. A., Wijdicks, E. F., Benson, E.et al. (2005a). Supportive care for patients with Guillain–Barré syndrome. Arch Neurol 62, 1194–8.CrossRefGoogle Scholar
Hughes, R. A. C., Bouche, P., Cornblath, D. R.et al. (2005b). European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. J Peripher Nerv Syst 10, 220–8.Google Scholar
Huxley, C., Passage, E., Manson, A.et al. (1996). Construction of a mouse model of Charcot–Marie–Tooth disease type 1A by pronuclear injection of human YAC DNA. Hum Mol Genet 5, 563–9.CrossRefGoogle ScholarPubMed
Hyland, H. H. and Russell, W. R. (1930). Chronic progressive polyneuritis with report of a fatal case. Brain 53, 278–9.CrossRefGoogle Scholar
Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.CrossRefGoogle ScholarPubMed
Ichimura, T. and Ellisman, M. H. (1991). Three-dimensional fine structure of cytoskeletal–membrane interactions at nodes of Ranvier. J Neurocytol 20, 667–81.CrossRefGoogle ScholarPubMed
Ilyas, A. A., Mithen, F. A., Dalakas, M. C.et al. (1991). Antibodies to sulfated glycolipids in Guillain–Barré syndrome. J Neurol Sci 105, 108–17.CrossRefGoogle ScholarPubMed
Ilyas, A. A., Mithen, F. A., Dalakas, M. C., Chen, Z. W. and Cook, S. D. (1992). Antibodies to acidic glycolipids in Guillain–Barré syndrome and chronic inflammatory demyelinating polyneuropathy. J Neurol Sci 107, 111–21.CrossRefGoogle ScholarPubMed
Imamura, M., Araishi, K., Noguchi, S. and Ozawa, E. (2000). A sarcoglycan–dystroglycan complex anchors Dp116 and utrophin in the peripheral nervous system. Hum Mol Genet 9, 3091–100.CrossRefGoogle ScholarPubMed
Inoue, K., Tanabe, Y. and Lupski, J. R. (1999). Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol 46, 313–18.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Inoue, K., Shilo, K., Boerkoel, C. F.et al. (2002). Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg–Hirschsprung disease: phenotypes linked by SOX10 mutation. Ann Neurol 52, 836–42.CrossRefGoogle ScholarPubMed
Inoue, K., Khajavi, M., Ohyama, T.et al. (2004). Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36, 361–9.CrossRefGoogle ScholarPubMed
Ionasescu, V. V., Ionasescu, R., Searby, C. and Neahring, R. (1995). Dejerine–Sottas disease with de novo dominant point mutation of the PMP22 gene. Neurology 45, 1766–7.CrossRefGoogle ScholarPubMed
Ishikawa, S., Ohshima, Y., Suzuki, T. and Oboshi, S. (1979). Primitive neuroectodermal tumor (neuroepithelioma) of spinal nerve root – report of an adult case and establishment of a cell line. Acta Pathol Jpn 29, 289–301.Google ScholarPubMed
Ivanova, A. and Nachev, S. (1990). Morphological changes in the nervous system in lead poisoning. I. Experimentally induced lead neuropathy. Eksp Med Morfol 29, 18–23.Google ScholarPubMed
Iwasaki, A. and Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat Immunol 5, 987–95.CrossRefGoogle ScholarPubMed
Iwase, T., Jung, C. G., Bae, H., Zhang, M. and Soliven, B. (2005). Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. J Neurochem 94, 1488–99.CrossRefGoogle ScholarPubMed
Jaakkola, S., Peltonen, J. and Uitto, J. J. (1989). Perineurial cells coexpress genes encoding interstitial collagens and basement membrane zone components. J Cell Biol 108, 1157–63.CrossRefGoogle ScholarPubMed
Jacobs, B. C., Endtz, H., Meche, F. G., Hazenberg, M. P., Achtereekte, H. A. and Doorn, P. A. (1995). Serum anti-GQ1b IgG antibodies recognize surface epitopes on Campylobacter jejuni from patients with Miller–Fisher syndrome. Ann Neurol 37, 260–4.CrossRefGoogle ScholarPubMed
Jacobs, J. M. and Love, S. (1985). Qualitative and quantitative morphology of human sural nerve at different ages. Brain 108 (Part 4), 897–924.CrossRefGoogle ScholarPubMed
Jaegle, M., Mandemakers, W., Broos, L.et al. (1996). The POU factor Oct-6 and Schwann cell differentiation. Science 273, 507–10.CrossRefGoogle ScholarPubMed
Jaegle, M., Ghazvini, M., Mandemakers, W.et al. (2003). The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes & Development 17, 1380–91.CrossRefGoogle ScholarPubMed
Jahromi, B. S., Robitaille, R. and Charlton, M. P. (1992). Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron 8, 1069–77.CrossRefGoogle ScholarPubMed
James, S., Patel, N. J., Thomas, P. K. and Burnstock, G. (1993). Immunocytochemical localisation of insulin receptors on rat superior cervical ganglion neurons in dissociated cell culture. J Anat 182 (Part 1), 95–100.Google ScholarPubMed
Jander, S., Bussini, S., Neuen-Jacob, E.et al. (2002). Osteopontin: a novel axon-regulated Schwann cell gene. J Neurosci Res 67, 156–66.CrossRefGoogle ScholarPubMed
Janeway, C. A. Jr. (1992). The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13, 11–16.CrossRefGoogle ScholarPubMed
Jaros, E. and Bradley, W. G. (1978). Development of the amyelinated lesion in the ventral root of the dystrophic mouse. Ultrastructural, quantitative and autoradiographic study. J Neurol Sci 36, 317–39.CrossRefGoogle ScholarPubMed
Jaros, E. and Bradley, W. G. (1979). Atypical axon–Schwann cell relationships in the common peroneal nerve of the dystrophic mouse: an ultrastructural study. Neuropathol Appl Neurobiol 5, 133–47.CrossRefGoogle Scholar
Jessen, K. R. (2004). Glial cells. Int J Biochem Cell Biol 36, 1861–7.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (1980). Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286, 736–7.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (1985). Glial fibrillary acidic polypeptides in peripheral glia. Molecular weight, heterogeneity and distribution. J Neuroimmunol 8, 377–93.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (1999). Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci 22, 402–10.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (2002). Signals that determine Schwann cell identity. J Anat 200, 367–75.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (2004). Schwann cell development. Lazzarini, R. A. (Ed.) Myelin Biology and Disorders. Elsevier, Philadelphia, pp. 329–59.Google Scholar
Jessen, K. R. and Mirsky, R. (2005a). The origin and development of glial cells in peripheral nerves. Nature Rev Neurosci 6, 671–82.CrossRefGoogle Scholar
Jessen, K. R. and Mirsky, R. (2005b). The Schwann cell lineage. Kettenmann, H., Ransom, B. (Eds.) Neuroglia, 2 Edn. Oxford University Press, Oxford, pp. 85–100.Google Scholar
Jessen, K. R., Morgan, L., Stewart, H. J. S. and Mirsky, R. (1990). Three markers of adult non-myelin-forming Schwann cells, 217c (Ran-1), A5E3 and GFAP: development and regulation by neuron–Schwann cell interactions. Development 109, 91–103.Google ScholarPubMed
Jessen, K. R., Brennan, A., Morgan, L.et al. (1994). The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron 12, 509–27.CrossRefGoogle ScholarPubMed
John, G. R., Shankar, S. L., Shafit-Zagardo, B.et al. (2002). Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8, 1115–21.CrossRefGoogle ScholarPubMed
Johnson, A. N. and Newfeld, S. J. (2002). The TGF-beta family: signaling pathways, developmental roles, and tumor suppressor activities. Scientific World J 2, 892–925.CrossRefGoogle ScholarPubMed
Jones, L. L., Sajed, D. and Tuszynski, M. H. (2003). Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci 23, 9276–88.CrossRefGoogle Scholar
Jones, P. L. and Jones, F. S. (2000). Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol 19, 581–96.CrossRefGoogle ScholarPubMed
Jordan, C. L. and Williams, T. J. (2001). Testosterone regulates terminal Schwann cell number and junctional size during developmental synapse elimination. Dev Neurosci 23, 441–51.CrossRefGoogle ScholarPubMed
Joseph, N. M., Mukouyama, Y. S., Mosher, J. T.et al. (2004). Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131, 5599–612.CrossRefGoogle ScholarPubMed
Kadlubowski, M. and Hughes, R. A. (1979). Identification of the neuritogen for experimental allergic neuritis. Nature 277, 140–1.CrossRefGoogle ScholarPubMed
Kadlubowski, M. and Hughes, R. A. (1980). The neuritogenicity and encephalitogenicity of P2 in the rat, guinea-pig and rabbit. J Neurol Sci 48, 171–8.CrossRefGoogle ScholarPubMed
Kaelin-Lang, A., Lauterburg, T. and Burgunder, J. M. (1998). Expression of adenosine A2a receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 246, 21–4.CrossRefGoogle ScholarPubMed
Kameda, Y. (1996). Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla of guinea pigs. J Histochem Cytochem 44, 1439–49.CrossRefGoogle ScholarPubMed
Kang, H., Tian, L. and Thompson, W. (2003). Terminal Schwann cells guide the reinnervation of muscle after nerve injury. J Neurocytol 32, 975–85.CrossRefGoogle ScholarPubMed
Katz, R. L. (1966). Nerve, Muscle and Synapse. McGraw-Hill, New York.Google Scholar
Kawabuchi, M., Zhou, C. J., Wang, S., Nakamura, K., Liu, W. T. and Hirata, K. (2001). The spatiotemporal relationship among Schwann cells, axons and postsynaptic acetylcholine receptor regions during muscle reinnervation in aged rats. Anat Rec 264, 183–202.CrossRefGoogle ScholarPubMed
Kelly, A. M. and Zacks, S. I. (1969). The fine structure of motor endplate morphogenesis. J Cell Biol 42, 154–69.CrossRefGoogle ScholarPubMed
Kennedy, W. R. (2004). Opportunities afforded by the study of unmyelinated nerves in skin and other organs. Muscle Nerve 29, 756–67.CrossRefGoogle Scholar
Kennedy, W. R., Wendelschafer-Crabb, G. and Johnson, T. (1996). Quantitation of epidermal nerves in diabetic neuropathy. Neurology 47, 1042–8.CrossRefGoogle ScholarPubMed
Kerschensteiner, M., Stadelmann, C., Dechant, G., Wekerle, H. and Hohlfeld, R. (2003). Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53, 292–304.CrossRefGoogle ScholarPubMed
Kettenmann, H. and Ransom, B. R. (2005). Neuroglia, 2nd Edn. Oxford University Press, New York.Google Scholar
Keynes, R. J. (1987). Schwann cells during neural development and regeneration: leaders or followers?Trends Neurosci 10, 137–9.CrossRefGoogle Scholar
Khalili-Shirazi, A., Hughes, R. A., Brostoff, S. W., Linington, C. and Gregson, N. (1992). T cell responses to myelin proteins in Guillain–Barré syndrome. J Neurol Sci 111, 200–3.CrossRefGoogle ScholarPubMed
Khalili-Shirazi, A., Atkinson, P., Gregson, N. and Hughes, R. A. (1993). Antibody responses to P0 and P2 myelin proteins in Guillain–Barré syndrome and chronic idiopathic demyelinating polyradiculoneuropathy. J Neuroimmunol 46, 245–51.CrossRefGoogle ScholarPubMed
Kiefer, R., Streit, W. J., Toyka, K. V., Kreutzberg, G. W. and Hartung, H. P. (1995). Transforming growth factor-beta 1: a lesion-associated cytokine of the nervous system. Int J Dev Neurosci 13, 331–9.CrossRefGoogle Scholar
Kiefer, R., Funa, K., Schweitzer, T.et al. (1996). Transforming growth factor-beta 1 in experimental autoimmune neuritis. Cellular localization and time course. Am J Pathol 148, 211–23.Google ScholarPubMed
Kiefer, R., Kieseier, B. C., Stoll, G. and Hartung, H. P. (2001). The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol 64, 109–27.CrossRefGoogle ScholarPubMed
Kieseier, B. C., Krivacic, K., Jung, S.et al. (2000). Sequential expression of chemokines in experimental autoimmune neuritis. J Neuroimmunol 110, 121–9.CrossRefGoogle ScholarPubMed
Kieseier, B. C., Dalakas, M. C. and Hartung, H. P. (2002a). Immune mechanisms in chronic inflammatory demyelinating neuropathy. Neurology 59, S7–S12.CrossRefGoogle Scholar
Kieseier, B. C., Tani, M., Mahad, D.et al. (2002b). Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IP-10. Brain 125, 823–34.CrossRefGoogle Scholar
Kieseier, B. C., Kiefer, R., Gold, R., Hemmer, B., Willison, H. J. and Hartung, H. P. (2004). Advances in understanding and treatment of immune-mediated disorders of the peripheral nervous system. Muscle Nerve 30, 131–56.CrossRefGoogle ScholarPubMed
Kim, S. A., Vacratsis, P. O., Firestein, R., Cleary, M. L. and Dixon, J. E. (2003). Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Nat Acad Sci USA 100, 4492–7.CrossRefGoogle ScholarPubMed
Kim, S. I., Voshol, H., , O. J., Hastings, T. G., Cascio, M. and Glucksman, M. J. (2004). Neuroproteomics: expression profiling of the brain's proteomes in health and disease. Neurochem Res 29, 1317–31.CrossRefGoogle ScholarPubMed
Kingsley, D. M. (1994). The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8, 133–46.CrossRefGoogle ScholarPubMed
Kingston, A. E., Bergsteinsdottir, K., Jessen, K. R., Meide, P. H., Colston, M. J. and Mirsky, R. (1989). Schwann cells co-cultured with stimulated T cells and antigen express major histocompatibility complex (MHC) class II determinants without interferon-gamma pretreatment: synergistic effects of interferon-gamma and tumor necrosis factor on MHC class II induction. Eur J Immunol 19, 177–83.CrossRefGoogle ScholarPubMed
Kinugasa, Y., Ishiguro, H., Tokita, Y., Oohira, A., Ohmoto, H. and Higashiyama, S. (2004). Neuroglycan C, a novel member of the neuregulin family. Biochem Biophys Res Commun 321, 1045–9.CrossRefGoogle ScholarPubMed
Kioussi, C., Gross, M. K. and Gruss, P. (1995). Pax3: A paired domain gene as a regulator in PNS myelination. Neuron 15, 553–62.CrossRefGoogle ScholarPubMed
Kirschner, D. A., Wrabetz, L. and Feltri, M. L. (2004). The P0 gene. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, Philadelphia, pp. 523–45.Google Scholar
Ko, C. P. (1981). Electrophysiological and freeze-fracture studies of changes following denervation at frog neuromuscular junctions. J Physiol 321, 627–39.CrossRefGoogle ScholarPubMed
Ko, C. P. (1987). A lectin, peanut agglutinin, as a probe for the extracellular matrix in living neuromuscular junctions. J Neurocytol 16, 567–76.CrossRefGoogle ScholarPubMed
Ko, C. P. and Chen, L. (1996). Synaptic remodeling revealed by repeated in vivo observations and electron microscopy of identified frog neuromuscular junctions. J Neurosci 16, 1780–90.CrossRefGoogle ScholarPubMed
Ko, C. P. and Thompson, W. (2003). Special issue – the neuromuscular junction. J Neurocytol 32, 423–1037.CrossRefGoogle Scholar
Kocsis, J. D., Akiyama, Y. and Radtke, C. (2004). Neural precursors as a cell source to repair the demyelinated spinal cord. J Neurotrauma 21, 441–9.CrossRefGoogle ScholarPubMed
Koenig, H. L., Schumacher, M., Ferzaz, B.et al. (1995). Progesterone synthesis and myelin formation by Schwann cells. Science 268, 1500–3.CrossRefGoogle ScholarPubMed
Koirala, S. and Ko, C. P. (2004). Pruning an axon piece by piece: a new mode of synapse elimination. Neuron 44, 578–80.Google ScholarPubMed
Koirala, S., Qiang, H. and Ko, C. P. (2000). Reciprocal interactions between perisynaptic Schwann cells and regenerating nerve terminals at the frog neuromuscular junction. J Neurobiol 44, 343–60.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Koirala, S., Reddy, L. V. and Ko, C. P. (2003). Roles of glial cells in the formation, function, and maintenance of the neuromuscular junction. J Neurocytol 32, 987–1002.CrossRefGoogle ScholarPubMed
Koller, H., Giesen, H. J. and Siebler, M. (1995). Impairment of electrophysiological function of astrocytes by cerebrospinal fluid from a patient with Waldenstrom's macroglobulinemia. J Neuroimmunol 61, 35–9.CrossRefGoogle ScholarPubMed
Koller, H., Kieseier, B. C., Jander, S. and Hartung, H. P. (2005). Chronic inflammatory demyelinating polyneuropathy. N Engl J Med 352, 1343–56.CrossRefGoogle ScholarPubMed
Koski, C. L. (1997). Mechanisms of Schwann cell damage in inflammatory neuropathy. J Infect Dis 176 (Suppl 2), S169–S172.CrossRefGoogle ScholarPubMed
Koski, C. L., Humphrey, R. and Shin, M. L. (1985). Anti-peripheral myelin antibody in patients with demyelinating neuropathy: quantitative and kinetic determination of serum antibody by complement component 1 fixation. Proc Nat Acad Sci USA 82, 905–9.CrossRefGoogle ScholarPubMed
Koski, C. L., Sanders, M. E., Swoveland, P. T.et al. (1987). Activation of terminal components of complement in patients with Guillain–Barré syndrome and other demyelinating neuropathies. J Clin Invest 80, 1492–7.CrossRefGoogle ScholarPubMed
Krajewski, K., Turansky, C., Lewis, R.et al. (1999). Correlation between weakness and axonal loss in patients with CMT1A. Ann NY Acad Sci 883, 490–2.CrossRefGoogle ScholarPubMed
Krajewski, K. M., Lewis, R. A., Fuerst, D. R.et al. (2000). Neurological dysfunction and axonal degeneration in Charcot–Marie–Tooth disease type 1A. Brain 123, 1516–27.CrossRefGoogle ScholarPubMed
Kramer, R. H., Cheng, Y. F. and Clyman, R. (1990). Human microvascular endothelial cells use beta 1 and beta 3 integrin receptor complexes to attach to laminin. J Cell Biol 111, 1233–43.CrossRefGoogle Scholar
Krammer, P. H. (2000). CD95's deadly mission in the immune system. Nature 407, 789–95.CrossRefGoogle ScholarPubMed
Kreusch, A., Pfaffinger, P. J., Stevens, C. F. and Choe, S. (1998). Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392, 945–8.CrossRefGoogle ScholarPubMed
Kritas, S. K., Pensaert, M. B., Nauwynck, H. J. and Kyriakis, S. C. (1999). Neural invasion of two virulent suid herpesvirus 1 strains in neonatal pigs with or without maternal immunity. Vet Microbiol 69, 143–56.CrossRefGoogle ScholarPubMed
Krucke, W. (1955). Evkrankungen des peripheren nerven systems. Evkrankungen der peripheren nerve. Lubarsch, O., Henke, F., Rossle, R. (Eds.) Handbuck der Speziellen Pathologischen Anatomie und Histologie, 13 Springer-Verlag, Berlin, pp. 164–83.Google Scholar
Kubu, C. J., Orimoto, K., Morrison, S. J., Weinmaster, G., Anderson, D. J. and Verdi, J. M. (2002). Developmental changes in Notch1 and Numb expression mediated by local cell–cell interactions underlie progressively increasing delta sensitivity in neural crest stem cells. Develop Biol 244, 199–214.CrossRefGoogle ScholarPubMed
Kuffler, D. P. (1986). Accurate reinnervation of motor end plates after disruption of sheath cells and muscle fibers. J Comp Neurol 250, 228–35.CrossRefGoogle ScholarPubMed
Kullberg, R. W., Lentz, T. L. and Cohen, M. W. (1977). Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study. Dev Biol 60, 101–29.CrossRefGoogle ScholarPubMed
Kumpulainen, T. and Korhonen, L. K. (1982). Immunohistochemical localization of carbonic anhydrase isoenzyme C in the central and peripheral nervous system of the mouse. J Histochem Cytochem 30, 283–92.CrossRefGoogle ScholarPubMed
Kurtz, A., Zimmer, A., Schnutgen, F., Bruning, G., Spener, F. and Muller, T. (1994). The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120, 2637–49.Google ScholarPubMed
Kury, P., Koller, H., Hamacher, M., Cornely, C., Hasse, B. and Muller, H. W. (2003). Cyclic AMP and tumor necrosis factor-alpha regulate CXCR4 gene expression in Schwann cells. Mol Cell Neurosci 24, 1–9.CrossRefGoogle ScholarPubMed
Kusunoki, S., Chiba, A., Hitoshi, S., Takizawa, H. and Kanazawa, I. (1995). Anti-Gal-C antibody in autoimmune neuropathies subsequent to mycoplasma infection. Muscle Nerve 18, 409–13.CrossRefGoogle ScholarPubMed
Kuwabara, S., Ogawara, K., Misawa, S.et al. (2004). Does Campylobacter jejuni infection elicit ‘demyelinating’ Guillain–Barré syndrome?Neurology 63, 529–33.CrossRefGoogle ScholarPubMed
Kwa, M. S., , S. I., Brand, A., Baas, F. and Vermeulen, M. (2001). Investigation of serum response to PMP22, connexin 32 and P(0) in inflammatory neuropathies. J Neuroimmunol 116, 220–25.CrossRefGoogle Scholar
Kwa, M. S., Van, S. I., Jonge, R. R.et al. (2003). Autoimmunoreactivity to Schwann cells in patients with inflammatory neuropathies. Brain 126, 361–75.CrossRefGoogle ScholarPubMed
La, F. M., Underwood, J. L., Rappolee, D. A. and Werb, Z. (1996). Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1. J Exp Med 184, 2311–26.Google Scholar
Lacas-Gervais, S., Guo, J., Strenzke, N.et al. (2004). βIVΣ1 spectrin stabilizes the nodes of Ranvier and axon initial segments. J Cell Biol 166, 983–90.CrossRefGoogle ScholarPubMed
Lambert, S., Davis, J. Q. and Bennett, V. (1997). Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J Neurosci 17, 7025–36.CrossRefGoogle ScholarPubMed
Lampert, P. W. (1969). Mechanism of demyelination in experimental allergic neuritis. Electron microscopic studies. Lab Invest 20, 127–38.Google ScholarPubMed
Laporte, J., Blondeau, F., Buj-Bello, A. and Mandel, J. L. (2001). The myotubularin family: from genetic disease to phosphoinositide metabolism. Trends Genet 17, 221–8.CrossRefGoogle ScholarPubMed
Latov, N. (2002). Diagnosis of CIDP. Neurology 59, S2–S6.CrossRefGoogle ScholarPubMed
Lazarini, F., Tham, T. N., Casanova, P., Renzana-Seisdedos, F. and Dubois-Dalcq, M. (2003). Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42, 139–48.CrossRefGoogle ScholarPubMed
Douarin, N. M. and Dupin, E. (1993). Cell lineage analysis in neural crest ontogeny. J Neurobiol 24, 146–61.CrossRefGoogle ScholarPubMed
Douarin, N. M. and Kalcheim, C. (1999). The Neural Crest. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Le, N., Nagarajan, R., Wang, J. Y. T.et al. (2005a). Nab proteins are essential for peripheral nervous system myelination. Nat Neurosci 8, 932–40.CrossRefGoogle Scholar
Le, N., Nagarajan, R., Wang, J. Y. T., Araki, T., Schmidt, R. E. and Milbrandt, J. (2005b). Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Nat Acad Sci USA 102, 2596–601.CrossRefGoogle Scholar
Lee, M. J., Brennan, A., Blanchard, A.et al. (1997). P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively. Mol Cell Neurosci 8, 336–50.CrossRefGoogle ScholarPubMed
Lefcort, F., Venstrom, K., McDonald, J. A. and Reichardt, L. F. (1992). Regulation of expression of fibronectin and its receptor, alpha 5 beta 1, during development and regeneration of peripheral nerve. Development 116, 767–82.Google Scholar
Leimeroth, R., Lobsiger, C., Lussi, A., Taylor, V., Suter, U. and Sommer, L. (2002). Membrane-bound neuregulin1 type III actively promotes Schwann cell differentiation of multipotent progenitor cells. Develop Biol 246, 245–58.CrossRefGoogle ScholarPubMed
Lemke, G. (2001). Glial control of neuronal development. Ann Rev Neurosci 24, 87–105.CrossRefGoogle ScholarPubMed
Lemke, G. and Axel, R. (1985). Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 40, 501–8.CrossRefGoogle ScholarPubMed
Lentz, S. I., Miner, J. H., Sanes, J. R. and Snider, W. D. (1997). Distribution of the ten known laminin chains in the pathways and targets of developing sensory axons. J Comp Neurol 378, 547–61.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Leppert, D., Hughes, P., Huber, S.et al. (1999). Matrix metalloproteinase upregulation in chronic inflammatory demyelinating polyneuropathy and nonsystemic vasculitic neuropathy. Neurology 53, 62–70.CrossRefGoogle ScholarPubMed
Letinsky, M. S., Fischbeck, K. H. and McMahan, U. J. (1976). Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush. J Neurocytol 5, 691–718.CrossRefGoogle ScholarPubMed
Levedakou, E. N., Chen, X. J., Soliven, B. and Popko, B. (2005). Disruption of the mouse Large gene in the enr and myd mutants results in nerve, muscle, and neuromuscular junction defects. Mol Cell Neurosci 28, 757–69.CrossRefGoogle ScholarPubMed
Lewis, J., Al-Ghaith, L., Swanson, G. and Khan, A. (1983). The control of axon outgrowth in the developing chick wing. Prog Clin Biol Res 110 (Part A), 195–205.Google ScholarPubMed
Lewis, R. A. and Shy, M. E. (1999). Electrodiagnostic findings in CMTX: a disorder of the Schwann cell and peripheral nerve myelin. Ann NY Acad Sci 883, 504–7.CrossRefGoogle ScholarPubMed
Li, J., Krajewski, K., Shy, M. E. and Lewis, R. A. (2002a). Hereditary neuropathy with liability to pressure palsy: the electrophysiology fits the name. Neurology 58, 1769–73.CrossRefGoogle Scholar
Li, J., Krajewski, K., Lewis, R. A. and Shy, M. E. (2004). Loss-of-function phenotype of hereditary neuropathy with liability to pressure palsies. Muscle Nerve 29, 205–10.CrossRefGoogle ScholarPubMed
Li, J., Bai, Y., Ghandour, K., Qin, P.et al. (2005a). Skin biopsies in myelin-related neuropathies: bringing molecular pathology to the bedside. Brain 128, 1168–77.CrossRefGoogle Scholar
Li, J., Grandis, M., Trostinskaia, A. et al. 32765. Intralaminar protein accumulation of myelin and axonal degeneration in a human MPZ mutation: an autopsy study.
Li, L., Xian, C. J., Zhong, J. H. and Zhou, X. F. (2003). Lumbar 5 ventral root transection-induced upregulation of nerve growth factor in sensory neurons and their target tissues: a mechanism in neuropathic pain. Mol Cell Neurosci 23, 232–50.CrossRefGoogle ScholarPubMed
Li, Q., Shirabe, K., Thisse, C.et al. (2005b). Chemokine signaling guides axons within the retina in zebrafish. J Neurosci 25, 1711–17.CrossRefGoogle Scholar
Li, S., Liquari, P., McKee, K. K.et al. (2005c). Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J Cell Biol 169, 179–89.CrossRefGoogle Scholar
Li, X., Lynn, B. D., Olson, C.et al. (2002b). Connexin29 expression, immunocytochemistry and freeze-fracture replica immunogold labelling (FRIL) in sciatic nerve. Eur J Neurosci 16, 795–806.CrossRefGoogle Scholar
Li, X., Gonias, S. L. and Campana, W. M. (2005d). Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury. Glia 51, 254–65.CrossRefGoogle Scholar
Li, J., Bai, Y. and Ianakova, E.et al. (2006). Major myelin protein gene (PO) mutation causes a novel form of axonal degeneration. J Comp Neurol 498, 252–65.CrossRefGoogle Scholar
Lichtman, J. W. and Sanes, J. R. (2003). Watching the neuromuscular junction. J Neurocytol 32, 767–75.CrossRefGoogle ScholarPubMed
Lichtman, J. W., Magrassi, L. and Purves, D. (1987). Visualization of neuromuscular junctions over periods of several months in living mice. J Neurosci 7, 1215–22.CrossRefGoogle ScholarPubMed
Lilje, O. (2002). The processing and presentation of endogenous and exogenous antigen by Schwann cells in vitro. Cell Mol Life Sci 59, 2191–8.CrossRefGoogle ScholarPubMed
Lilje, O. and Armati, P. J. (1997). The distribution and abundance of MHC and ICAM-1 on Schwann cells in vitro. J Neuroimmunol 77, 75–84.CrossRefGoogle ScholarPubMed
Lilje, O. and Armati, P. J. (1999). Restimulation of resting autoreactive T cells by Schwann cells in vitro. Exp Mol Pathol 67, 164–74.CrossRefGoogle ScholarPubMed
Lin, C., Numakura, C., Ikegami, T.et al. (1999). Deletion and nonsense mutations of the connexin 32 gene associated with Charcot–Marie–Tooth disease. Tohoku J Exp Med 188, 239–44.CrossRefGoogle ScholarPubMed
Lin, W., Sanchez, H. B., Deerinck, T., Morris, J. K., Ellisman, M. and Lee, K. F. (2000). Aberrant development of motor axons and neuromuscular synapses in erbB2-deficient mice. Proc Nat Acad Sci USA 97, 1299–304.CrossRefGoogle ScholarPubMed
Linden, D. C., Jerian, S. M. and Letinsky, M. S. (1988). Neuromuscular junction development in the cutaneous pectoris muscle of Rana catesbeiana. Exp Neurol 99, 735–60.CrossRefGoogle ScholarPubMed
Lindholm, D., Heumann, R., Meyer, M. and Thoenen, H. (1987). Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330, 658–9.CrossRefGoogle ScholarPubMed
Linington, C., Izumo, S., Suzuki, M., Uyemura, K., Meyermann, R. and Wekerle, H. (1984). A permanent rat T cell line that mediates experimental allergic neuritis in the Lewis rat in vivo. J Immunol 133, 1946–50.Google ScholarPubMed
Linington, C., Bradl, M., Lassmann, H., Brunner, C. and Vass, K. (1988). Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130, 443–54.Google ScholarPubMed
Linington, C., Lassmann, H., Ozawa, K., Kosin, S. and Mongan, L. (1992). Cell adhesion molecules of the immunoglobulin supergene family as tissue-specific autoantigens: induction of experimental allergic neuritis (EAN) by P0 protein-specific T cell lines. Eur J Immunol 22, 1813–17.CrossRefGoogle ScholarPubMed
Linington, C., Berger, T., Perry, L.et al. (1993). T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur J Immunol 23, 1364–72.CrossRefGoogle ScholarPubMed
Lisak, R. and Brown, M. J. (1987). Acquired demyelinating polyneuropathies. Semin Neurol 7, 40–8.CrossRefGoogle ScholarPubMed
Lisak, R. and Bealmear, B. (1991). Antibodies to interleukin-1 inhibit cytokine-induced proliferation of neonatal rat Schwann cells in vitro. J Neuroimmunol 31, 123–32.CrossRefGoogle ScholarPubMed
Lisak, R. and Bealmear, B. (1992). Differences in the capacity of gamma-interferons from different species to induce class I and II major histocompatibility complex antigens on neonatal rat Schwann cells in vitro. Pathobiology 60, 322–9.CrossRefGoogle Scholar
Lisak, R. and Bealmear, B. (1994). Antibodies to interleukin-6 inhibit Schwann cell proliferation induced by unfractionated cytokines. J Neuroimmunol 50, 127–32.CrossRefGoogle ScholarPubMed
Lisak, R. and Bealmear, B. (1995). Transforming growth factor-β (TGF-β) is co-mitogenic for Schwann cells (SC) with interleukin-α (IL-α). Neurology 45, A164–A165.Google Scholar
Lisak, R. and Bealmear, B. (1997). Upregulation of intercellular adhesion molecule-1 (ICAM-1) on rat Schwann cells in vitro: comparison of interferon-gamma, tumor necrosis factor-alpha and interleukin-1. J Peripher Nerv Syst 2, 233–43.Google ScholarPubMed
Lisak, R., Hirayama, M., Kuchmy, D.et al. (1983). Cultured human and rat oligodendrocytes and rat Schwann cells do not have immune response gene associated antigen (Ia) on their surface. Brain Res 289, 285–92.CrossRefGoogle Scholar
Lisak, R., Kuchmy, D., Rmati-Gulson, P. J., Brown, M. J. and Sumner, A. J. (1984). Serum-mediated Schwann cell cytotoxicity in the Guillain–Barré syndrome. Neurology 34, 1240–3.CrossRefGoogle ScholarPubMed
Lisak, R., Sobue, G., Kuchmy, D., Burns, J. B. and Pleasure, D. E. (1985). Products of activated lymphocytes stimulate Schwann cell mitosis in vitro. Neurosci Lett 57, 105–11.CrossRefGoogle ScholarPubMed
Lisak, R., Bealmear, B. and Ragheb, S. (1994). Interleukin-1 alpha, but not interleukin-1 beta, is a co-mitogen for neonatal rat Schwann cells in vitro and acts via interleukin-1 receptors. J Neuroimmunol 55, 171–7.CrossRefGoogle Scholar
Lisak, R., Bealmear, B., Benjamins, J., Yu, C. and Skoff, R. (1996). Transforming growth factor-β (TGF-β) has different effects on proliferation of neonatal central (CNS) and peripheral (PNS) macroglia in vitro. Neurology 46, A190.Google Scholar
Lisak, R., Skundric, D., Bealmear, B. and Ragheb, S. (1997). The role of cytokines in Schwann cell damage, protection, and repair. J Infect Dis 176 (Suppl 2), S173–S179.CrossRefGoogle Scholar
Lisak, R., Bealmear, B., Benjamins, J. and Skoff, A. (1998). Inflammatory cytokines inhibit upregulation of glycolipid expression by Schwann cells in vitro. Neurology 51, 1661–5.CrossRefGoogle ScholarPubMed
Lisak, R., Bealmear, B., Benjamins, J. and Skoff, A. (1999). Tumor necrosis factor-α (TNF-α) upregulation of intracellular adhesion molecule-1 by Schwann cells is predominantly mediated by TNF receptor type I. Soc Neurosci Abstr 25, 294.Google Scholar
Lisak, R., Bealmear, B., Benjamins, J. A. and Skoff, A. M. (2001). Interferon-gamma, tumor necrosis factor-alpha, and transforming growth factor-beta inhibit cyclic AMP-induced Schwann cell differentiation. Glia 36, 354–63.CrossRefGoogle ScholarPubMed
Lisak, R., Bealmear, B., Nedelkoska, L. and Benjamins, J. A. (2006). Secretory products of central nervous system glial cells induce Schwann cell proliferation and protect from cytokine-mediated death. J Neurosci Res 83, 1425–31.CrossRefGoogle ScholarPubMed
Liu, H., Nakagawa, T., Kanematsu, T., Uchida, T. and Tsuji, S. (1999). Isolation of 10 differentially expressed cDNAs in differentiated Neuro2a ceFlls induced through controlled expression of the GD3 synthase gene. J Neurochem 72, 1781–90.CrossRefGoogle ScholarPubMed
Lobsiger, C. S., Taylor, V. and Suter, U. (2002). The early life of a Schwann cell. Biol Chem 383, 245–53.CrossRefGoogle ScholarPubMed
Loeb, J. A., Khurana, T. S., Robbins, J. T., Yee, A. G. and Fischbach, G. D. (1999). Expression patterns of transmembrane and released forms of neuregulin during spinal cord and neuromuscular synapse development. Development 126, 781–91.Google ScholarPubMed
Love, F. M. and Thompson, W. J. (1998). Schwann cells proliferate at rat neuromuscular junctions during development and regeneration. J Neurosci 18, 9376–85.CrossRefGoogle ScholarPubMed
Love, F. M. and Thompson, W. J. (1999). Glial cells promote muscle reinnervation by responding to activity-dependent postsynaptic signals. J Neurosci 19, 10390–6.CrossRefGoogle ScholarPubMed
Love, F. M., Son, Y. J. and Thompson, W. J. (2003). Activity alters muscle reinnervation and terminal sprouting by reducing the number of Schwann cell pathways that grow to link synaptic sites. J Neurobiol 54, 566–76.CrossRefGoogle ScholarPubMed
Lubischer, J. L. and Bebinger, D. M. (1999). Regulation of terminal Schwann cell number at the adult neuromuscular junction. J Neurosci 19, RC46.CrossRefGoogle ScholarPubMed
Lubischer, J. L. and Thompson, W. J. (1999). Neonatal partial denervation results in nodal but not terminal sprouting and a decrease in efficacy of remaining neuromuscular junctions in rat soleus muscle. J Neurosci 19, 8931–44.CrossRefGoogle ScholarPubMed
Luitjen, J. A. F. M. and Faille-Kuyper, E. H. B. (1972). The occurrence of IgM and complement factors along myelin sheaths of peripheral nerves. An immunohistochemical study of the Guillain–Barré syndrome. J Neurol Sci 15, 219–24.Google Scholar
Lunn, M. P., Manji, H., Choudhary, P. P., Hughes, R. A. and Thomas, P. K. (1999). Chronic inflammatory demyelinating polyradiculoneuropathy: a prevalence study in south east England. J Neurol Neurosurg Psychiatry 66, 677–80.CrossRefGoogle ScholarPubMed
Lupski, J. R., Oca-Luna, R. M., Slaugenhaupt, S.et al. (1991). DNA duplication associated with Charcot–Marie–Tooth disease type 1A. Cell 66, 219–32.CrossRefGoogle ScholarPubMed
Lustig, M., Zanazzi, G., Sakurai, T.et al. (2001). Nr–CAM and neurofascin interactions regulate ankyrin G and sodium channel clustering at the node of Ranvier. Curr Biol 11, 1864–9.CrossRefGoogle Scholar
Mackie, E. J. and Tucker, R. P. (1999). The tenascin-C knockout revisited. J Cell Sci 112 (Part 22), 3847–53.Google ScholarPubMed
Macleod, G. T., Dickens, P. A. and Bennett, M. R. (2001). Formation and function of synapses with respect to Schwann cells at the end of motor nerve terminal branches on mature amphibian (Bufo marinus) muscle. J Neurosci 21, 2380–92.CrossRefGoogle ScholarPubMed
Madrid, R. E., Jaros, E., Cullen, M. J. and Bradley, W. G. (1975). Genetically determined defect of Schwann cell basement membrane in dystrophic mouse. Nature 257, 319–21.CrossRefGoogle ScholarPubMed
Magda, P., Latov, N., Brannagan, T. H. III, Weimer, L. H., Chin, R. L. and Sander, H. W. (2003). Comparison of electrodiagnostic abnormalities and criteria in a cohort of patients with chronic inflammatory demyelinating polyneuropathy. Arch Neurol 60, 1755–9.CrossRefGoogle Scholar
Magyar, J. P., Martini, R., Ruelicke, T.et al. (1996). Impaired differentiation of Schwann cells in transgenic mice with increased PMP22 gene dosage. J Neurosci 16, 5351–60.CrossRefGoogle ScholarPubMed
Maier, M., Berger, P. and Suter, U. (2002). Understanding Schwann cell–neurone interactions: the key to Charcot–Marie–Tooth disease?J Anat 200, 357–66.CrossRefGoogle ScholarPubMed
Mancardi, G. L., Cadoni, A., Zicca, A.et al. (1988). HLA-DR Schwann cell reactivity in peripheral neuropathies of different origins. Neurology 38, 848–51.CrossRefGoogle ScholarPubMed
Mandich, P., Mancardi, G. L., Varese, A.et al. (1999). Congenital hypomyelination due to myelin protein zero Q215X mutation. Ann Neurol 45, 676–8.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Marchionni, M. A., Goodearl, A. D. J., Chen, M. S.et al. (1993). Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312–18.CrossRefGoogle Scholar
Marcus, J. and Popko, B. (2002). Galactolipids are molecular determinants of myelin development and axo-glial organization. BBA Gen Subjects 1573, 406–13.CrossRefGoogle ScholarPubMed
Maro, G. S., Vermeren, M., Voiculescu, O.et al. (2004). Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7, 930–8.CrossRefGoogle ScholarPubMed
Marques, W. Jr., Thomas, P. K., Sweeney, M. G., Carr, L. and Wood, N. W. (1998). Dejerine–Sottas neuropathy and PMP22 point mutations: a new base pair substitution and a possible ‘hot spot’ on Ser72. Ann Neurol 43, 680–3.CrossRefGoogle Scholar
Martin, J. R. and Suzuki, S. (1987). Inflammatory sensory polyradiculopathy and reactivated peripheral nervous system infection in a genital herpes model. J Neurol Sci 79, 155–71.CrossRefGoogle Scholar
Martin, S., Levine, A. K., Chen, Z. J., Ughrin, Y. and Levine, J. M. (2001). Deposition of the NG2 proteoglycan at nodes of Ranvier in the peripheral nervous system. J Neurosci 21, 8119–28.CrossRefGoogle ScholarPubMed
Martini, R., Schachner, M. and Faissner, A. (1990). Enhanced expression of the extracellular matrix molecule J1/tenascin in the regenerating adult mouse sciatic nerve. J Neurocytol 19, 601–16.CrossRefGoogle ScholarPubMed
Masaki, T., Matsumura, K., Saito, F.et al. (2000). Expression of dystroglycan and laminin-2 in peripheral nerve under axonal degeneration and regeneration. Acta Neuropathol (Berl) 99, 289–95.CrossRefGoogle ScholarPubMed
Masaki, T., Matsumura, K., Hirata, A.et al. (2002). Expression of dystroglycan and the laminin-alpha 2 chain in the rat peripheral nerve during development. Exp Neurol 174, 109–17.CrossRefGoogle ScholarPubMed
Massague, J., Andres, J., Attisano, L.et al. (1992). TGF-beta receptors. Mol Reprod Dev 32, 99–104.Google ScholarPubMed
Massicotte, C. and Scherer, S. (2004). Neuropathies – Translating Causes into Treatments. Waxman, S. G. (Ed.), Elsevier, Philadelphia, pp. 401–14.Google Scholar
Mata, M., Siegel, G. J., Hieber, V., Beaty, M. W. and Fink, D. J. (1991). Differential distribution of (Na,K)-ATPase alpha isoform mRNAs in the peripheral nervous system. Brain Res 546, 47–54.CrossRefGoogle ScholarPubMed
Mathey, E. K., Pollard, J. D. and Armati, P. J. (1999). TNF alpha, IFN gamma and IL-2 mRNA expression in CIDP sural nerve biopsies. J Neurol Sci 163, 47–52.CrossRefGoogle ScholarPubMed
Matsumoto, K., Sawa, H., Sato, M., Orba, Y., Nagashima, K. and Ariga, H. (2002). Distribution of extracellular matrix tenascin-X in sciatic nerves. Acta Neuropathol (Berl) 104, 448–54.Google ScholarPubMed
Maurel, P. and Salzer, J. L. (2000). Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. J Neurosci 20, 4635–45.CrossRefGoogle ScholarPubMed
Maurer, M., Toyka, K. V. and Gold, R. (2002). Cellular immunity in inflammatory autoimmune neuropathies. Rev Neurol (Paris) 158, S7–S15.Google ScholarPubMed
McCarty, J. H., Lacy-Hulbert, A., Charest, A. et al. (2004). Selective ablation of {alpha}v integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development.CrossRef
McCombe, P. A., Clark, P., Frith, J. A.et al. (1985). Alpha-1 antitrypsin phenotypes in demyelinating disease: an association between demyelinating disease and the allele PiM3. Ann Neurol 18, 514–16.CrossRefGoogle ScholarPubMed
McCombe, P. A., McManis, P. G., Frith, J. A., Pollard, J. D. and McLeod, J. G. (1987a). Chronic inflammatory demyelinating polyradiculoneuropathy associated with pregnancy. Ann Neurol 21, 102–4.CrossRefGoogle Scholar
McCombe, P. A., Pollard, J. D. and McLeod, J. G. (1987b). Chronic inflammatory demyelinating polyradiculoneuropathy. A clinical and electrophysiological study of 92 cases. Brain 110 (Part 6), 1617–30.CrossRefGoogle Scholar
McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K. and Palis, J. (1999). Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213, 442–56.CrossRefGoogle ScholarPubMed
McKhann, G. M., Cornblath, D. R., Ho, T.et al. (1991). Clinical and electrophysiological aspects of acute paralytic disease of children and young adults in northern China. Lancet 338, 593–7.CrossRefGoogle Scholar
McKhann, G. M., Cornblath, D., Griffin, J. W.et al. (1999). Acute motor axonal neuropathy – a frequent cause of acute flaccid paralysis in China. Ann Neurol 33, 333–42.CrossRefGoogle Scholar
McLennan, I. S. and Koishi, K. (2002). The transforming growth factor-betas: multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells. Int J Dev Biol 46, 559–67.Google ScholarPubMed
McLeod, J. G., Pollard, J. D., Macaskill, P., Mohamed, A., Spring, P. and Khurana, V. (1999). Prevalence of chronic inflammatory demyelinating polyneuropathy in New South Wales, Australia. Ann Neurol 46, 910–13.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
McMahan, U. J. (1990). The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55, 407–18.CrossRefGoogle ScholarPubMed
Medzhitov, R. and Janeway, C. Jr. (2000). Innate immunity. N Engl J Med 343, 338–44.CrossRefGoogle ScholarPubMed
Meier, C., Parmantier, E., Brennan, A., Mirsky, R. and Jessen, K. R. (1999). Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. J Neurosci 19, 3847–59.CrossRefGoogle ScholarPubMed
Meier, C., Dermietzel, R., Davidson, K. G. V., Yasumura, T. and Rash, J. E. (2004). Connexin32-containing gap junctions in Schwann cells at the internodal zone of partial myelin compaction and in Schmidt–Lanterman incisures. J Neurosci 24, 3186–98.CrossRefGoogle ScholarPubMed
Meintanis, S., Thomaidou, D., Jessen, K. R., Mirsky, R. and Matsas, R. (2001). The neuron-glia signal beta-neuregulin promotes Schwann cell motility via the MAPK pathway. Glia 34, 39–51.CrossRefGoogle ScholarPubMed
Melcangi, R. C., Cavarretta, I. T. R., Ballabio, M.et al. (2005). Peripheral nerves: a target for the action of neuroactive steroids. Brain Res Rev 48, 328–38.CrossRefGoogle ScholarPubMed
Melendez-Vasquez, C., Redford, J., Choudhary, P. P.et al. (1997). Immunological investigation of chronic inflammatory demyelinating polyradiculoneuropathy. J Neuroimmunol 73, 124–34.CrossRefGoogle ScholarPubMed
Melendez-Vasquez, C. V., Rios, J. C., Zanazzi, G., Lambert, S., Bretscher, A. and Salzer, J. L. (2001). Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)-positive Schwann cell processes. Proc Nat Acad Sci USA 98, 1235–40.CrossRefGoogle ScholarPubMed
Melendez-Vasquez, C. V., Einheber, S. and Salzer, J. L. (2004). Rho kinase regulates Schwann cell myelination and formation of associated axonal domains. J Neurosci 24, 3953–63.CrossRefGoogle ScholarPubMed
Menichella, D. M., Arroyo, E. J., Awatramani, R.et al. (2001). Protein zero is necessary for e-cadherin-mediated adherens junction formation in Schwann cells. Mol Cell Neurosci 18, 606–18.CrossRefGoogle ScholarPubMed
Menichella, D. M., Goodenough, D. A., Sirkowski, E., Scherer, S. S. and Paul, D. L. (2003). Connexins are critical for normal myelination in the CNS. J Neurosci 23, 5963–73.CrossRefGoogle ScholarPubMed
Metral, S., Raphael, J. C., Hort-Legrand, C. I. and Elkharrat, D. (1989). Serum demyelinating activity and Guillain–Barré syndrome: favorable effect of plasma exchange. Rev Neurol (Paris) 145, 312–19.Google ScholarPubMed
Mews, M. and Meyer, M. (1993). Modulation of Schwann cell phenotype by TGF-beta 1: inhibition of P0 mRNA expression and downregulation of the low affinity NGF receptor. Glia 8, 208–17.CrossRefGoogle ScholarPubMed
Meyer, D., Yamaai, T., Garratt, A.et al. (1997). Isoform-specific expression and function of neuregulin. Development 124, 3575–86.Google ScholarPubMed
Michailov, G. V., Sereda, M. W., Brinkmann, B. G.et al. (2004). Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–3.CrossRefGoogle ScholarPubMed
Miledi, R. and Slater, C. R. (1968). Electrophysiology and electron-microscopy of rat neuromuscular junctions after nerve degeneration. Proc R Soc Lond B Biol Sci 169, 289–306.CrossRefGoogle ScholarPubMed
Miledi, R. and Slater, C. R. (1970). On the degeneration of rat neuromuscular junctions after nerve section. J Physiol 207, 507–28.CrossRefGoogle ScholarPubMed
Miller, D. J., Njenga, M. K., Parisi, J. E. and Rodriguez, M. (1996). Multi-organ reactivity of a monoclonal natural autoantibody that promotes remyelination in a mouse model of multiple sclerosis. J Histochem Cytochem 44, 1005–11.CrossRefGoogle Scholar
Miller, K. E., Richards, B. A. and Kriebel, R. M. (2002). Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 945, 202–11.CrossRefGoogle ScholarPubMed
Milner, P., Lovelidge, C. A., Taylor, W. A. and Hughes, R. A. (1987). P0 myelin protein produces experimental allergic neuritis in Lewis rats. J Neurol Sci 79, 275–85.CrossRefGoogle ScholarPubMed
Milner, R., Wilby, M., Nishimura, S.et al. (1997). Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands. Dev Biol 185, 215–28.CrossRefGoogle ScholarPubMed
Miner, J. H. and Yurchenco, P. D. (2004). Laminin functions in tissue morphogenesis. Ann Rev Cell Dev Biol 20, 255–84.CrossRefGoogle ScholarPubMed
Mirsky, R. and Jessen, K. R. (1983). A cell surface protein of astrocytes, Ran-2, distinguishes non-myelin-forming Schwann cells from myelin-forming Schwann cells. Dev Neurosci 6, 304–16.CrossRefGoogle ScholarPubMed
Mirsky, R. and Jessen, K. R. (1999). The neurobiology of Schwann cells. Brain Pathol 9, 293–311.CrossRefGoogle ScholarPubMed
Mirsky, R. and Jessen, K. R. (2005). Molecular signaling in Schwann cell development. Dyck, P. J., Thomas, P. K. (Eds.) Peripheral Neuropathy, 4th Edn. Elsevier, Philadelphia, pp. 341–76.Google Scholar
Mirsky, R. and Jessen, K. R. (1996). Schwann cell development, differentiation and myelination. Curr Opin Neurobiol 6, 89–96.CrossRefGoogle ScholarPubMed
Mirsky, R., Stewart, H. J., Tabernero, A.et al. (1996). Development and differentiation of Schwann cells. Rev Neurol (Paris) 152, 308–13.Google ScholarPubMed
Mirsky, R., Parkinson, D. B., Dong, Z.et al. (2001). Regulation of genes involved in Schwann cell development and differentiation. Prog Brain Res 132, 3–11.CrossRefGoogle ScholarPubMed
Mithen, F. A., Colburn, S. and Birchem, R. (1990). Human alpha tumor necrosis factor does not damage cultures containing rat Schwann cells and sensory neurons. Neurosci Res 9, 59–63.CrossRefGoogle Scholar
Mithen, F. A., Ilyas, A. A., Birchem, R. and Cook, S. D. (1992). Effects of Guillain–Barré sera containing antibodies against glycolipids in cultures of rat Schwann cells and sensory neurons. J Neurol Sci 112, 223–32.CrossRefGoogle ScholarPubMed
Modlin, R. L. (2002). Learning from leprosy: insights into contemporary immunology from an ancient disease. Skin Pharmacol Appl Skin Physiol 15, 1–6.CrossRefGoogle ScholarPubMed
Mokuno, K., Sobue, G., Reddy, U. R.et al. (1988). Regulation of Schwann cell nerve growth factor receptor by cyclic adenosine 3′,5′-monophosphate. J Neurosci Res 21, 465–72.CrossRefGoogle ScholarPubMed
Mollaaghababa, R. and Pavan, W. J. (2003). The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene 22, 3024–34.CrossRefGoogle ScholarPubMed
Morgan, L., Jessen, K. R. and Mirsky, R. (1991). The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol 112, 457–67.CrossRefGoogle ScholarPubMed
Mori, K., Chano, T., Yamamoto, K., Matsusue, Y. and Okabe, H. (2004). Expression of macrophage inflammatory protein-1alpha in Schwann cell tumors. Neuropathology 24, 131–5.CrossRefGoogle ScholarPubMed
Morris, J. K., Lin, W., Hauser, C., Marchuk, Y., Getman, D. and Lee, K. F. (1999). Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 23, 273–83.CrossRefGoogle ScholarPubMed
Morrison, S. J., White, P. M., Zock, C. and Anderson, D. J. (1999). Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–49.CrossRefGoogle ScholarPubMed
Morrison, S. J., Perez, S. E., Qiao, Z.et al. (2000). Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101, 499–510.CrossRefGoogle ScholarPubMed
Morrissey, T. K., Levi, A. D. O., Nuijens, A., Sliwkowski, M. X. and Bunge, R. P. (1995). Axon-induced mitogenesis of human Schwann cells involves heregulin and p185erbB2. Proc Nat Acad Sci USA 92, 1431–5.CrossRefGoogle ScholarPubMed
Muntoni, F., Brockington, M., Torelli, S. and Brown, S. C. (2004). Defective glycosylation in congenital muscular dystrophies. Curr Opin Neurol 17, 205–9.CrossRefGoogle ScholarPubMed
Murata, K. and Dalakas, M. C. (2000). Expression of the co-stimulatory molecule BB-1, the ligands CTLA-4 and CD28 and their mRNAs in chronic inflammatory demyelinating polyneuropathy. Brain 123 (Part 8), 1660–6.CrossRefGoogle ScholarPubMed
Murnane, R. D., Ahern-Rindell, A. J. and Prieur, D. J. (1991). Ultrastructural lesions of ovine GM1 gangliosidosis. Mod Pathol 4, 755–62.Google ScholarPubMed
Murwani, R., Hodgkinson, S. and Armati, P. (1996). Tumor necrosis factor alpha and interleukin-6 mRNA expression in neonatal Lewis rat Schwann cells and a neonatal rat Schwann cell line following interferon gamma stimulation. J Neuroimmunol 71, 65–71.CrossRefGoogle Scholar
Musarella, M., Alcaraz, G., Caillol, G., Boudier, J. L., Couraud, F. and Autillo-Touati, A. (2006). Expression of Nav1.6 sodium channels by Schwann cells at neuromuscular junctions: role in the motor endplate disease phenotype. Glia 53, 13–23.CrossRefGoogle ScholarPubMed
Nacimiento, W., Schoen, S. W., Nacimiento, A. C. and Kreutzberg, G. W. (1991). Cytochemistry of 5′-nucleotidase in the superior cervical ganglion of cat and guinea pig. Brain Res 567, 283–9.CrossRefGoogle ScholarPubMed
Nagarajan, R., Svaren, J., Le, N., Araki, T., Watson, M. and Milbrandt, J. (2001). EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30, 355–68.CrossRefGoogle ScholarPubMed
Nakagawa, M., Miyagoe-Suzuki, Y., Ikezoe, K.et al. (2001a). Schwann cell myelination occurred without basal lamina formation in laminin alpha2 chain-null mutant (dy3K/dy3K) mice. Glia 35, 101–10.CrossRefGoogle Scholar
Nakagawa, M., Takashima, H., Umehara, F.et al. (2001b). Clinical phentoype in X-linked Charcot–Marie–Tooth disease with an entire deletion of the connexin 32 coding sequence. J Neurol Sci 185, 31–6.CrossRefGoogle Scholar
Nardelli, E., Bassi, A., Mazzi, G., Anzini, P. and Rizzuto, N. (1995). Systemic passive transfer studies using IgM monoclonal antibodies to sulfatide. J Neuroimmunol 63, 29–37.CrossRefGoogle ScholarPubMed
Navon, R., Seifried, B., Gal-On, N. S. and Sadeh, M. (1996). A new point mutation affecting the fourth transmembrane domain of PMP22 results in severe de novo Charcot–Marie–Tooth disease. Hum Genet 97, 685–7.CrossRefGoogle ScholarPubMed
Nedergaard, M., Ransom, B. and Goldman, S. A. (2003). New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26, 523–30.CrossRefGoogle Scholar
Nelis, E., Timmerman, V., Jonghe, P. and Broeckhoven, C. (1994). Identification of a 5′ splice site mutation in the PMP-22 gene in autosomal dominant Charcot–Marie–Tooth disease type 1. Hum Mol Genet 3, 515–16.CrossRefGoogle ScholarPubMed
Nelis, E., Broeckhoven, C., Jonghe, P.et al. (1996). Estimation of the mutation frequencies in Charcot–Marie–Tooth disease type 1 and hereditary neuropathy with liability to pressure palsies: a European collaborative study. Eur J Hum Genet 4, 25–33.CrossRefGoogle ScholarPubMed
Newman, E. A. and Volterra, A. (2004). Glial control of synaptic function. Glia 47, 207–8.CrossRefGoogle ScholarPubMed
Nguyen, Q. T., Sanes, J. R. and Lichtman, J. W. (2002). Pre-existing pathways promote precise projection patterns. Nat Neurosci 5, 861–7.CrossRefGoogle ScholarPubMed
Nicholson, G. and Corbett, A. (1996). Slowing of central conduction in X-linked Charcot–Marie–Tooth neuropathy shown by brain stem auditory evoked responses. J Neurol Neurosurg Psychiatry 61, 43–6.CrossRefGoogle ScholarPubMed
Nicholson, G. and Nash, J. (1993). Intermediate nerve conduction velocities define X-linked Charcot–Marie–Tooth neuropathy families. Neurology 43, 2558–64.CrossRefGoogle ScholarPubMed
Nicholson, G. A., Valentijn, L. J., Cherryson, A. K.et al. (1994). A frame shift mutation in the PMP22 gene in hereditary neuropathy with liability to pressure palsies. Nat Genet 6, 263–6.CrossRefGoogle ScholarPubMed
Nickols, J. C., Valentine, W., Kanwal, S. and Carter, B. D. (2003). Activation of the transcription factor NF-kappaB in Schwann cells is required for peripheral myelin formation. Nature Neuroscience 6, 161–7.CrossRefGoogle ScholarPubMed
Niessen, C. M., Cremona, O., Daams, H., Ferraresi, S., Sonnenberg, A.Marchisio, P. C. (1994). Expression of the integrin α6β4 in peripheral nerves: localization in Schwann and perineurial cells and different variants of the β4 subunit. J Cell Sci 107, 543–52.Google Scholar
Noakes, P. G. and Bennett, M. R. (1987). Growth of axons into developing muscles of the chick forelimb is preceded by cells that stain with Schwann cell antibodies. J Comp Neurol 259, 330–47.CrossRefGoogle ScholarPubMed
Noakes, P. G., Bennett, M. R. and Stratford, J. (1988). Migration of Schwann cells and axons into developing chick forelimb muscles following removal of either the neural tube or the neural crest. J Comp Neurol 277, 214–33.CrossRefGoogle ScholarPubMed
Nolano, M., Provitera, V., Crisci, C.et al. (2003). Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol 54, 197–205.CrossRefGoogle ScholarPubMed
Nyland, H., Matre, R. and Mork, S. (1981). Immunological characterization of sural nerve biopsies from patients with Guillain–Barré syndrome. Ann Neurol 9 (Suppl), 80–6.CrossRefGoogle ScholarPubMed
O'Hanlon, G. M., Plomp, J. J., Chakrabarti, M.et al. (2001). Anti-GQ1b ganglioside antibodies mediate complement-dependent destruction of the motor nerve terminal. Brain 124, 893–906.CrossRefGoogle ScholarPubMed
O'Malley, J. P., Waran, M. T. and Balice-Gordon, R. J. (1999). In vivo observations of terminal Schwann cells at normal, denervated, and reinnervated mouse neuromuscular junctions. J Neurobiol 38, 270–86.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
O'Reilly, M. S., Boehm, T., Shing, Y.et al. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–85.CrossRefGoogle ScholarPubMed
Occhi, S., Zambroni, d., Del Carro, U.et al. (2005). Both laminin and Schwann cell dystroglycan are necessary for proper clustering of sodium channels at nodes of Ranvier. Journal of Neuroscience. 25, 9418–27.CrossRefGoogle ScholarPubMed
Odenthal, U., Haehn, S., Tunggal, P.et al. (2004). Molecular analysis of laminin N-terminal domains mediating self-interactions. J Biol Chem 279, 44504–12.CrossRefGoogle ScholarPubMed
Oh, S., Ri, Y., Bennett, M. V., Trexler, E. B., Verselis, V. K. and Bargiello, T. A. (1997). Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot–Marie–Tooth disease. Neuron 19, 927–38.CrossRefGoogle ScholarPubMed
Oh, S. J., Kurokawa, K., Almeida, D. F., Ryan, H. F. Jr. and Claussen, G. C. (2003). Subacute inflammatory demyelinating polyneuropathy. Neurology 61, 1507–12.CrossRefGoogle ScholarPubMed
Oliveira, R. B., Ochoa, M. T., Sieling, P. A.et al. (2003). Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun 71, 1427–33.CrossRefGoogle ScholarPubMed
Oliveira, R. B., Sampaio, E. P., Aarestrup, F.et al. (2005). Cytokines and Mycobacterium leprae induce apoptosis in human Schwann cells. J Neuropathol Exp Neurol 64, 882–90.CrossRefGoogle ScholarPubMed
Olsson, T., Holmdahl, R., Klareskog, L. and Forsum, U. (1983). Ia-expressing cells and T lymphocytes of different subsets in peripheral nerve tissue during experimental allergic neuritis in Lewis rats. Scand J Immunol 18, 339–43.CrossRefGoogle Scholar
Omori, Y., Mesnil, M. and Yamasaki, H. (1996). Connexin 32 mutations from X-linked Charcot–Marie–Tooth disease patients: functional defects and dominant negative effects. Mol Biol Cell 7, 907–16.CrossRefGoogle ScholarPubMed
Oomes, P. G., Meche, F. G., Markus-Silvis, L., Meulstee, J. and Kleyweg, R. P. (1991). In vivo effects of sera from Guillain–Barré subgroups: an electrophysiological and histological study on rat nerves. Muscle Nerve 14, 1013–20.CrossRefGoogle ScholarPubMed
Orlikowski, D., Chazaud, B., Plonquet, A.et al. (2003). Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain–Barré syndrome and experimental autoimmune neuritis. J Neuroimmunol 134, 118–27.CrossRefGoogle ScholarPubMed
Ota, K., Irie, H. and Takahashi, K. (1987). T cell subsets and Ia-positive cells in the sciatic nerve during the course of experimental allergic neuritis. J Neuroimmunol 13, 283–92.CrossRefGoogle ScholarPubMed
Ottani, V., Martini, D., Franchi, M., Ruggeri, A. and Raspanti, M. (2002). Hierarchical structures in fibrillar collagens. Micron 33, 587–96.CrossRefGoogle ScholarPubMed
Otten, U., Ehrhard, P. and Peck, R. (1989). Nerve growth factor induces growth and differentiation of human B lymphocytes. Proc Nat Acad Sci USA 86, 10059–63.CrossRefGoogle ScholarPubMed
Palade, G. E. and Palay, S. L. (1954). Electron microscope observations of interneuronal and neuromuscular synapses. Anat Rec 118, 335–6.Google Scholar
Palm, S. L. and Furcht, L. T. (1983). Production of laminin and fibronectin by Schwannoma cells: cell–protein interactions in vitro and protein localization in peripheral nerve in vivo. J Cell Biol 96, 1218–26.CrossRefGoogle ScholarPubMed
Palumbo, C., Massa, R., Panico, M. B.et al. (2002). Peripheral nerve extracellular matrix remodeling in Charcot–Marie–Tooth type I disease. Acta Neuropathol (Berl) 104, 287–96.Google ScholarPubMed
Panas, M., Kalfakis, N., Karadimas, C. and Vassilopoulos, D. (2001). Episodes of generalized weakness in two sibs with the C164T mutation of the connexin 32 gene. Neurology 57, 1906–8.CrossRefGoogle ScholarPubMed
Paratore, C., Goerich, D. E., Suter, U., Wegner, M. and Sommer, L. (2001). Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128, 3949–61.Google ScholarPubMed
Pareek, S., Notterpek, L., Snipes, G. J.et al. (1997). Neurons promote the translocation of peripheral myelin protein 22 into myelin. J Neurosci 17, 7754–62.CrossRefGoogle ScholarPubMed
Pareyson, D., Taroni, F., Botti, S.et al. (2000). Cranial nerve involvement in CMT disease type 1 due to early growth response 2 gene mutation. Neurology 54, 1696–8.CrossRefGoogle ScholarPubMed
Parkinson, D. B., Dong, Z., Bunting, H.et al. (2001). Transforming growth factor beta (TGFbeta) mediates Schwann cell death in vitro and in vivo: examination of c-Jun activation, interactions with survival signals, and the relationship of TGFbeta-mediated death to Schwann cell differentiation. J Neurosci 21, 8572–85.CrossRefGoogle ScholarPubMed
Parkinson, D. B., Langner, K., Namini, S. S., Jessen, K. R. and Mirsky, R. (2002). beta-neuregulin and autocrine mediated survival of Schwann cells requires activity of Ets family transcription factors. Mol Cell Neurosci 20, 154–67.CrossRefGoogle ScholarPubMed
Parkinson, D. B., Bhaskaran, A., Droggiti, A.et al. (2004). Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J Cell Biol 164, 385–94.CrossRefGoogle ScholarPubMed
Parkinson, D. B., Bhaskaran, A., Mirsky, R. and Jessen, K. R. (2005) Regulation of the myelinating phenotype of Schwann cells by Krox-20. Medimond International Proc. VII Eur. Meeting on Glial Cell Function in Health and Disease. Amsterdam, pp. 139–43.
Parmantier, E., Lynn, B., Lawson, D.et al. (1999). Schwann cell-derived desert hedgehog controls the development of peripheral nerve sheaths. Neuron 23, 713–24.CrossRefGoogle ScholarPubMed
Patton, B. L. (2003). Basal lamina and the organization of neuromuscular synapses. J Neurocytol 32, 883–903.CrossRefGoogle ScholarPubMed
Patton, B. L., Miner, J. H., Chiu, A. Y. and Sanes, J. R. (1997). Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J Cell Biol 139, 1507–21.CrossRefGoogle ScholarPubMed
Patton, B. L., Chiu, A. Y. and Sanes, J. R. (1998). Synaptic laminin prevents glial entry into the synaptic cleft. Nature 393, 698–701.CrossRefGoogle ScholarPubMed
Paulson, H. L., Garbern, J. Y., Hoban, T. F.et al. (2002). Transient central nervous system white matter abnormality in X-linked Charcot–Marie–Tooth disease. Ann Neurol 52, 429–34.CrossRefGoogle ScholarPubMed
Pedrola, L., Espert, A., Wu, X., Claramunt, R., Shy, M. E. and Palau, F. (2005). GDAP1, the protein causing Charcot–Marie–Tooth disease type 4A, is expressed in neurons and is associated with mitochondria. Hum Mol Genet 14, 1087–94.CrossRefGoogle ScholarPubMed
Pelidou, S. H., Deretzi, G., Zou, L. P., Quiding, C. and Zhu, J. (1999). Inflammation and severe demyelination in the peripheral nervous system induced by the intraneural injection of recombinant mouse interleukin-12. Scand J Immunol 50, 39–44.CrossRefGoogle ScholarPubMed
Peltonen, J., Jaakkola, S., Hsiao, L. L., Timpl, R., Chu, M. L. and Uitto, J. (1990). Type VI collagen. In situ hybridizations and immunohistochemistry reveal abundant mRNA and protein levels in human neurofibroma, Schwannoma and normal peripheral nerve tissues. Lab Invest 62, 487–92.Google ScholarPubMed
Peng, H. B., Yang, J. F., Dai, Z.et al. (2003). Differential effects of neurotrophins and Schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 23, 5050–60.CrossRefGoogle ScholarPubMed
Pereira, R. A., Tscharke, D. C. and Simmons, A. (1994). Upregulation of class I major histocompatibility complex gene expression in primary sensory neurons, satellite cells, and Schwann cells of mice in response to acute but not latent herpes simplex virus infection in vivo. J Exp Med 180, 841–50.CrossRefGoogle Scholar
Pereira, R. M., Calegari-Silva, T. C., Hernandez, M. O.et al. (2005). Mycobacterium leprae induces NF-kappaB-dependent transcription repression in human Schwann cells. Biochem Biophys Res Commun 335, 20–6.CrossRefGoogle ScholarPubMed
Perrin, F. E., Lacroix, S., Viles-Trigueros, M. and David, S. (2005). Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain 128, 854–66.CrossRefGoogle ScholarPubMed
Personius, K. E. and Sawyer, R. P. (2005). Terminal Schwann cell structure is altered in diaphragm of mdx mice. Muscle Nerve 32, 656–63.CrossRefGoogle ScholarPubMed
Pfrieger, F. W. and Barres, B. A. (1997). Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–7.CrossRefGoogle ScholarPubMed
Pietri, T., Eder, O., Breau, M. A.et al. (2004). Conditional beta 1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system. Development 131, 3871–83.CrossRefGoogle Scholar
Pingault, V., Guiochon-Mantel, A., Bondurand, N.et al. (2000). Peripheral neuropathy with hypomyelination, chronic intestinal pseudo-obstruction and deafness: a developmental ‘neural crest syndrome’ related to a SOX10 mutation. Ann Neurol 48, 671–6.3.0.CO;2-8>CrossRefGoogle Scholar
Plante-Bordeneuve, V., Guiochon-Mantel, A., Lacroix, C., Lapresle, J. and Said, G. (1999). The Roussy–Levy family: from the original description to the gene. Ann Neurol 46, 770–3.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Plomp, J. J., Molenaar, P. C., O'Hanlon, G. M.et al. (1999). Miller–Fisher anti-GQ1b antibodies: alpha-latrotoxin-like effects on motor end plates. Ann Neurol 45, 189–99.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Podratz, J. L., Rodriguez, E. H., Di Nonno, E. S. and Windebank, A. J. (1998). Myelination by Schwann cells in the absence of extracellular matrix assembly. Glia 23, 383–8.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Podratz, J. L., Rodriguez, E. and Windebank, A. J. (2001). Role of the extracellular matrix in myelination of peripheral nerve. Glia 35, 35–40.CrossRefGoogle ScholarPubMed
Podratz, J. L., Rodriguez, E. H. and Windebank, A. J. (2004). Antioxidants are necessary for myelination of dorsal root ganglion neurons, in vitro. Glia 45, 54–8.CrossRefGoogle ScholarPubMed
Poliak, S. and Peles, E. (2003). The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4, 968–80.CrossRefGoogle ScholarPubMed
Poliak, S., Salomon, S., Elhanany, H.et al. (2003). Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol 162, 1149–60.CrossRefGoogle ScholarPubMed
Pollard, J. D. (1994). Chronic inflammatory demyelinating polyradiculoneuropathy. Baillieres Clin Neurol 3, 107–27.Google ScholarPubMed
Pollard, J. D. (2002). Chronic inflammatory demyelinating polyradiculoneuropathy. Curr Opin Neurol 15, 279–83.CrossRefGoogle ScholarPubMed
Pollard, J. D., McLeod, J. G., Gatenby, P. and Kronenberg, H. (1983). Prediction of response to plasma exchange in chronic relapsing polyneuropathy. A clinico-pathological correlation. J Neurol Sci 58, 269–87.CrossRefGoogle ScholarPubMed
Pollard, J. D., McCombe, P. A., Baverstock, J., Gatenby, P. A. and McLeod, J. G. (1986). Class II antigen expression and T lymphocyte subsets in chronic inflammatory demyelinating polyneuropathy. J Neuroimmunol 13, 123–34.CrossRefGoogle Scholar
Pollard, J. D., Baverstock, J. and McLeod, J. G. (1987). Class II antigen expression and inflammatory cells in the Guillain–Barré syndrome. Ann Neurol 21, 337–41.CrossRefGoogle ScholarPubMed
Pollard, J. D., Westland, K. W., Harvey, G. K.et al. (1995). Activated T cells of nonneural specificity open the blood–nerve barrier to circulating antibody. Ann Neurol 37, 467–75.CrossRefGoogle ScholarPubMed
Polydefkis, M., Yiannoutsos, C. T., Cohen, B. A.et al. (2002). Reduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy. Neurology 58, 115–19.CrossRefGoogle ScholarPubMed
Popko, B., Corbin, J. G., Baerwald, K. D., Dupree, J. and Garcia, A. M. (1997). The effects of interferon-gamma on the central nervous system. Mol Neurobiol 14, 19–35.CrossRefGoogle ScholarPubMed
Powell, H. C., Braheny, S. L., Hughes, R. A. and Lampert, P. W. (1984). Antigen-specific demyelination and significance of the bystander effect in peripheral nerves. Am J Pathol 114, 443–53.Google ScholarPubMed
Previtali, S. C., Feltri, M. L., Archelos, J. J., Quattrini, A., Wrabetz, L. and Hartung, H. (2001). Role of integrins in the peripheral nervous system. Prog Neurobiol 64, 35–49.CrossRefGoogle ScholarPubMed
Previtali, S. C., Nodari, A., Taveggia, C.et al. (2003a). Expression of laminin receptors in Schwann cell differentiation: evidence for distinct roles. J Neurosci 23, 5520–30.CrossRefGoogle Scholar
Previtali, S. C., Dina, G., Nodari, A.et al. (2003b). Schwann cells synthesize alpha7beta1 integrin which is dispensable for peripheral nerve development and myelination. Mol Cell Neurosci 23, 210–18.CrossRefGoogle Scholar
Prineas, J. W. (1971a). Demyelination and remyelination in recurrent idiopathic polyneuropathy. An electron microscope study. Acta Neuropathol (Berl) 18, 34–57.CrossRefGoogle Scholar
Prineas, J. W. (1971b). Ultrastructural changes in the peripheral nerves in experimental dying-back polyneuropathies. Proc Aust Assoc Neurol 8, 121–3.Google Scholar
Prineas, J. W. (1972). Acute idiopathic polyneuritis. An electron microscope study. Lab Invest 26, 133–47.Google ScholarPubMed
Prineas, J. W. (1981). Pathology of the Guillain–Barré syndrome. Ann Neurol 9 (Suppl), 6–19.CrossRefGoogle ScholarPubMed
Prineas, J. W. and McLeod, J. G. (1976). Chronic relapsing polyneuritis. J Neurol Sci 27, 427–58.CrossRefGoogle ScholarPubMed
Pritchard, J. and Hughes, R. A. (2004). Guillain–Barré syndrome. Lancet 363, 2186–8.CrossRefGoogle ScholarPubMed
Pritchard, J., Hayday, A. C., Gregson, N. A. and Hughes, R. A. C. (2004). Alterations in Circulating T Cell Populations in Guillain–Barré Syndrome. 31. 2004.
Probert, L., Akassoglou, K., Pasparakis, M., Kontogeorgos, G. and Kollias, G. (1995). Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Nat Acad Sci USA 92, 11294–8.CrossRefGoogle ScholarPubMed
Probstmeier, R., Nellen, J., Gloor, S., Wernig, A. and Pesheva, P. (2001). Tenascin-R is expressed by Schwann cells in the peripheral nervous system. J Neurosci Res 64, 70–8.CrossRefGoogle ScholarPubMed
Purves, D. and Lichtman, J. W. (1985). Principles of Neural Development. Sinauer Associates, Sunderland, Mass.Google Scholar
Quijano-Roy, S., Renault, F., Romero, N., Guicheney, P., Fardeau, M. and Estournet, B. (2004). EMG and nerve conduction studies in children with congenital muscular dystrophy. Muscle Nerve 29, 292–9.CrossRefGoogle ScholarPubMed
Rabadan-Diehl, C., Dahl, G. and Werner, R. (1994). A connexin-32 mutation associated with Charcot–Marie–Tooth disease does not affect channel formation in oocytes. FEBS Lett 351, 90–4.CrossRefGoogle Scholar
Raeymaekers, P., Timmerman, V., Nelis, E.et al. (1991). Duplication in chromosome 17p11.2 in Charcot–Marie–Tooth neuropathy type 1a (CMT 1a). The HMSN Collaborative Research Group. Neuromuscul Disord 1, 93–7.CrossRefGoogle ScholarPubMed
Ragozzino, D., Renzi, M., Giovannelli, A. and Eusebi, F. (2002). Stimulation of chemokine CXC receptor 4 induces synaptic depression of evoked parallel fibers inputs onto Purkinje neurons in mouse cerebellum. J Neuroimmunol 127, 30–6.CrossRefGoogle ScholarPubMed
Raine, C. S. and Cross, A. H. (1989). Axonal dystrophy as a consequence of long-term demyelination. Lab Invest 60, 714–25.Google ScholarPubMed
Ranvier, L. (1878). Lecons sur l'Histologies du Systeme Nerveux. Savy 2, Paris.Google Scholar
Raphael, J. C., Chevret, S., Hughes, R. A. and Annane, D. (2002). Plasma exchange for Guillain–Barré syndrome. Cochrane Database Syst Rev CD001798.CrossRefGoogle ScholarPubMed
Rasband, M. N. (2004). It's ‘juxta’ potassium channel!J Neurosci Res 76, 749–57.CrossRefGoogle ScholarPubMed
Rasband, M. N., Park, E. W., Zhen, D.et al. (2002). Clustering of neuronal potassium channels is independent of their interaction with PSD-95. J Cell Biol 159, 663–72.CrossRefGoogle ScholarPubMed
Reddy, L. V., Koirala, S., Sugiura, Y., Herrera, A. A. and Ko, C. P. (2003). Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo. Neuron 40, 563–80.CrossRefGoogle ScholarPubMed
Redford, E. J., Hall, S. M. and Smith, K. J. (1995). Vascular changes and demyelination induced by the intraneural injection of tumour necrosis factor. Brain 118 (Part 4), 869–78.CrossRefGoogle ScholarPubMed
Redford, E. J., Smith, K. J., Gregson, N. A.et al. (1997). A combined inhibitor of matrix metalloproteinase activity and tumour necrosis factor-alpha processing attenuates experimental autoimmune neuritis. Brain 120 (Part 10), 1895–1905.CrossRefGoogle ScholarPubMed
Reger, J. F. (1955). Electron microscopy of the motor end-plate in rat intercostal muscle. Anat Rec 122, 1–15.CrossRefGoogle ScholarPubMed
Reichert, F., Levitzky, R. and Rotshenker, S. (1996). Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 8, 530–5.CrossRefGoogle ScholarPubMed
Reist, N. E. and Smith, S. J. (1992). Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction. Proc Nat Acad Sci USA 89, 7625–9.CrossRefGoogle ScholarPubMed
Rentier, B., Piette, J., Baudoux, L.et al. (1996). Lessons to be learned from varicella-zoster virus. Vet Microbiol 53, 55–66.CrossRefGoogle ScholarPubMed
Reynolds, M. L. and Woolf, C. J. (1992). Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. J Neurocytol 21, 50–66.CrossRefGoogle ScholarPubMed
Rezajooi, K., Pavlides, M., Winterbottom, J.et al. (2004). NG2 proteoglycan expression in the peripheral nervous system: upregulation following injury and comparison with CNS lesions. Mol Cell Neurosci 25, 572–84.CrossRefGoogle ScholarPubMed
Rich, M. M. and Pinter, M. J. (2001). Sodium channel inactivation in an animal model of acute quadriplegic myopathy. Ann Neurol 50, 26–33.CrossRefGoogle Scholar
Rich, M. M., Pinter, M. J., Kraner, S. D. and Barchi, R. L. (1998). Loss of electrical excitability in an animal model of acute quadriplegic myopathy. Ann Neurol 43, 171–9.CrossRefGoogle Scholar
Ridley, A. J., Davis, J. B., Stroobant, P. and Land, H. (1989). Transforming growth factors-beta 1 and beta 2 are mitogens for rat Schwann cells. J Cell Biol 109, 3419–24.CrossRefGoogle ScholarPubMed
Rieger, F., Daniloff, J. K., Pincon-Raymond, M., Crossin, K. L., Grumet, M. and Edelman, G. M. (1986). Neuronal cell adhesion molecules and cytotactin are colocalized at the node of Ranvier. J Cell Biol 103, 379–91.CrossRefGoogle ScholarPubMed
Riethmacher, D., Sonnenberg-Riethmacher, E., Brinkmann, V., Yamaai, T., Lewin, G. R. and Birchmeier, C. (1997). Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389, 725–30.CrossRefGoogle Scholar
Rimer, M., Prieto, A. L., Weber, J. L.et al. (2004). Neuregulin-2 is synthesized by motor neurons and terminal Schwann cells and activates acetylcholine receptor transcription in muscle cells expressing ErbB4. Mol Cell Neurosci 26, 271–81.CrossRefGoogle ScholarPubMed
Rios, J. C., Rubin, M., Martin, M. S.et al. (2003). Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J Neurosci 23, 7001–11.CrossRefGoogle ScholarPubMed
Ritz, M. F., Lechner-Scott, J., Scott, R. J.et al. (2000). Characterisation of autoantibodies to peripheral myelin protein 22 in patients with hereditary and acquired neuropathies. J Neuroimmunol 104, 155–63.CrossRefGoogle ScholarPubMed
Rizvi, T. A., Huang, Y., Sidani, A.et al. (2002). A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J Neurosci 22, 9831–40.CrossRefGoogle ScholarPubMed
Roa, B. B., Garcia, C. A., Suter, U.et al. (1993a). Charcot–Marie–Tooth disease type 1A. Association with a spontaneous point mutation in the PMP22 gene. N Engl J Med 329, 96–101.CrossRefGoogle Scholar
Roa, B. B., Garcia, C. A., Pentao, L.et al. (1993b). Evidence for a recessive PMP22 point mutation in Charcot–Marie–Tooth disease type 1A. Nat Genet 5, 189–94.CrossRefGoogle Scholar
Roa, B. B., Dyck, P. J., Marks, H. G., Chance, P. F. and Lupski, J. R. (1993c). Dejerine–Sottas syndrome associated with point mutation in the peripheral myelin protein 22 (PMP22) gene. Nat Genet 5, 269–73.CrossRefGoogle Scholar
Robbins, N. and Polak, J. (1988). Filopodia, lamellipodia and retractions at mouse neuromuscular junctions. J Neurocytol 17, 545–61.CrossRefGoogle ScholarPubMed
Roberts, A. B. and Sporn, M. B. (1993). Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8, 1–9.CrossRefGoogle Scholar
Robertson, J. D. (1956). The ultrastructure of a reptilian myoneural junction. J Biophys Biochem Cytol 2, 381–94.CrossRefGoogle ScholarPubMed
Robitaille, R. (1995). Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction. J Neurosci 15, 7121–31.CrossRefGoogle ScholarPubMed
Robitaille, R. (1998). Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21, 847–55.CrossRefGoogle ScholarPubMed
Robitaille, R., Bourque, M. J. and Vandaele, S. (1996). Localization of L-type Ca2+ channels at perisynaptic glial cells of the frog neuromuscular junction. J Neurosci 16, 148–58.CrossRefGoogle ScholarPubMed
Robitaille, R., Jahromi, B. S. and Charlton, M. P. (1997). Muscarinic Ca2+ responses resistant to muscarinic antagonists at perisynaptic Schwann cells of the frog neuromuscular junction. J Physiol 504 (Part 2), 337–47.CrossRefGoogle ScholarPubMed
Rochon, D., Rousse, I. and Robitaille, R. (2001). Synapse–glia interactions at the mammalian neuromuscular junction. J Neurosci 21, 3819–29.CrossRefGoogle ScholarPubMed
Rogers, T., Chandler, D., Angelicheva, D.et al. (2000). A novel locus for autosomal recessive peripheral neuropathy in the EGR2 region on 10q23. Am J Hum Genet 67, 664–71.CrossRefGoogle ScholarPubMed
Rosen, J. L., Brown, M. J. and Rostami, A. (1992). Evolution of the cellular response in P2-induced experimental allergic neuritis. Pathobiology 60, 108–12.CrossRefGoogle ScholarPubMed
Rosenbluth, J., Dupree, J. L. and Popko, B. (2003). Nodal sodium channel domain integrity depends on the conformation of the paranodal junction, not on the presence of transverse bands. Glia 41, 318–25.CrossRefGoogle Scholar
Rossi, D. and Zlotnik, A. (2000). The biology of chemokines and their receptors. Ann Rev Immunol 18, 217–42.CrossRefGoogle ScholarPubMed
Rostami, A., Burns, J. B., Brown, M. J.et al. (1985). Transfer of experimental allergic neuritis with P2-reactive T-cell lines. Cell Immunol 91, 354–61.CrossRefGoogle ScholarPubMed
Rostami, A., Gregorian, S. K., Brown, M. J. and Pleasure, D. E. (1990). Induction of severe experimental autoimmune neuritis with a synthetic peptide corresponding to the 53–78 amino acid sequence of the myelin P2 protein. J Neuroimmunol 30, 145–51.CrossRefGoogle ScholarPubMed
Rothblum, K., Stahl, R. C. and Carey, D. J. (2004). Constitutive release of alpha4 type V collagen N-terminal domain by Schwann cells and binding to cell surface and extracellular matrix heparan sulfate proteoglycans. J Biol Chem 279, 51282–8.CrossRefGoogle ScholarPubMed
Rothe, F., Langnaese, K. and Wolf, G. (2005). New aspects of the location of neuronal nitric oxide synthase in the skeletal muscle: a light and electron microscopic study. Nitric Oxide 13, 21–35.CrossRefGoogle ScholarPubMed
Rudel, C. and Rohrer, H. (1992). Analysis of glia cell differentiation in the developing chick peripheral nervous system: sensory and sympathetic satellite cells express different cell surface antigens. Development 115, 519–26.Google ScholarPubMed
Rufer, M., Flanders, K. and Unsicker, K. (1994). Presence and regulation of transforming growth factor beta mRNA and protein in the normal and lesioned rat sciatic nerve. J Neurosci Res 39, 412–23.CrossRefGoogle ScholarPubMed
Rungby, J. (1986). Exogenous silver in dorsal root ganglia, peripheral nerve, enteric ganglia, and adrenal medulla. Acta Neuropathol (Berl) 69, 45–53.CrossRefGoogle ScholarPubMed
Russell, J. W., Gill, J. S., Sorenson, E. J., Schultz, D. A. and Windebank, A. J. (2001). Suramin-induced neuropathy in an animal model. J Neurol Sci 192, 71–80.CrossRefGoogle Scholar
Rutkowski, J. L., Kirk, C. J., Lerner, M. A. and Tennekoon, G. I. (1995). Purification and expansion of human Schwann cells in vitro. Nat Med 1, 80–3.CrossRefGoogle ScholarPubMed
Rutkowski, J. L., Tuite, G. F., Lincoln, P. M., Boyer, P. J., Tennekoon, G. I. and Kunkel, S. L. (1999). Signals for proinflammatory cytokine secretion by human Schwann cells. J Neuroimmunol 101, 47–60.CrossRefGoogle ScholarPubMed
Sahenk, Z., Chen, L. and Mendell, J. R. (1999). Effects of PMP22 duplication and deletions on the axonal cytoskeleton. Ann Neurol 45, 16–24.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Sahenk, Z. (1999). Abnormal Schwann cell–axon interactions in CMT neuropathies. The effects of mutant Schwann cells on the axonal cytoskeleton and regeneration-associated myelination. Ann NY Acad Sci 883, 415–26.CrossRefGoogle ScholarPubMed
Said, G., Goulon-Goeau, C., Lacroix, C. and Moulonguet, A. (1994). Nerve biopsy findings in different patterns of proximal diabetic neuropathy. Ann Neurol 35, 559–69.CrossRefGoogle ScholarPubMed
Saida, K., Saida, T., Brown, M. J., Silberberg, D. H. and Asbury, A. K. (1978a). Antiserum-mediated demyelination in vivo: a sequential study using intraneural injection of experimental allergic neuritis serum. Lab Invest 39, 449–62.Google Scholar
Saida, T., Saida, K., Silberberg, D. H. and Brown, M. J. (1978b). Transfer of demyelination by intraneural injection of experimental allergic neuritis serum. Nature 272, 639–41.CrossRefGoogle Scholar
Saida, T., Saida, K., Dorfman, S. H.et al. (1979a). Experimental allergic neuritis induced by sensitization with galactocerebroside. Science 204, 1103–6.CrossRefGoogle Scholar
Saida, T., Saida, K., Brown, M. J. and Silberberg, D. H. (1979b). Peripheral nerve demyelination induced by intraneural injection of experimental allergic encephalomyelitis serum. J Neuropathol Exp Neurol 38, 498–518.CrossRefGoogle Scholar
Saida, T., Saida, K., Silberberg, D. H. and Brown, M. J. (1981). Experimental allergic neuritis induced by galactocerebroside. Ann Neurol 9 (Suppl), 87–101.CrossRefGoogle ScholarPubMed
Saida, T., Saida, K., Lisak, R. P., Brown, M. J., Silberberg, D. H. and Asbury, A. K. (1982). In vivo demyelinating activity of sera from patients with Guillain–Barré syndrome. Ann Neurol 11, 69–75.CrossRefGoogle ScholarPubMed
Saito, A. and Zacks, S. I. (1969). Ultrastructure of Schwann and perineural sheaths at the mouse neuromuscular junction. Anat Rec 164, 379–90.CrossRefGoogle ScholarPubMed
Saito, F., Masaki, T., Kamakura, K.et al. (1999). Characterization of the transmembrane molecular architecture of the dystroglycan complex in Schwann cells. J Biol Chem 274, 8240–6.CrossRefGoogle ScholarPubMed
Saito, F., Moore, S. A., Barresi, R.et al. (2003). Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 38, 747–58.CrossRefGoogle ScholarPubMed
Salloway, S., Mermel, L. A., Seamans, M.et al. (1996). Miller–Fisher syndrome associated with Campylobacter jejuni bearing lipopolysaccharide molecules that mimic human ganglioside GD3. Infect Immun 64, 2945–9.Google ScholarPubMed
Salpeter, M. M. (1987). The Vertebrate Neuromuscular Junction. A. R. Liss, New York.Google Scholar
Salzer, J. L. (2003). Polarized domains of myelinated axons. Neuron 40, 297–318.CrossRefGoogle ScholarPubMed
Salzer, J. L., Williams, A. K., Glaser, L., Bunge, R. P. (1980). Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J Cell Biol 84, 753–66.CrossRefGoogle ScholarPubMed
Salzer, J. L., Lovejoy, L., Linder, M. C. and Rosen, C. (1998). Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin. J Neurosci Res 54, 147–57.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Samii, A., Unger, J. and Lange, W. (1999). Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 262, 159–62.CrossRefGoogle ScholarPubMed
Samuel, N. M., Jessen, K. R., Grange, J. M. and Mirsky, R. (1987a). Gamma interferon, but not Mycobacterium leprae, induces major histocompatibility class II antigens on cultured rat Schwann cells. J Neurocytol 16, 281–7.CrossRefGoogle Scholar
Samuel, N. M., Mirsky, R., Grange, J. M. and Jessen, K. R. (1987b). Expression of major histocompatibility complex class I and class II antigens in human Schwann cell cultures and effects of infection with Mycobacterium leprae. Clin Exp Immunol 68, 500–9.Google Scholar
Sancho, S., Magyar, J. P., Aguzzi, A. and Suter, U (1999). Distal axonopathy in peripheral nerves of PMP22-mutant mice. Brain 122 (Part 8), 1563–77.CrossRefGoogle ScholarPubMed
Sanes, J. R. and Lichtman, J. W. (1999). Development of the vertebrate neuromuscular junction. Ann Rev Neurosci 22, 389–442.CrossRefGoogle ScholarPubMed
Sanes, J. R., Schachner, M. and Covault, J. (1986). Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J Cell Biol 102, 420–31.CrossRefGoogle Scholar
Sanes, J. R., Engvall, E., Butkowski, R. and Hunter, D. D. (1990). Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J Cell Biol 111, 1685–99.CrossRefGoogle ScholarPubMed
Sawant-Mane, S., Clark, M. B. and Koski, C. L. (1991). In vitro demyelination by serum antibody from patients with Guillain–Barré syndrome requires terminal complement complexes. Ann Neurol 29, 397–404.CrossRefGoogle ScholarPubMed
Sawant-Mane, S., Estep, A. III and Koski, C. L. (1994). Antibody of patients with Guillain–Barré syndrome mediates complement-dependent cytolysis of rat Schwann cells: susceptibility to cytolysis reflects Schwann cell phenotype. J Neuroimmunol 49, 145–52.CrossRefGoogle ScholarPubMed
Scarpini, E., Lisak, R., Beretta, S. et al. (1989). Type II major histocompatibility antigens on normal and pathological human nerves. Scarpini, E (Ed.) Peripheral Nerve Development and Regneration: Recent Advances and Clinical Applications. Livinia Press, Padova, pp. 189–92.Google Scholar
Scarpini, E., Lisak, R. P., Beretta, S.et al. (1990). Quantitative assessment of class II molecules in normal and pathological nerves. Immunocytochemical studies in vivo and in tissue culture. Brain 113 (Part 3), 659–75.CrossRefGoogle ScholarPubMed
Schafer, D. P., Bansal, R., Hedstrom, K. L., Pfeiffer, S. E. and Rasband, M. N. (2004). Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts?J Neurosci 24, 3176–85.CrossRefGoogle ScholarPubMed
Scherer, S. (1999). Axonal pathology in demyelinating diseases. Ann Neurol 45, 6–7.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Scherer, S. S. (1997). The biology and pathobiology of Schwann cells. Curr Opin Neurol 10, 386–97.CrossRefGoogle ScholarPubMed
Scherer, S. S. and Salzer, J. L. (1996). Axon–Schwann cell interactions during perpheral nerve degeneration and regeneration. Jessen, K. R., Richardson, W. D. (Eds.) Glial Cell Development: Basic Principles and Clinical Relevance. Bios Scientific Publisher Ltd, Oxford, UK, pp. 165–96.Google Scholar
Scherer, S. S. and Arroyo, E. J. (2002). Recent progress on the molecular organization of myelinated axons. J Peripher Nerv Syst 7, 1–12.CrossRefGoogle ScholarPubMed
Scherer, S. S., Arroyo, E. J. and Peles, E. (2004). Functional organization of the nodes of Ranvier. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, San Diego, pp. 89–116.Google Scholar
Scherer, S. S. and Kleopa, K. (2005). X-linked Charcot–Marie–Tooth disease. Dyck, P.J. (Ed.) Peripheral Neuropathy, 4th Edn. Elsevier, Saunders, Philadelphia, pp. 1791–805.Google Scholar
Scherer, S. S. and Salzer, J. L. (2001). Axon–Schwann cell interactions during peripheral nerve degeneration and regeneration. Jessen, K. R., Richardson, W. D. (Eds.) Glial Cell Development, 2nd Edn. Oxford University Press, Oxford.Google Scholar
Scherer, S. S., Kamholz, J. and Jakowlew, S. B. (1993). Axons modulate the expression of transforming growth factor-betas in Schwann cells. Glia 8, 265–76.CrossRefGoogle ScholarPubMed
Scherer, S. S., Wang, D. Y., Kuhn, R., Lemke, G., Wrabetz, L. and Kamholz, J. (1994). Axons regulate Schwann cell expression of the POU transcription factor SCIP. J Neurosci 14, 1930–42.CrossRefGoogle ScholarPubMed
Scherer, S. S., Xu, Y. T., Bannerman, P. G., Sherman, D. L. and Brophy, P. J. (1995). Periaxin expression in myelinating Schwann cells: modulation by axon–glial interactions and polarized localization during development. Development 121, 4265–73.Google ScholarPubMed
Scherer, S. S., Xu, Y. T., Nelles, E., Fischbeck, K., Willecke, K. and Bone, L. J. (1998). Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 24, 8–20.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Schmid, R. S., McGrath, B., Berechid, B. E.et al. (2003). Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Nat Acad Sci USA 100, 4251–6.CrossRefGoogle ScholarPubMed
Schmidbauer, M., Budka, H., Pilz, P., Kurata, T. and Hondo, R. (1992). Presence, distribution and spread of productive varicella zoster virus infection in nervous tissues. Brain 115 (Part 2), 383–98.CrossRefGoogle ScholarPubMed
Schmidt, B., Stoll, G., Hartung, H. P., Heininger, K., Schafer, B. and Toyka, K. V. (1990). Macrophages but not Schwann cells express Ia antigen in experimental autoimmune neuritis. Ann Neurol 28, 70–7.CrossRefGoogle Scholar
Schmidt, B., Toyka, K. V., Kiefer, R., Full, J., Hartung, H. P. and Pollard, J. (1996). Inflammatory infiltrates in sural nerve biopsies in Guillain–Barré syndrome and chronic inflammatory demyelinating neuropathy. Muscle Nerve 19, 474–87.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Schnaar, R. L. (2004). Glycolipid-mediated cell–cell recognition in inflammation and nerve regeneration. Arch Biochem Biophys 426, 163–72.CrossRefGoogle ScholarPubMed
Schneider-Schaulies, J., Kirchhoff, F., Archelos, J. and Schachner, M. (1991). Down-regulation of myelin-associated glycoprotein on Schwann cells by interferon-gamma and tumor necrosis factor-alpha affects neurite outgrowth. Neuron 7, 995–1005.CrossRefGoogle ScholarPubMed
Schneider, C., Wicht, H., Enderich, J., Wegner, M. and Rohrer, H. (1999). Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24, 861–70.CrossRefGoogle ScholarPubMed
Schneider, S., Bosse, F., D'Urso, D.et al. (2001). The AN2 protein is a novel marker for the Schwann cell lineage expressed by immature and nonmyelinating Schwann cells. J Neurosci 21, 920–33.CrossRefGoogle ScholarPubMed
Schroder, J. M., Ceuterick, C. M. J. J., DeJonghe, P. et al. (2001). Separation of terminal myelin loops from axons in periaxin neuropathy (CNT4F). European Charcot–Marie–Tooth Consortium Annual Symposium, Antwerp, Belgium.
Schubert, D. (1992). Synergistic interactions between transforming growth factor beta and fibroblast growth factor regulate Schwann cell mitosis. J Neurobiol 23, 143–8.CrossRefGoogle ScholarPubMed
Schuster, N., Bender, H., Rossler, O. G.et al. (2003). Transforming growth factor-beta and tumor necrosis factor-alpha cooperate to induce apoptosis in the oligodendroglial cell line OLI-neu. J Neurosci Res 73, 324–33.CrossRefGoogle ScholarPubMed
Selmaj, K. and Raine, C. S. (1988). Tumor necrosis factor mediates myelin damage in organotypic cultures of nervous tissue. Ann NY Acad Sci 540, 568–70.CrossRefGoogle ScholarPubMed
Selmaj, K., Raine, C. S., Farooq, M., Norton, W. T. and Brosnan, C. F. (1991a). Cytokine cytotoxicity against oligodendrocytes. Apoptosis induced by lymphotoxin. J Immunol 147, 1522–9.Google Scholar
Selmaj, K., Cross, A. H., Farooq, M., Brosnan, C. F. and Raine, C. S. (1991b). Non-specific oligodendrocyte cytotoxicity mediated by soluble products of activated T cell lines. J Neuroimmunol 35, 261–71.CrossRefGoogle Scholar
Semenenko, F. M., Sidebottom, E. and Cuello, A. C. (1987). A monoclonal antibody against a novel intracellular neural antigen expressed differentially in neural cell types. J Neuroimmunol 13, 243–58.CrossRefGoogle ScholarPubMed
Senderek, J., Bergmann, C., Weber, S.et al. (2003). Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot–Marie–Tooth neuropathy type 4B2/11p15. Hum Mol Genet 12, 349–56.CrossRefGoogle ScholarPubMed
Sereda, M., Griffiths, I., Puhlhofer, A.et al. (1996). A transgenic rat model of Charcot–Marie–Tooth disease. Neuron 16, 1049–60.CrossRefGoogle ScholarPubMed
Sereda, M. W., Horste, G. M. Z., Suter, U., Uzma, N. and Nave, K. A. (2003). Therapeutic administration of progesterone antagonist in a model of Charcot–Marie–Tooth disease (CMT-1A). Nat Med 9, 1533–7.CrossRefGoogle Scholar
Setoguchi, R., Hori, S., Takahashi, T. and Sakaguchi, S. (2005). Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201, 723–35.CrossRefGoogle ScholarPubMed
Seyer, J. M., Kang, A. H. and Whitaker, J. N. (1977). The characterization of type I and type III collagens from human peripheral nerve. Biochim Biophys Acta 492, 415–25.CrossRefGoogle ScholarPubMed
Shah, N. M., Marchionni, M. A., Isaacs, I., Stroobant, P. and Anderson, D. J. (1994). Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349–60.CrossRefGoogle ScholarPubMed
Shah, N. M., Groves, A. K. and Anderson, D. J. (1996). Alternative neural crest cell fates are instructively promoted by TGF beta superfamily members. Cell 85, 331–43.CrossRefGoogle Scholar
Shamash, S., Reichert, F. and Rotshenker, S. (2002). The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 22, 3052–60.CrossRefGoogle ScholarPubMed
Shames, I., Fraser, A., Colby, J., Orfali, W. and Snipes, G. J. (2003). Phenotypic differences between peripheral myelin protein-22 (PMP22) and myelin protein zero (P0) mutations associated with Charcot–Marie–Tooth-related diseases. J Neuropathol Exp Neurol 62, 751–64.CrossRefGoogle ScholarPubMed
Shanthaveerappa, T. R. and Bourne, G. H. (1966). Perineural epithelium: a new concept of its role in the integrity of the peripheral nervous system. Science 154, 1464–7.CrossRefGoogle ScholarPubMed
Shanthaveerappa, T. R. and Bourne, G. H. (1967). Nature and origin of perisynaptic cells of the motor end plate. Int Rev Cytol 21, 353–64.CrossRefGoogle ScholarPubMed
Shapiro, L., Doyle, J. P., Hensley, P., Colman, D. R. and Hendrickson, W. A. (1996). Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron 17, 435–49.CrossRefGoogle ScholarPubMed
Sharief, M. K., McLean, B. and Thompson, E. J. (1993). Elevated serum levels of tumor necrosis factor-alpha in Guillain–Barré syndrome. Ann Neurol 33, 591–6.CrossRefGoogle ScholarPubMed
Sharpe, A. H. and Freeman, G. J. (2002). The B7-CD28 superfamily. Nat Rev Immunol 2, 116–26.CrossRefGoogle ScholarPubMed
Sheikh, K. A., Ho, T. W., Nachamkin, I.et al. (1998). Molecular mimicry in Guillain–Barré syndrome. Ann NY Acad Sci 845, 307–1.CrossRefGoogle ScholarPubMed
Shellswell, G. B., Restall, D. J., Duance, V. C. and Bailey, A. J. (1979). Identification and differential distribution of collagen types in the central and peripheral nervous systems. FEBS Lett 106, 305–8.CrossRefGoogle ScholarPubMed
Sherman, D. L. and Brophy, P. J. (2000). A tripartite nuclear localization signal in the PDZ-domain protein L- periaxin. J Biol Chem 275, 4537–40.CrossRefGoogle ScholarPubMed
Sherman, D. L. and Brophy, P. J. (2005). Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6, 683–90.CrossRefGoogle ScholarPubMed
Sherman, D. L., Fabrizi, C., Gillespie, C. S. and Brophy, P. J. (2001). Specific disruption of a Schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron 30, 677–87.CrossRefGoogle Scholar
Sherman, L., Stocker, K. M., Morrison, R. and Ciment, G. (1993). Basic Fibroblast Growth Factor (bFGF) acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes. Development 118, 1313–26.Google ScholarPubMed
Shorer, Z., Philpot, J., Muntoni, F., Sewry, C. and Dubowitz, V. (1995). Demyelinating peripheral neuropathy in merosin-deficient congenital muscular dystrophy. J Child Neurol 10, 472–5.CrossRefGoogle ScholarPubMed
Shuman, S., Hardy, M., Sobue, G. and Pleasure, D. (1988). A cyclic AMP analogue induces synthesis of a myelin-specific glycoprotein by cultured Schwann cells. J Neurochem 50, 190–4.CrossRefGoogle ScholarPubMed
Shy, M. (2005). Hereditary motor and sensory neuropathies related to MPZ P0 mutations. Dyck, P. J. (Ed). Peripheral Neuropathy, 4th Edn. Saunders, Philadelphia, pp. 1681–716.Google Scholar
Shy, M. E., Jani, A., Krajewski, K. M.et al. (2004). Phenotypic clustering in MPZ mutations. Brain 127, 371–84.CrossRefGoogle ScholarPubMed
Shy, M. E., Shi, Y., Wrabetz, L., Kamholz, J. and Scherer, S. S. (1996). Axon–Schwann cell interactions regulate the expression of c-jun in Schwann cells. J Neurosci Res 43, 511–25.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Shy, M. E., Garbern, J. Y. and Kamholz, J. (2002). Hereditary motor and sensory neuropathies: a biological perspective. Lancet Neurol 1, 110–18.CrossRefGoogle ScholarPubMed
Shy, M. E., Hobson, G., Jain, M.et al. (2003). Schwann cell expression of PLP1 but not DM20 is necessary to prevent neuropathy. Ann Neurol 53, 354–65.CrossRefGoogle Scholar
Shy, M., Lupski, J. R., Chance, P. F., Klein, C. J. and Dyck, P. (2005). The hereditary motor and sensory neuropathies: an overview of the clinical, genetic, electrophysiologic and pathlogic features. Dyck, P. J. (Ed.) Peripheral Neuropathy, 4th Edn. Saunders, Philadelphia, pp. 1623–58.Google Scholar
Skoff, A. M., Lisak, R. P., Bealmear, B. and Benjamins, J. A. (1998). TNF-alpha and TGF-beta act synergistically to kill Schwann cells. J Neurosci Res 53, 747–56.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Skre, H. (1974). Genetic and clinical aspects of Charcot–Marie–Tooth's disease. Clin Genet 6, 98–118.CrossRefGoogle ScholarPubMed
Skundric, D., Bealmear, B. and Lisak, R. (1996a). Inducible coexpression of IL-1, IL-6 and TNF-α in cultured Schwann cells. J Neurochem 66, Suppl. 1, S48.Google Scholar
Skundric, D., Bealmear, B. and Lisak, R. (1996b). Inducible IL-1α, IL-1, IL-1R and IL-1 receptor antagonist (RA) expression in cultured rat Schwann cells (SC). J Neurochem 64, Suppl., S69.Google Scholar
Skundric, D., Bealmear, B. and Lisak, R. (1997a). IL-1β, IL-6 and TNF-α upregulate expression of each other in cultured Schwann cells (SC). J Neurochem 69, Suppl., S152.Google Scholar
Skundric, D. S., Bealmear, B. and Lisak, R. P. (1997b). Induced upregulation of IL-1, IL-1RA and IL-1R type I gene expression by Schwann cells. J Neuroimmunol 74, 9–18.CrossRefGoogle Scholar
Skundric, D. S., Lisak, R. P., Rouhi, M., Kieseier, B. C., Jung, S. and Hartung, H. P. (2001). Schwann cell-specific regulation of IL-1 and IL-1Ra during EAN: possible relevance for immune regulation at paranodal regions. J Neuroimmunol 116, 74–82.CrossRefGoogle ScholarPubMed
Skundric, D. S., Dai, R., James, J. and Lisak, R. P. (2002). Activation of IL-1 signaling pathway in Schwann cells during diabetic neuropathy. Ann NY Acad Sci 958, 393–8.CrossRefGoogle ScholarPubMed
Slezak, M. and Pfrieger, F. W. (2003). New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci 26, 531–5.CrossRefGoogle ScholarPubMed
Smart, S. L., Lopantsev, V., Zhang, C. L.et al. (1998). Deletion of the Kv1.1 potassium channel causes epilepsy in mice. Neuron 20, 809–19.CrossRefGoogle ScholarPubMed
Smith, K. J. and Hall, S. M. (1988). Peripheral demyelination and remyelination initiated by the calcium-selective ionophore ionomycin: in vivo observations. J Neurol Sci 83, 37–53.CrossRefGoogle ScholarPubMed
Sobue, G., Shuman, S. and Pleasure, D. (1986). Schwann cell responses to cyclic AMP: proliferation, change in shape, and appearance of surface galactocerebroside. Brain Res 362, 23–32.CrossRefGoogle ScholarPubMed
Sobue, G., Nakao, N., Murakami, K.et al. (1990). Type I familial amyloid polyneuropathy. A pathological study of the peripheral nervous system. Brain 113 (Part 4), 903–19.CrossRefGoogle ScholarPubMed
Soilu-Hanninen, M., Ekert, P., Bucci, T., Syroid, D., Bartlett, P. F. and Kilpatrick, T. J. (1999). Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway. J Neurosci 19, 4828–38.CrossRefGoogle Scholar
Soliven, B., Szuchet, S. and Nelson, D. J. (1991). Tumor necrosis factor inhibits K+ current expression in cultured oligodendrocytes. J Membr Biol 124, 127–37.CrossRefGoogle ScholarPubMed
Son, Y. J. and Thompson, W. J. (1995a). Schwann cell processes guide regeneration of peripheral axons. Neuron 14, 125–32.CrossRefGoogle Scholar
Son, Y. J. and Thompson, W. J. (1995b). Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14, 133–41.CrossRefGoogle Scholar
Sondell, M., Lundborg, G. and Kanje, M. (1999). Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 19, 5731–40.CrossRefGoogle ScholarPubMed
Southard-Smith, E. M., Kos, L. and Pavan, W. J. (1998). SOX10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18, 60–4.CrossRefGoogle ScholarPubMed
Southwood, C. M., Garbern, J., Jiang, W. and Gow, A. (2002). The unfolded protein response modulates disease severity in Pelizaeus–Merzbacher disease. Neuron 36, 585–96.CrossRefGoogle ScholarPubMed
Spierings, E., , B. T., Zulianello, L. and Ottenhoff, T. H. (2000). Novel mechanisms in the immunopathogenesis of leprosy nerve damage: the role of Schwann cells, T cells and Mycobacterium leprae. Immunol Cell Biol 78, 349–55.CrossRefGoogle ScholarPubMed
Spierings, E., , B. T., Wieles, B., Adams, L. B., Marani, E. and Ottenhoff, T. H. (2001). Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. J Immunol 166, 5883–8.CrossRefGoogle ScholarPubMed
Spies, J. M., Westland, K. W., Bonner, J. G. and Pollard, J. D. (1995a). Intraneural activated T cells cause focal breakdown of the blood–nerve barrier. Brain 118 (Part 4), 857–68.CrossRefGoogle Scholar
Spies, J. M., Pollard, J. D., Bonner, J. G., Westland, K. W. and McLeod, J. G. (1995b). Synergy between antibody and P2-reactive T cells in experimental allergic neuritis. J Neuroimmunol 57, 77–84.CrossRefGoogle Scholar
Steck, A. J., Schaeren-Wiemers, N. and Hartung, H. P. (1998). Demyelinating inflammatory neuropathies, including Guillain–Barré syndrome. Curr Opin Neurol 11, 311–18.CrossRefGoogle ScholarPubMed
Steinhoff, U. and Kaufmann, S. H. (1988). Specific lysis by CD8+ T cells of Schwann cells expressing Mycobacterium leprae antigens. Eur J Immunol 18, 969–72.CrossRefGoogle ScholarPubMed
Steinhoff, U., Schoel, B. and Kaufmann, S. H. (1990). Lysis of interferon-gamma activated Schwann cell by cross-reactive CD8+ alpha/beta T cells with specificity for the mycobacterial 65 kd heat shock protein. Int Immunol 2, 279–84.CrossRefGoogle ScholarPubMed
Stevens, B., Ishibashi, T., Chen, J. F. and Fields, R. D. (2004). Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biology 1, 23–34.CrossRefGoogle ScholarPubMed
Stewart, G. J., Pollard, J. D., McLeod, J. G. and Wolnizer, C. M. (1978). HLA antigens in the Landry–Guillain–Barré syndrome and chronic relapsing polyneuritis. Ann Neurol 4, 285–9.CrossRefGoogle ScholarPubMed
Stewart, H. J., Rougon, G., Dong, Z., Dean, C., Jessen, K. R. and Mirsky, R. (1995a). TGF-betas upregulate NCAM and L1 expression in cultured Schwann cells, suppress cyclic AMP-induced expression of O4 and galactocerebroside, and are widely expressed in cells of the Schwann cell lineage in vivo. Glia 15, 419–36.CrossRefGoogle Scholar
Stewart, H. J., Curtis, R., Jessen, K. R. and Mirsky, R. (1995b). TGF-beta s and cAMP regulate GAP-43 expression in Schwann cells and reveal the association of this protein with the trans-Golgi network. Eur J Neurosci 7, 1761–72.CrossRefGoogle Scholar
Stewart, H. J., Turner, D., Jessen, K. R. and Mirsky, R. (1997). Expression and regulation of alpha1beta1 integrin in Schwann cells. J Neurobiol 33, 914–28.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Stewart, H. J. S., Morgan, L., Jessen, K. R. and Mirsky, R. (1993). Changes in DNA synthesis rate in the Schwann cell lineage in vivo are correlated with the precursor-Schwann cell transition and myelination. Eur J Neurosci 5, 1136–44.CrossRefGoogle ScholarPubMed
Stewart, H. J. S., Bradke, F., Tabernero, A., Morrell, D., Jessen, K. R. and Mirsky, R. (1996). Regulation of rat Schwann cell P0 expression and DNA synthesis by insulin-like growth factors in vitro. Eur J Neurosci 8, 553–64.CrossRefGoogle Scholar
Stewart, H. J. S., Brennan, A., Rahman, M.et al. (2001). Developmental regulation and overexpression of the transcription factor AP-2, a potential regulator of the timing of Schwann cell generation. Eur J Neurosci 14, 363–72.CrossRefGoogle ScholarPubMed
Stirling, C. A. (1975). Abnormalities in Schwann cell sheaths in spinal nerve roots of dystrophic mice. J Anat 119, 169–80.Google ScholarPubMed
Stolinski, C., Breathnach, A. S., Thomas, P. K., Gabriel, G. and King, R. M. H. (1985). Distribution of particle aggregates in the internodal axolemma and adaxonal Schwann cell membrane of rodent peripheral nerve. J Neurol Sci 67, 213–22.CrossRefGoogle ScholarPubMed
Stoll, G. and Muller, H. W. (1999). Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 9, 313–25.CrossRefGoogle ScholarPubMed
Stoll, G., Schwendemann, G., Heininger, K.et al. (1986). Relation of clinical, serological, morphological, and electrophysiological findings in galactocerebroside-induced experimental allergic neuritis. J Neurol Neurosurg Psychiatry 49, 258–64.CrossRefGoogle ScholarPubMed
Stoll, G., Jung, S., Jander, S., , M. P. and Hartung, H. P. (1993a). Tumor necrosis factor-alpha in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. J Neuroimmunol 45, 175–82.CrossRefGoogle Scholar
Stoll, G., Jander, S.et al. (1993b). Macrophages and endothelial cells express intercellular adhesion molecule-1 in immune-mediated demyelination but not in Wallerian degeneration of the rat peripheral nervous system. Lab Invest 68, 637–44.Google Scholar
Street, V. A., Bennett, C. L., Goldy, J. D.et al. (2003). Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot–Marie–Tooth disease 1C. Neurology 60, 22–6.CrossRefGoogle ScholarPubMed
Stumm, R. K., Zhou, C., Ara, T.et al. (2003). CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 23, 5123–30.CrossRefGoogle ScholarPubMed
Sugimura, K., Haimoto, H., Nagura, H., Kato, K. and Takahashi, A. (1989). Immunohistochemical differential distribution of S-100 alpha and S-100 beta in the peripheral nervous system of the rat. Muscle Nerve 12, 929–35.CrossRefGoogle ScholarPubMed
Sumner, A., Said, G., Idy, I. and Metral, S. (1982a). Electrophysiological and morphological effects of the injection of Guillain–Barré sera in the sciatic nerve of the rat (author's transl). Rev Neurol (Paris) 138, 17–24.Google Scholar
Sumner, A. J., Saida, K., Saida, T., Silberberg, D. H. and Asbury, A. K. (1982b). Acute conduction block associated with experimental antiserum-mediated demyelination of peripheral nerve. Ann Neurol 11, 469–77.CrossRefGoogle Scholar
Sund, M., Vaisanen, T., Kaukinen, S.et al. (2001). Distinct expression of type XIII collagen in neuronal structures and other tissues during mouse development. Matrix Biol 20, 215–31.CrossRefGoogle ScholarPubMed
Suter, U. (2004). PMP22 gene. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, Philadelphia, pp. 547–64.Google Scholar
Suter, U. and Nave, K. A. (1999). Transgenic mouse models of CMT1A and HNPP. Ann NY Acad Sci 883, 247–53.CrossRefGoogle ScholarPubMed
Suter, U. and Scherer, S. S. (2003). Disease mechanisms in inherited neuropathies. Nat Neurosci Rev 4, 714–26.CrossRefGoogle ScholarPubMed
Suter, U., Moskow, J. J., Welcher, A. A.et al. (1992a). A leucine-to-proline mutation in the putative first transmembrane domain of the 22-kDa peripheral myelin protein in the trembler-J mouse. Proc Nat Acad Sci USA 89, 4382–6.CrossRefGoogle Scholar
Suter, U., Welcher, A. A., Ozcelik, T.et al. (1992b). Trembler mouse carries a point mutation in a myelin gene. Nature 356, 241–4.CrossRefGoogle Scholar
Syroid, D. E., Maycox, P. R., Burrola, P. G.et al. (1996). Cell death in the Schwann cell lineage and its regulation by neuregulin. Proc Nat Acad Sci USA 93, 9229–34.CrossRefGoogle ScholarPubMed
Syroid, D. E., Maycox, P. J., Soilu-Hanninen, M.et al. (2000). Induction of postnatal Schwann cell death by the low-affinity neurotrophin receptor in vitro and after axotomy. J Neurosci 20, 5741–7.CrossRefGoogle ScholarPubMed
Takahashi, M. and Osumi, N. (2005). Identification of a novel type II classical cadherin: rat cadherin19 is expressed in the cranial ganglia and Schwann cell precursors during development. Develop Dyn 232, 200–8.CrossRefGoogle ScholarPubMed
Takeda, K., Kaisho, T. and Akira, S. (2003). Toll-like receptors. Ann Rev Immunol 21, 335–76.CrossRefGoogle ScholarPubMed
Tam, S. L. and Gordon, T. (2003). Neuromuscular activity impairs axonal sprouting in partially denervated muscles by inhibiting bridge formation of perisynaptic Schwann cells. J Neurobiol 57, 221–34.CrossRefGoogle ScholarPubMed
Tamkun, J. W., DeSimone, D. W., Fonda, D.et al. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271–82.CrossRefGoogle ScholarPubMed
Taniuchi, M., Clark, H. B. and Johnson, E. M. Jr. (1986). Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Nat Acad Sci USA 83, 4094–8.CrossRefGoogle ScholarPubMed
Taniuchi, M., Clark, H. B., Schweitzer, J. B. and Johnson, E. M. Jr. (1988). Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties. J Neurosci 8, 664–81.CrossRefGoogle ScholarPubMed
Taskinen, H. S. and Roytta, M. (2000). Increased expression of chemokines (MCP-1, MIP-1alpha, RANTES) after peripheral nerve transection. J Peripher Nerv Syst 5, 75–81.CrossRefGoogle ScholarPubMed
Taveggia, C., Zanazzi, G., Petrylak, A.et al. (2005). Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–94.CrossRefGoogle ScholarPubMed
Taylor, J. M. and Pollard, J. D. (2001). Dominance of autoreactive T cell-mediated delayed-type hypersensitivity or antibody-mediated demyelination results in distinct forms of experimental autoimmune neuritis in the Lewis rat. J Neuropathol Exp Neurol 60, 637–46.CrossRefGoogle ScholarPubMed
Tello, J. F. (1944). Sobre una vaina que envuelve toda la ramificacion del axon en las terminaciones motrices de los musculos estriados. Trabajos del Laboratorio de Investigaciones Biologicas de la Universidad de Madrid 36, 1–59.Google Scholar
Teravainen, H. (1970). Satellite cells of striated muscle after compression injury so slight as not to cause degeneration of the muscle fibres. Z Zellforsch Mikrosk Anat 103, 320–7.CrossRefGoogle Scholar
Tham, T. N., Lazarini, F., Franceschini, I. A., Lachapelle, F., Amara, A. and Dubois-Dalcq, M. (2001). Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system. Eur J Neurosci 13, 845–56.CrossRefGoogle ScholarPubMed
Thomas, P. K., Marques, W., Davis, M. B.et al. (1997). The phenotypic manifestations of chromosome 17p11.2 duplication. Brain 120, 465–78.CrossRefGoogle ScholarPubMed
Tiegs, O. W. (1953). Innervation of voluntary muscle. Physiol Rev 33, 90–144.CrossRefGoogle ScholarPubMed
Timmerman, V., Jonghe, P., Ceuterick, C.et al. (1999). Novel missense mutation in the early growth response 2 gene associated with Dejerine–Sottas syndrome phenotype. Neurology 52, 1827–32.CrossRefGoogle ScholarPubMed
Tobler, A. R., Notterpek, L., Naef, R., Taylor, V., Suter, U. and Shooter, E. M. (1999). Transport of Trembler-J mutant peripheral myelin protein 22 is blocked in the intermediate compartment and affects the transport of the wild-type protein by direct interaction. J Neurosci 19, 2027–36.CrossRefGoogle ScholarPubMed
Tohyama, K. and Ide, C. (1984). The localization of laminin and fibronectin on the Schwann cell basal lamina. Arch Histol Jpn 47, 519–32.CrossRefGoogle ScholarPubMed
Tooth, H. (1886). The Peroneal Type of Progressive Muscular Atrophy. Lewis, London.Google Scholar
Topilko, P., Schneider-Maunoury, S., Levi, G.et al. (1994). Krox-20 controls myelination in the peripheral nervous system. Nature 371, 796–9.CrossRefGoogle ScholarPubMed
Topilko, P. and Meijer, D. (2001). Transcription factors that control Schwann cell development and myelination. Jessen, K. R., Richardson, W. D. (Eds.) Glial Cell Development. Oxford University Press, Oxford, pp. 223–44.Google Scholar
Trachtenberg, J. T. and Thompson, W. J. (1996). Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 379, 174–7.CrossRefGoogle ScholarPubMed
Trachtenberg, J. T. and Thompson, W. J. (1997). Nerve terminal withdrawal from rat neuromuscular junctions induced by neuregulin and Schwann cells. J Neurosci 17, 6243–55.CrossRefGoogle ScholarPubMed
Trapp, B. D. and Kidd, G. J. (2004). Structure of the myelinated axon. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, San Diego, pp. 3–27.Google Scholar
Tricaud, N., Perrin-Tricaud, C., Bruses, J. L. and Rutishauser, U. (2005). Adherens junctions in myelinating Schwann cells stabilize Schmidt–Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 25, 3259–69.CrossRefGoogle Scholar
Tsai, C. P., Pollard, J. D. and Armati, P. J. (1991). Interferon-gamma inhibition suppresses experimental allergic neuritis: modulation of major histocompatibility complex expression of Schwann cells in vitro. J Neuroimmunol 31, 133–45.CrossRefGoogle ScholarPubMed
Tsukada, N., Koh, C. S., Inoue, A. and Yanagisawa, N. (1987). Demyelinating neuropathy associated with hepatitis B virus infection. Detection of immune complexes composed of hepatitis B virus surface antigen. J Neurol Sci 77, 203–16.CrossRefGoogle ScholarPubMed
Tucker, R. P., Hagios, C., Santiago, A. and Chiquet-Ehrismann, R. (2001). Tenascin-Y is concentrated in adult nerve roots and has barrier properties in vitro. J Neurosci Res 66, 439–47.CrossRefGoogle ScholarPubMed
Tyson, J., Ellis, D., Fairbrother, U.et al. (1997). Hereditary demyelinating neuropathy of infancy. A genetically complex syndrome. Brain 120, 47–63.CrossRefGoogle ScholarPubMed
Uhlenberg, B., Schuelke, M., Ruschendorf, F.et al. (2004). Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am J Hum Genet 75, 251–60.CrossRefGoogle ScholarPubMed
Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. and Barres, B. A. (2001). Control of synapse number by glia. Science 291, 657–61.CrossRefGoogle ScholarPubMed
Ullian, E. M., Harris, B. T., Wu, A., Chan, J. R. and Barres, B. A. (2004a). Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci 25, 241–51.CrossRefGoogle Scholar
Ullian, E. M., Christopherson, K. S. and Barres, B. A. (2004b). Role for glia in synaptogenesis. Glia 47, 209–16.CrossRefGoogle Scholar
Ulzheimer, J. C., Peles, E., Levinson, S. R. and Martini, R. (2004). Altered expression of ion channel isoforms at the node of Ranvier in P0-deficient myelin mutants. Mol Cell Neurosci 25, 83–94.CrossRefGoogle ScholarPubMed
Uncini, A., Di, M. A., Di, G. G.et al. (1999). Effect of rhTNF-alpha injection into rat sciatic nerve. J Neuroimmunol 94, 88–94.CrossRefGoogle ScholarPubMed
Unsicker, K., Flanders, K. C., Cissel, D. S., Lafyatis, R. and Sporn, M. B. (1991). Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44, 613–25.CrossRefGoogle ScholarPubMed
Ushiki, T. and Ide, C. (1988). A modified KOH-collagenase method applied to scanning electron microscopic observations of peripheral nerves. Arch Histol Cytol 51, 223–32.Google ScholarPubMed
Uyemura, K., Asou, H. and Takeda, Y. (1995). Structure and function of peripheral nerve myelin proteins. Prog Brain Res 105, 311–18.CrossRefGoogle ScholarPubMed
Vabnick, I. and Shrager, P. (1998). Ion channel redistribution and function during development of the myelinated axon. J Neurobiol 37, 80–96.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Vabnick, I., Trimmer, J. S., Schwarz, T. L., Levinson, S. R., Risal, D. and Shrager, P. (1999). Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. J Neurosci 19, 747–58.CrossRefGoogle ScholarPubMed
Vagnerova, K., Tarumi, Y. S., Proctor, T. M. and Patton, B. L. (2003). A specialized basal lamina at the node of Ranvier. Soc Neurosci Abs 29, 351.18.Google Scholar
Valentijn, L. J., Baas, F., Wolterman, R. A.et al. (1992). Identical point mutations of PMP-22 in Trembler-J mouse and Charcot–Marie–Tooth disease type 1A. Nat Genet 2, 288–91.CrossRefGoogle ScholarPubMed
Vallat, J. M., Sindou, P., Preux, P. M.et al. (1996). Ultrastructural PMP22 expression in inherited demyelinating neuropathies. Ann Neurol 39, 813–17.CrossRefGoogle ScholarPubMed
Laan, L. J., Ruuls, S. R., Weber, K. S., Lodder, I. J., Dopp, E. A. and Dijkstra, C. D. (1996). Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide. J Neuroimmunol 70, 145–52.CrossRefGoogle ScholarPubMed
Meche, F. G. and Schmitz, P. I. (1992). A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain–Barré syndrome. Dutch Guillain–Barré Study Group. N Engl J Med 326, 1123–9.CrossRefGoogle ScholarPubMed
Doorn, P. A. (2005). Treatment of Guillain–Barré syndrome and CIDP. J Peripher Nerv Syst 10, 113–27.CrossRefGoogle ScholarPubMed
Rhijn, I., Berg, L. H., Bosboom, W. M., Otten, H. G. and Logtenberg, T. (2000a). Expression of accessory molecules for T-cell activation in peripheral nerve of patients with CIDP and vasculitic neuropathy. Brain 123 (Part 10), 2020–9.CrossRefGoogle Scholar
Rhijn, L. W., Jansen, E. J. and Pruijs, H. E. (2000b). Long-term follow-up of conservatively treated popliteal cysts in children. J Pediatr Orthop B 9, 62–4.CrossRefGoogle Scholar
Van, K. R., Doorn, P. A., Schmitz, P. I., Ang, C. W. and Meche, F. G. (2000). Mild forms of Guillain-Barré syndrome in an epidemiologic survey in The Netherlands. Neurology 54, 620–5.Google Scholar
Van, K. R., Schmitz, P. I., Meche, F. G., Visser, L. H., Meulstee, J. and Doorn, P. A. (2004). Effect of methylprednisolone when added to standard treatment with intravenous immunoglobulin for Guillain–Barré syndrome: randomised trial. Lancet 363, 192–6.Google Scholar
Vardhini, D., Suneetha, S., Ahmed, N.et al. (2004). Comparative proteomics of the Mycobacterium leprae binding protein myelin P0: its implication in leprosy and other neurodegenerative diseases. Infect Genet Evol 4, 21–8.CrossRefGoogle ScholarPubMed
Vaughan, R. W., Adam, A. M., Gray, I. A.et al. (1990). Major histocompatibility complex class I and class II polymorphism in chronic idiopathic demyelinating polyradiculoneuropathy. J Neuroimmunol 27, 149–53.CrossRefGoogle Scholar
Vega, J. A., Valle-Soto, M. E., Calzada, B. and Alvarez-Mendez, J. C. (1991). Immunohistochemical localization of S-100 protein subunits (alpha and beta) in dorsal root ganglia of the rat. Cell Mol Biol 37, 173–81.Google ScholarPubMed
Venstrom, K. and Reichardt, L. (1995). Beta 8 integrins mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. Mol Biol Cell 6, 419–31.CrossRefGoogle ScholarPubMed
Viskochil, D. H. (2003). It takes two to tango: mast cell and Schwann cell interactions in neurofibromas. J Clin Invest 112, 1791–3.CrossRefGoogle ScholarPubMed
Volterra, A., Magistretti, P. J. and Haydon, P. G. (2002). The Tripartite Synapse: Glia in Synaptic Transmission. Oxford University Press, Oxford.Google Scholar
Vriesendorp, F. J., Mishu, B., Blaser, M. J. and Koski, C. L. (1993). Serum antibodies to GM1, GD1b, peripheral nerve myelin, and Campylobacter jejuni in patients with Guillain–Barré syndrome and controls: correlation and prognosis. Ann Neurol 34, 130–5.CrossRefGoogle ScholarPubMed
Vroemen, M. and Weidner, N. (2003). Purification of Schwann cells by selection of p75 low affinity nerve growth factor receptor expressing cells from adult peripheral nerve. J Neurosci Methods 124, 135–43.CrossRefGoogle ScholarPubMed
Wagner, R. and Myers, R. R. (1996a). Endoneurial injection of TNF-alpha produces neuropathic pain behaviors. Neuroreport 7, 2897–901.CrossRefGoogle Scholar
Wagner, R. and Myers, R. R. (1996b). Schwann cells produce tumor necrosis factor alpha: expression in injured and non-injured nerves. Neuroscience 73, 625–9.CrossRefGoogle Scholar
Wakamatsu, Y., Maynard, T. M. and Weston, J. A. (2000). Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis. Development 127, 2811–21.Google ScholarPubMed
Waksman, B. H. and Adams, R. D. (1956). A comparative study of experimental allergic neuritis in the rabbit, guinea pig, and mouse. J Neuropathol Exp Neurol 15, 293–334.CrossRefGoogle Scholar
Wallquist, W., Patarroyo, M., Thams, S.et al. (2002). Laminin chains in rat and human peripheral nerve: distribution and regulation during development and after axonal injury. J Comp Neurol 454, 284–93.CrossRefGoogle ScholarPubMed
Wallquist, W., Plantman, S., Thams, S.et al. (2005). Impeded interaction between Schwann cells and axons in the absence of laminin alpha4. J Neurosci 25, 3692–700.CrossRefGoogle ScholarPubMed
Walport, M. (1998). Complement. Roitti, I., Brostoff, J., Male, D. (Eds.) Immunology. Mosby, Philadelphia, pp. 43–61.Google Scholar
Wanaka, A., Carroll, S. L. and Milbrandt, J. (1993). Developmentally regulated expression of pleiotrophin, a novel heparin binding growth factor, in the nervous system of the rat. Brain Res Dev Brain Res 72, 133–44.CrossRefGoogle ScholarPubMed
Wang, J. Y., Miller, S. J. and Falls, D. L. (2001). The N-terminal region of neuregulin isoforms determines the accumulation of cell surface and released neuregulin ectodomain. J Biol Chem 276, 2841–51.CrossRefGoogle ScholarPubMed
Wang, S. and Barres, B. A. (2000). Up a notch: instructing gliogenesis. Neuron 27, 197–200.CrossRefGoogle ScholarPubMed
Wanner, I., Guerra, N. K., Mahoney, J. et al. (2006). Role of N-cadherin in Schwann cell precursors of growing nerves. Glia 54, 439–59.CrossRef
Warner, L. E., Hilz, M. J., Appel, S. H.et al. (1996). Clinical phenotypes of different MPZ (P0) mutations may include Charcot–Marie–Tooth type 1B, Dejerine–Sottas, and congenital hypomyelination. Neuron 17, 451–60.CrossRefGoogle ScholarPubMed
Warner, L. E., Mancias, P., Butler, I. J.et al. (1998). Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 18, 382–4.CrossRefGoogle ScholarPubMed
Watson, D. F., Nachtman, F. N., Kuncl, R. W. and Griffin, J. W. (1994). Altered neurofilament phosphorylation and beta tubulin isotypes in Charcot–Marie–Tooth disease type 1. Neurology 44, 2383–7.CrossRefGoogle ScholarPubMed
Watts, R. J., Schuldiner, O., Perrino, J., Larsen, C. and Luo, L. (2004). Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14, 678–84.CrossRefGoogle ScholarPubMed
Waxman, S. G. (2005). Cerebellar dysfunction in multiple sclerosis: evidence for an acquired channelopathy. Prog Brain Res 148, 353–65.CrossRefGoogle ScholarPubMed
Webster, H. D. (1971). The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves. J Cell Biol 48, 348–67.CrossRefGoogle ScholarPubMed
Webster, H.d.F., Favilla, J. T. (1984). Development of peripheral nerve fibers. Dyck, P. J., Thomas, P. K., Lambert, E. H., Bunge, R. P. (Eds.) Peripheral Neuropathy, 2nd Edn. WB Saunders, Philadelphia, pp. 329–59.Google Scholar
Webster, H. (1993). Development of peripheral nerve fibers. Dyck, P. J., Thomas, P. K., Lambert, E. H., Bunge, R. P. (Eds.) Peripheral Neuropathy, 3rd Edn. WB Saunders, Philadelphia, pp. 243–66.Google Scholar
Wegner, M. (2000a). Transcriptional control in myelinating glia: the basic recipe. Glia 29, 118–23.3.0.CO;2-Q>CrossRefGoogle Scholar
Wegner, M. (2000b). Transcriptional control in myelinating glia: flavors and spices. Glia 31, 1–14.3.0.CO;2-V>CrossRefGoogle Scholar
Wehrle-Haller, B. and Chiquet, M. (1993). Dual function of tenascin: simultaneous promotion of neurite growth and inhibition of glial migration. J Cell Sci 106 (Part 2), 597–610.Google ScholarPubMed
Weiner, H. L., Friedman, A., Miller, A.et al. (1994). Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 12, 809–37.CrossRefGoogle ScholarPubMed
Weiner, J. A. and Chun, J. (1999). Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc Nat Acad Sci USA 96, 5233–8.CrossRefGoogle ScholarPubMed
Weiss, M. D., Luciano, C. A., Semino-Mora, C., Dalakas, M. C. and Quarles, R. H. (1998). Molecular mimicry in chronic inflammatory demyelinating polyneuropathy and melanoma. Neurology 51, 1738–41.CrossRefGoogle ScholarPubMed
Wekerle, H., Schwab, M., Linington, C. and Meyermann, R. (1986). Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes. Eur J Immunol 16, 1551–7.CrossRefGoogle Scholar
Wernig, A. and Herrera, A. A. (1986). Sprouting and remodelling at the nerve–muscle junction. Prog Neurobiol 27, 251–91.CrossRefGoogle ScholarPubMed
Wernig, A., Pecot-Dechavassine, M. and Stover, H. (1980). Sprouting and regression of the nerve at the frog neuromuscular junction in normal conditions and after prolonged paralysis with curare. J Neurocytol 9, 278–303.CrossRefGoogle ScholarPubMed
Wetmore, C. and Olson, L. (1995). Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J Comp Neurol 353, 143–59.CrossRefGoogle ScholarPubMed
White, P. M., Morrison, S. J., Orimoto, K., Kubu, C. J., Verdi, J. M. and Anderson, D. J. (2001). Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29, 57–71.CrossRefGoogle ScholarPubMed
Wigston, D. J. (1989). Remodeling of neuromuscular junctions in adult mouse soleus. J Neurosci 9, 639–47.CrossRefGoogle ScholarPubMed
Wilkinson, R., Leaver, C., Simmons, A. and Pereira, R. A. (1999). Restricted replication of herpes simplex virus in satellite glial cell cultures clonally derived from adult mice. J Neurovirol 5, 384–91.CrossRefGoogle ScholarPubMed
Williams, L. L., Kissel, J. T., Shannon, B. T., Wright, F. S. and Mendell, J. R. (1992). Expression of Schwann cell and peripheral T-cell activation epitopes in hereditary motor and sensory neuropathy. J Neuroimmunol 36, 147–55.CrossRefGoogle ScholarPubMed
Willison, H. J. (2005). The immunobiology of Guillain–Barré syndromes. J Peripher Nerv Syst 10, 94–112.CrossRefGoogle ScholarPubMed
Willison, H. J. and Yuki, N. (2002). Peripheral neuropathies and anti-glycolipid antibodies. Brain 125, 2591–625.CrossRefGoogle ScholarPubMed
Winer, J. B., Hughes, R. A. and Osmond, C. (1988). A prospective study of acute idiopathic neuropathy. I. Clinical features and their prognostic value. J Neurol Neurosurg Psychiat 51, 605–12.CrossRefGoogle ScholarPubMed
Winseck, A. K., Caldero, J., Ciutat, D.et al. (2002). In vivo analysis of Schwann cell programmed cell death in the embryonic chick: regulation by axons and glial growth factor. J Neurosci 22, 4509–21.CrossRefGoogle ScholarPubMed
Wohlleben, G., Hartung, H. P. and Gold, R. (1999). Humoral and cellular immune functions of cytokine-treated Schwann cells. Adv Exp Med Biol 468, 151–6.CrossRefGoogle ScholarPubMed
Wohlleben, G., Ibrahim, S. M., Schmidt, J., Toyka, K. V., Hartung, H. P. and Gold, R. (2000). Regulation of Fas and FasL expression on rat Schwann cells. Glia 30, 373–81.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Woldeyesus, M. T., Britsch, S., Riethmacher, D.et al. (1999). Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev 13, 2538–48.CrossRefGoogle ScholarPubMed
Wolpowitz, D., Mason, T. B., Dietrich, P., Mendelsohn, M., Talmage, D. A. and Role, L. W. (2000). Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 25, 79–91.CrossRefGoogle ScholarPubMed
Woodhoo, A., Dean, C. H., Droggiti, A., Mirsky, R. and Jessen, K. R. (2004). The trunk neural crest and its early glial derivatives: a study of survival responses, developmental schedules and autocrine mechanisms. Mol Cell Neurosci 25, 30–41.CrossRefGoogle ScholarPubMed
Woolf, C. J., Reynolds, M. L., Chong, M. S., Emson, P., Irwin, N. and Benowitz, L. I. (1992). Denervation of the motor endplate results in the rapid expression by terminal Schwann cells of the growth-associated protein GAP-43. J Neurosci 12, 3999–4010.CrossRefGoogle ScholarPubMed
Wrabetz, L., Feltri, M. L., Quattrini, A.et al. (2000). P(0) glycoprotein overexpression causes congenital hypomyelination of peripheral nerves. J Cell Biol 148, 1021–34.CrossRefGoogle Scholar
Wrabetz, L., Feltri, M. L., Kleopa, K. A. and Scherer, S. S. (2004). Inherited neuropathies – clinical, genetic, and biological features. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, San Diego, pp. 905–951.Google Scholar
Xiao, Z. C., Revest, J. M., Laeng, P., Rougon, G., Schachner, M. and Montag, D. (1998). Defasciculation of neurites is mediated by tenascin-R and its neuronal receptor F3/11. J Neurosci Res 52, 390–404.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Xiao, Z. C., Ragsdale, D. S., Malhotra, J. D.et al. (1999). Tenascin-R is a functional modulator of sodium channel beta subunits. J Biol Chem 274, 26511–17.CrossRefGoogle ScholarPubMed
Xu, H., Wu, X. R., Wewer, U. M. and Engvall, E. (1994). Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nat Genet 8, 297–302.CrossRefGoogle ScholarPubMed
Xu, W., Manichella, D., Jiang, H.et al. (2000). Absence of P0 leads to the dysregulation of myelin gene expression and myelin morphogenesis. J Neurosci Res 60, 714–24.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Xu, W., Shy, M., Kamholz, J., Elferink, L., Xu, G., Lilien, J. and Balsamo, J. (2001). Mutations in the cytoplasmic domain of P0 reveal a role for PKC- mediated phosphorylation in adhesion and myelination. J Cell Biol 155, 439–46.CrossRefGoogle ScholarPubMed
Yamada, H., Shimizu, T., Tanaka, T., Campbell, K. P. and Matsumura, K. (1994). Dystroglycan is a binding protein of laminin and merosin in peripheral nerve. FEBS Lett 352, 49–53.CrossRefGoogle ScholarPubMed
Yamada, H., Chiba, A., Endo, T.et al. (1996a). Characterization of dystroglycan-laminin interaction in peripheral nerve. J Neurochem 66, 1518–24.CrossRefGoogle Scholar
Yamada, H., Denzer, A. J., Hori, H.et al. (1996b). Dystroglycan is a dual receptor for agrin and laminin-2 in Schwann cell membrane. J Biol Chem 271, 23418–23.CrossRefGoogle Scholar
Yamamoto, M., Fan, L., Wakayama, T., Amano, O. and Iseki, S. (2001). Constitutive expression of the 27-kDa heat-shock protein in neurons and satellite cells in the peripheral nervous system of the rat. Anat Rec 262, 213–20.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Yamashita, N., Sakai, K., Furuya, S. and Watanabe, M. (2003). Selective expression of L-serine synthetic enzyme 3PGDH in Schwann cells, perineuronal glia, and endoneurial fibroblasts along rat sciatic nerves and its upregulation after crush injury. Arch Histol Cytol 66, 429–36.CrossRefGoogle ScholarPubMed
Yamauchi, J., Chan, J. R. and Shooter, E. M. (2004). Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Nat Acad Sci USA 101, 8774–9.CrossRefGoogle ScholarPubMed
Yan, W. X., Taylor, J., Ndrias-Kauba, S. and Pollard, J. D. (2000). Passive transfer of demyelination by serum or IgG from chronic inflammatory demyelinating polyneuropathy patients. Ann Neurol 47, 765–75.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Yan, W. X., Archelos, J. J., Hartung, H. P. and Pollard, J. D. (2001). P0 protein is a target antigen in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol 50, 286–92.CrossRefGoogle ScholarPubMed
Yanase, H., Shimizu, H., Yamada, K. and Iwanaga, T. (2002). Cellular localization of the diazepam binding inhibitor in glial cells with special reference to its coexistence with brain-type fatty acid binding protein. Arch Histol Cytol 65, 27–36.CrossRefGoogle ScholarPubMed
Yang, D., Bierman, J., Tarumi, Y. S.et al. (2005). Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol. 168, 655–66.CrossRefGoogle ScholarPubMed
Yang, F. C., Ingram, D. A., Chen, S.et al. (2003). Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/- mast cells. J Clin Invest 112, 1851–61.Google ScholarPubMed
Yang, H., Xiao, Z. C., Becker, B., Hillenbrand, R., Rougon, G. and Schachner, M. (1999). Role for myelin-associated glycoprotein as a functional tenascin-R receptor. J Neurosci Res 55, 687–701.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Yang, J. F., Cao, G., Koirala, S., Reddy, L. V. and Ko, C. P. (2001). Schwann cells express active agrin and enhance aggregation of acetylcholine receptors on muscle fibers. J Neurosci 21, 9572–84.CrossRefGoogle ScholarPubMed
Yang, J. T., Rayburn, H. and Hynes, R. O. (1993). Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119, 1093–105.Google ScholarPubMed
Yang, Y., LacasGervais, S., Morest, D. K., Solimena, M. and Rasband, M. N. (2004). beta IV spectrins are essential for membrane stability and the molecular organization of nodes of Ranvier. J Neurosci 24, 7230–40.CrossRefGoogle Scholar
Yntema, C. L. (1943). Deficient efferent innervation of the extremities following removal of neural crest in Amblystoma. J Exp Zool 94, 319–49.CrossRefGoogle Scholar
Yokoi, H., Tsuruo, Y. and Ishimura, K. (1998). Steroid 5alpha-reductase type 1 immunolocalized in the rat peripheral nervous system and paraganglia. Histochem J 30, 731–9.CrossRefGoogle ScholarPubMed
Yoshihara, T., Kanda, F., Yamamoto, M.et al. (2001). A novel missense mutation in the early growth response 2 gene associated with late-onset Charcot–Marie–Tooth disease type 1. J Neurol Sci 184, 149–53.CrossRefGoogle ScholarPubMed
Young, J. Z. (1938). The functioning of the giant nerve fibres of the squid. J Exp Biol 15, 170–85.Google Scholar
Young, P., Boussadia, O., Berger, P.et al. (2002). E-cadherin is required for the correct formation of autotypic adherens junctions of the outer mesaxon but not for the integrity of myelinated fibers of peripheral nerves. Mol Cell Neurosci 21, 341–51.CrossRefGoogle Scholar
Young, P., Nie, J., Wang, X., McGlade, C. J., Rich, M. M. and Feng, G. (2005). LNX1 is a perisynaptic Schwann cell specific E3 ubiquitin ligase that interacts with ErbB2. Mol Cell Neurosci 30, 238–48.CrossRefGoogle ScholarPubMed
Yu, L. T., Rostami, A., Silvers, W. K., Larossa, D. and Hickey, W. F. (1990). Expression of major histocompatibility complex antigens on inflammatory peripheral nerve lesions. J Neuroimmunol 30, 121–8.CrossRefGoogle ScholarPubMed
Yu, W. M., Feltri, M. L., Wrabetz, L., Strickland, S. and Chen, Z. L. (2005). Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci 25, 4463–72.CrossRefGoogle ScholarPubMed
Yuki, N., Taki, T., Takahashi, M.et al. (1994). Molecular mimicry between GQ1b ganglioside and lipopolysaccharides of Campylobacter jejuni isolated from patients with Fisher's syndrome. Ann Neurol 36, 791–3.CrossRefGoogle ScholarPubMed
Yuki, N., Tagawa, Y. and Handa, S. (1996). Autoantibodies to peripheral nerve glycosphingolipids SPG, SLPG, and SGPG in Guillain–Barré syndrome and chronic inflammatory demyelinating polyneuropathy. J Neuroimmunol 70, 1–6.CrossRefGoogle ScholarPubMed
Yuki, N., Yamada, M., Koga, M.et al. (2001). Animal model of axonal Guillain–Barré syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 49, 712–20.CrossRefGoogle ScholarPubMed
Yuki, N., Susuki, K., Koga, M.et al. (2004). Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain–Barré syndrome. Proc Nat Acad Sci USA 101, 11404–9.CrossRefGoogle ScholarPubMed
Yurchenco, P. D., Cheng, Y. S. and Colognato, H. (1992). Laminin forms an independent network in basement membranes. J Cell Biol 117, 1119–33.CrossRefGoogle ScholarPubMed
Zehntner, S. P., Brisebois, M., Tran, E., Owens, T. and Fournier, S. (2003). Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease. FASEB J 17, 1910–12.CrossRefGoogle ScholarPubMed
Zhou, D. X., Lambert, S., Malen, P. L., Carpenter, S., Boland, L. M. and Bennett, V. (1998). AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 143, 1295–304.CrossRefGoogle ScholarPubMed
Ziskind-Conhaim, L. (1988). Physiological and morphological changes in developing peripheral nerves of rat embryos. Brain Res 470, 15–28.CrossRefGoogle ScholarPubMed
Zlotnik, A. and Yoshie, O. (2000). Chemokines: a new classification system and their role in immunity. Immunity 12, 121–7.CrossRefGoogle ScholarPubMed
Zorick, T. S. and Lemke, G. (1996). Schwann cell differentiation. Curr Opin Cell Biol 8, 870–6.CrossRefGoogle ScholarPubMed
Zorick, T. S., Syroid, D. E., Arroyo, E., Scherer, S. S. and Lemke, G. (1996). The transcription factors SCIP and Krox-20 mark distinct stages and cell fates in Schwann cell differentiation. Mol Cell Neurosci 8, 129–45.CrossRefGoogle ScholarPubMed
Zou, L. P., Pelidou, S. H., Abbas, N.et al. (1999). Dynamics of production of MIP-1alpha, MCP-1 and MIP-2 and potential role of neutralization of these chemokines in the regulation of immune responses during experimental autoimmune neuritis in Lewis rats. J Neuroimmunol 98, 168–75.CrossRefGoogle ScholarPubMed
Zuo, Y., Lubischer, J. L., Kang, H.et al. (2004). Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination. J Neurosci 24, 10999–1009.CrossRefGoogle ScholarPubMed
Adam, A. M., Atkinson, P. F., Hall, S. M., Hughes, R. A. and Taylor, W. A. (1989). Chronic experimental allergic neuritis in Lewis rats. Neuropathol Appl Neurobiol 15, 249–64.CrossRefGoogle ScholarPubMed
Adams, D., Festenstein, H., Gibson, J. D.et al. (1979). HLA antigens in chronic relapsing idiopathic inflammatory polyneuropathy. J Neurol Neurosurg Psychiatry 42, 184–6.CrossRefGoogle ScholarPubMed
Agresti, C., D'Urso, D. and Levi, G. (1996). Reversible inhibitory effects of interferon-gamma and tumour necrosis factor-alpha on oligodendroglial lineage cell proliferation and differentiation in vitro. Eur J Neurosci 8, 1106–16.CrossRefGoogle ScholarPubMed
Ahmed, M. R., Basha, S. H., Gopinath, D., Muthusamy, R. and Jayakumar, R. (2005). Initial upregulation of growth factors and inflammatory mediators during nerve regeneration in the presence of cell adhesive peptide-incorporated collagen tubes. J Peripher Nerv Syst 10, 17–30.CrossRefGoogle ScholarPubMed
Ahn, M., Lee, Y., Moon, C.et al. (2004). Upregulation of osteopontin in Schwann cells of the sciatic nerves of Lewis rats with experimental autoimmune neuritis. Neurosci Lett 372, 137–41.CrossRefGoogle ScholarPubMed
Ainsworth, P. J., Bolton, C. F., Murphy, B. C., Stuart, J. A. and Hahn, A. F. (1998). Genotype/phenotype correlation in affected individuals of a family with a deletion of the entire coding sequence of the connexin 32 gene. Hum Genet 103, 242–4.CrossRefGoogle ScholarPubMed
Akassoglou, K., Probert, L., Kontogeorgos, G. and Kollias, G. (1997). Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 158, 438–45.Google Scholar
Akassoglou, K., Bauer, J., Kassiotis, G.et al. (1998). Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol 153, 801–13.CrossRefGoogle ScholarPubMed
Akassoglou, K., Bauer, J., Kassiotis, G.et al. (1999). Transgenic models of TNF induced demyelination. Adv Exp Med Biol 468, 245–59.CrossRefGoogle ScholarPubMed
Akassoglou, K., Kombrinck, K. W., Degen, J. L. and Strickland, S. (2000). Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol 149, 1157–66.CrossRefGoogle ScholarPubMed
Akassoglou, K., Yu, W. M., Akpinar, P. and Strickland, S. (2002). Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron 33, 861–75.CrossRefGoogle ScholarPubMed
Al-Din, A. N., Anderson, M., Bickerstaff, E. R. and Harvey, I. (1982). Brainstem encephalitis and the syndrome of Miller Fisher: a clinical study. Brain 105 (Pt 3), 481–95.CrossRefGoogle Scholar
Albrecht, D. E. and Froehner, S. C. (2004). DRP2 and Dp116 Form Spatially Distinct Dystrophin-like Complexes in the Schwann Cells of Peripheral Nerves. American Society for Cell Biology, Washington DC, Abstract.Google Scholar
Allen, D., Giannopoulos, K., Gray, I.et al. (2005). Antibodies to peripheral nerve myelin proteins in chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst 10, 174–80.CrossRefGoogle ScholarPubMed
Allen, N. J., Barres, B. A. (2005). Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15, 542–8.CrossRefGoogle ScholarPubMed
Altevogt, B. M., Kleopa, K. A., Postma, F. R., Scherer, S. S. and Paul, D. L. (2002). Cx29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22, 6458–70.CrossRefGoogle ScholarPubMed
Alvarez-Buylla, A. and Lim, D. A. (2004). For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–6.CrossRefGoogle Scholar
American Academy of Neurology (1991). Research criteria for diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP). Report from an Ad Hoc Subcommittee of the American Academy of Neurology AIDS Task Force. Neurology 41, 617–18.CrossRef
Ammoumi, A. A., Pertschuk, L., Daras, M. and Rosen, A. D. (1980). Guillain–Barré syndrome; results of direct immunofluorescent study. NY State J Med 80, 1434–5.Google ScholarPubMed
Andorfer, B., Kieseier, B. C., Mathey, E.et al. (2001). Expression and distribution of transcription factor NF-kappaB and inhibitor IkappaB in the inflamed peripheral nervous system. J Neuroimmunol 116, 226–32.CrossRefGoogle ScholarPubMed
Andrews, T., Zhang, P. and Bhat, N. R. (1998). TNFalpha potentiates IFNgamma-induced cell death in oligodendrocyte progenitors. J Neurosci Res 54, 574–83.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Anzini, P., Neuberg, D. H., Schachner, M.et al. (1997). Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17, 4545–51.CrossRefGoogle ScholarPubMed
Aoki, E., Semba, R. and Kashiwamata, S. (1991). Evidence for the presence of L-arginine in the glial components of the peripheral nervous system. Brain Res 559, 159–62.CrossRefGoogle ScholarPubMed
Apostolski, S., Sadiq, S. A., Hays, A.et al. (1994). Identification of Gal(beta 1–3)GalNAc bearing glycoproteins at the nodes of Ranvier in peripheral nerve. J Neurosci Res 38, 134–41.CrossRefGoogle ScholarPubMed
Araque, A., Parpura, V., Sanzgiri, R. P. and Haydon, P. G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22, 208–15.CrossRefGoogle ScholarPubMed
Archelos, J. J., Roggenbuck, K., Schneider-Schaulies, J., Linington, C., Toyka, K. V. and Hartung, H. P. (1993). Production and characterization of monoclonal antibodies to the extracellular domain of P0. J Neurosci Res 35, 46–53.CrossRefGoogle ScholarPubMed
Arenander, A. and De Vellis, J. (1999). Development of the nervous system. Siegel, G. (Ed.) Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. Raven Press, New York, pp. 573–606.Google Scholar
Argall, K. G., Armati, P. J., Pollard, J. D. and Bonner, J. (1992a). Interactions between CD4+ T-cells and rat Schwann cells in vitro. 2. Cytotoxic effects of P2-specific CD4+ T-cell lines on Lewis rat Schwann cells. J Neuroimmunol 40, 19–29.CrossRefGoogle Scholar
Argall, K. G., Armati, P. J., Pollard, J. D., Watson, E. and Bonner, J. (1992b). Interactions between CD4+ T-cells and rat Schwann cells in vitro. 1. Antigen presentation by Lewis rat Schwann cells to P2-specific CD4+ T-cell lines. J Neuroimmunol 40, 1–18.CrossRefGoogle Scholar
Armati, P. J. and Pollard, J. D. (1987). Cytotoxic response of serum from patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Acta Neurol Scand 76, 24–7.CrossRefGoogle Scholar
Armati, P. J. and Pollard, J. D. (1996). Immunology of the Schwann cell. Baillieres Clin Neurol 5, 47–64.Google ScholarPubMed
Armati, P. J., Pollard, J. D. and Gatenby, P. (1990). Rat and human Schwann cells in vitro can synthesize and express MHC molecules. Muscle Nerve 13, 106–16.CrossRefGoogle ScholarPubMed
Arroyo, E. J. and Scherer, S. S. (2000). On the molecular architecture of myelinated fibers. Histochem Cell Biol 113, 1–18.CrossRefGoogle ScholarPubMed
Arroyo, E. J., Sirkowski, E. E., Chitale, R. and Scherer, S. S. (2004). Acute demyelination disrupts the molecular organization of PNS nodes. J Comp Neurol 479, 424–34.CrossRefGoogle Scholar
Arteaga, M. F., Gutierrez, R., Avila, J., Mobasheri, A., Diaz-Flores, L. and Martin-Vasallo, P. (2004). Regeneration influences expression of the Na+, K+-atpase subunit isoforms in the rat peripheral nervous system. Neuroscience 129, 691–702.CrossRefGoogle ScholarPubMed
Asbury, A. K. and Cornblath, D. R. (1990). Assessment of current diagnostic criteria for Guillain–Barré syndrome. Ann Neurol 27 Suppl, S21–4.CrossRefGoogle ScholarPubMed
Asbury, A. K., Arnason, B. G. and Adams, R. D. (1969). The inflammatory lesion in idiopathic polyneuritis. Its role in pathogenesis. Medicine (Baltimore) 48, 173–215.CrossRefGoogle ScholarPubMed
Asbury, A. K., Arnason, B. G. W., Karp, H. R. and McFarlin, D. F. (1978). Criteria for diagnosis of Guillain–Barré syndrome. Ann Neurol 3, 565–6.Google Scholar
Astrow, S. H., Son, Y. J. and Thompson, W. J. (1994). Differential neural regulation of a neuromuscular junction-associated antigen in muscle fibers and Schwann cells. J Neurobiol 25, 937–52.CrossRefGoogle ScholarPubMed
Astrow, S. H., Tyner, T. R., Nguyen, M. T. and Ko, C. P. (1997). A Schwann cell matrix component of neuromuscular junctions and peripheral nerves. J Neurocytol 26, 63–75.CrossRefGoogle ScholarPubMed
Astrow, S. H., Qiang, H. and Ko, C. P. (1998). Perisynaptic Schwann cells at neuromuscular junctions revealed by a novel monoclonal antibody. J Neurocytol 27, 667–81.CrossRefGoogle ScholarPubMed
Asundi, V. K., Erdman, R., Stahl, R. C. and Carey, D. J. (2003). Matrix metalloproteinase-dependent shedding of syndecan-3, a transmembrane heparan sulfate proteoglycan, in Schwann cells. J Neurosci Res 73, 593–602.CrossRefGoogle ScholarPubMed
Atanasoski, S., Notterpek, L., Lee, H. Y.et al. (2004). The protooncogene Ski controls Schwann cell proliferation and myelination. Neuron 43, 499–511.CrossRefGoogle ScholarPubMed
Augustien, G. J., Burns, M. E., DeBello, W. M.et al. (1999). Proteins involved in synaptic vesicle trafficking. J Physiol 520, 33–41.CrossRefGoogle Scholar
Auld, D. S. and Robitaille, R. (2003a). Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron 40, 389–400.CrossRefGoogle Scholar
Auld, D. S. and Robitaille, R. (2003b). Perisynaptic Schwann cells at the neuromuscular junction: nerve- and activity-dependent contributions to synaptic efficacy, plasticity, and reinnervation. Neuroscientist 9, 144–57.CrossRefGoogle Scholar
Auld, D. S., Colomar, A., Belair, E. L.et al. (2003). Modulation of neurotransmission by reciprocal synapse–glial interactions at the neuromuscular junction. J Neurocytol 32, 1003–15.CrossRefGoogle ScholarPubMed
Awasaki, T. and Ito, K. (2004). Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr Biol 14, 668–77.CrossRefGoogle ScholarPubMed
Awatramani, R., Shumas, S., Kamholz, J. and Scherer, S. S. (2002). TGFbeta1 modulates the phenotype of Schwann cells at the transcriptional level. Mol Cell Neurosci 19, 307–19.CrossRefGoogle ScholarPubMed
Bachelin, C., Lachapelle, F., Girard, C.et al. (2005). Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain 128, 540–9.CrossRefGoogle ScholarPubMed
Baggiolini, M. (2001). Chemokines in pathology and medicine. J Intern Med 250, 91–104.CrossRefGoogle Scholar
Bai, Y., Ianokova, E., Pu, Q.et al. (in press). R69C mutation in myelin protein zero causes early onset CMT1B with demyelination, dysmyelination and axonal loss. Arch Neurol.Google Scholar
Balarezo, F. S., Muller, R. C., Weiss, R. G.et al. (2003). Soft tissue perineuriomas in children: report of three cases and review of the literature corrected. Pediatr Dev Pathol 6, 137–41.CrossRefGoogle ScholarPubMed
Balice-Gordon, R. J., Bone, L. J. and Scherer, S. S. (1998). Functional gap junctions in the Schwann cell myelin sheath. J Cell Biol 142, 1095–104.CrossRefGoogle ScholarPubMed
Ballesteros, J. A., Abrams, C. K., Oh, S., Verselis, V. K., Weinstein, H. and Bargiello, T. A. (1999). The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions. Biophy J 76, 2887–98.Google Scholar
Bao, J., Wolpowitz, D., Role, L. W. and Talmage, D. A. (2003). Back signaling by the Nrg-1 intracellular domain. J Cell Biol 161, 1133–41.CrossRefGoogle ScholarPubMed
Barohn, R. J., Kissel, J. T., Warmolts, J. R. and Mendell, J. R. (1989). Chronic inflammatory demyelinating polyradiculoneuropathy. Clinical characteristics, course, and recommendations for diagnostic criteria. Arch Neurol 46, 878–84.CrossRefGoogle ScholarPubMed
Baron Van Evercooren, A., Kleiman, H. K., Seppa, J., Rentier, B. and Dubois-Dalcq, M. (1982). Fibronectin promotes rat Schwann cell growth and motility. J Cell Biol 93, 211–16.CrossRefGoogle ScholarPubMed
Baxter, R. V., Ben Othmane, K., Rochelle, J. M.et al. (2001). Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot–Marie–Tooth disease type 4A/8q21. Nat Genet 30, 21–2.CrossRefGoogle ScholarPubMed
Be'eri, H., Reichert, F., Saada, A. and Rotshenker, S. (1998). The cytokine network of wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci 10, 2707–13.CrossRefGoogle ScholarPubMed
Beams, H. W. and Evans, T. C. (1953). Electron micrographs of motor end-plates. Proc Soc Exp Biol Med 82, 344–6.CrossRefGoogle ScholarPubMed
Bellone, E., Di Maria, E., Soriani, S.et al. (1999). A novel mutation (D305V) in the early growth response 2 gene is associated with severe Charcot–Marie–Tooth type 1 disease. Hum Mutat 14, 353–4.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Belmadani, A., Tran, P. B., Ren, D., Assimacopoulos, S., Grove, E. A. and Miller, R. J. (2005). The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J Neurosci 25, 3995–4003.CrossRefGoogle ScholarPubMed
Bennett, V. and Baines, A. J. (2001). Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81, 1353–92.CrossRefGoogle ScholarPubMed
Bennett, C. L., Shirk, A. J., Huynh, H. M.et al. (2004). SIMPLE mutation in demyelinating neuropathy and distribution in sciatic nerve. Ann Neurol 55, 713–20.CrossRefGoogle ScholarPubMed
Berciano, J., Garcia, A., Calleja, J. and Combarros, O. (2000). Clinico-electrophysiological correlation of extensor digitorum brevis muscle atrophy in children with Charcot–Marie–Tooth disease 1A duplication. Neuromuscul Disord 10, 419–24.CrossRefGoogle ScholarPubMed
Bergoffen, J., Scherer, S. S., Wang, S.et al. (1993). Connexin mutations in X-linked Charcot–Marie–Tooth disease. Science 262, 2039–42.CrossRefGoogle ScholarPubMed
Bergsteinsdottir, K., Kingston, A., Mirsky, R. and Jessen, K. R. (1991). Rat Schwann cells produce interleukin-1. J Neuroimmunol 34, 15–23.CrossRefGoogle ScholarPubMed
Bergsteinsdottir, K., Kingston, A. and Jessen, K. R. (1992). Rat Schwann cells can be induced to express major histocompatibility complex class II molecules in vivo. J Neurocytol 21, 382–90.CrossRefGoogle ScholarPubMed
Bermingham, J. R., Scherer, S. S., O'Connell, S.et al. (1996). Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes & Development 10, 1751–62.CrossRefGoogle ScholarPubMed
Bermingham, J. R. Jr., Shearin, H., Pennington, J.et al. (2006). The claw paw mutation reveals a role for Lgi4 in peripheral nerve development. Nat Neurosci 9, 76–84.CrossRefGoogle ScholarPubMed
Berthold, C. H., Fraher, J. P., King, R. H. M. and Rydmark, M. (2005). Microscopic anatomy of the peripheral nervous system. Dyck, P. J., Thomas, P. K. (Eds.) Peripheral Neuropathy, 4th Edn, Elsevier Saunders, Philadelphia, PA, pp. 35–92.Google Scholar
Bigbee, J. W., Yoshino, J. E. and DeVries, G. H. (1987). Morphological and proliferative responses of cultured Schwann cells following rapid phagocytosis of a myelin-enriched fraction. J Neurocytol 16, 487–96.CrossRefGoogle ScholarPubMed
Bigotte, L., Arvidson, B. and Olsson, Y. (1982). Cytofluorescence localization of adriamycin in the nervous system. II. Distribution of the drug in the somatic and autonomic peripheral nervous systems of normal adult mice after intravenous injection. Acta Neuropathol (Berl) 57, 130–6.CrossRefGoogle ScholarPubMed
Birks, R., Huxley, H. E. and Katz, B. (1960a). The fine structure of the neuromuscular junction of the frog. J Physiol 150, 134–44.CrossRefGoogle Scholar
Birks, R., Katz, B. and Miledi, R. (1960b). Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J Physiol 150, 145–68.CrossRefGoogle Scholar
Bishop, D. L., Misgeld, T., Walsh, M. K., Gan, W. B. and Lichtman, J. W. (2004). Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651–61.CrossRefGoogle ScholarPubMed
Bitgood, M. J. and McMahon, A. P. (1995). Hedgehog and Bmp genes are coexpressed at many diverse sites of cell–cell interaction in the mouse embryo. Develop Biol 172, 126–38.CrossRefGoogle ScholarPubMed
Bixby, S., Kruger, G. M., Mosher, J. T., Joseph, N. M. and Morrison, S. J. (2002). Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35, 643–56.CrossRefGoogle ScholarPubMed
Bjartmar, C., Wujek, J. R. and Trapp, B. D. (2003). Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206, 165–71.CrossRefGoogle ScholarPubMed
Blakemore, W. F. (2005). The case for a central nervous system (CNS) origin for the Schwann cells that remyelinate CNS axons following concurrent loss of oligodendrocytes and astrocytes. Neuropathol Appl Neurobiol 31, 1–10.CrossRefGoogle ScholarPubMed
Blanchard, A. D., Sinanan, A., Parmantier, E.et al. (1996). Oct-6 (SCIP/Tst-1) is expressed in Schwann cell precursors, embryonic Schwann cells, and postnatal myelinating Schwann cells: comparison with Oct-1, Krox-20, and Pax-3. J Neurosci Res 46, 630–40.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Boeke, J. (1949). The sympathetic endformation, its synaptology, the interstitial cells, the periterminal network, and its bearing on the neurone theory. Acta Anatomica 8, 18–61.CrossRefGoogle ScholarPubMed
Boerkoel, C. F., Takashima, H., Stankiewicz, P.et al. (2001). Periaxin mutations cause recessive Dejerine–Sottas neuropathy. Am J Hum Genet 68, 325–33.CrossRefGoogle ScholarPubMed
Boiko, T., Rasband, M. N., Levinson, S. R.et al. (2001). Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30, 91–104.CrossRefGoogle ScholarPubMed
Bolin, L. M., Verity, A. N., Silver, J. E., Shooter, E. M. and Abrams, J. S. (1995). Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem 64, 850–8.CrossRefGoogle ScholarPubMed
Bolino, A., Muglia, M., Conforti, F. L. (2000). Charcot–Marie–Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 25, 17–19.CrossRefGoogle ScholarPubMed
Bonetti, B., Valdo, P., Stegagno, C.et al. (2000). Tumor necrosis factor alpha and human Schwann cells: signalling and phenotype modulation without cell death. J Neuropathol Exp Neurol 59, 74–84.CrossRefGoogle ScholarPubMed
Bonnon, C., Goutebroze, L., Denisenko Nehrbass, N., Girault, J. A. and Faivre Sarrailh, C. (2003). The paranodal complex of F3/Contactin and Caspr/Paranodin traffics to the cell surface via a non-conventional pathway. J Biol Chem 278, 48339–47.CrossRefGoogle Scholar
Bouchard, C., Lacroix, C., Plante, V.et al. (1999). Clinicopathologic findings and prognosis of chronic inflammatory demyelinating polyneuropathy. Neurology 52, 498–503.CrossRefGoogle ScholarPubMed
Bourde, O., Kiefer, R., Toyka, K. V. and Hartung, H. P. (1996). Quantification of interleukin-6 mRNA in wallerian degeneration by competitive reverse transcription polymerase chain reaction. J Neuroimmunol 69, 135–40.Google ScholarPubMed
Bourque, M. J. and Robitaille, R. (1998). Endogenous peptidergic modulation of perisynaptic Schwann cells at the frog neuromuscular junction. J Physiol 512 (Pt 1), 197–209.CrossRefGoogle ScholarPubMed
Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W. and Taylor, J. M. (1985). Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76, 1501–13.CrossRefGoogle ScholarPubMed
Bradley, W. G. and Jenkison, M. (1973). Abnormalities of peripheral nerves in murine muscular dystrophy. J Neurol Sci 18, 227–47.CrossRefGoogle ScholarPubMed
Bradley, W. G., Jaros, E. and Jenkison, M. (1977). The nodes of Ranvier in the nerves of mice with muscular dystrophy. J Neuropathol Exp Neurol 36, 797–806.CrossRefGoogle ScholarPubMed
Brady, S. T., Witt, A. S., Kirkpatrick, L. L.et al. (1999). Formation of compact myelin is required for maturation of the axonal cytoskeleton. J Neurosci 19, 7278–88.CrossRefGoogle ScholarPubMed
Braun, N., Sevigny, J., Robson, S. C., Hammer, K., Hanani, M. and Zimmermann, H. (2004). Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45, 124–32.CrossRefGoogle ScholarPubMed
Braunewell, K. H., Martini, R., LeBaron, R.et al. (1995). Up-regulation of a chondroitin sulphate epitope during regeneration of mouse sciatic nerve: evidence that the immunoreactive molecules are related to the chondroitin sulphate proteoglycans decorin and versican. Eur J Neurosci 7, 792–804.CrossRefGoogle ScholarPubMed
Bray, G. M., Perkins, S., Peterson, A. C. and Aguayo, A. J. (1977). Schwann cell multiplication deficit in nerve roots of newborn dystrophic mice. A radioautographic and ultrastructural study. J Neurol Sci 32, 203–12.CrossRefGoogle ScholarPubMed
Brechenmacher, C., Vital, C., Deminiere, C.et al. (1987). Guillain–Barré syndrome: an ultrastructural study of peripheral nerve in 65 patients. Clin Neuropathol 6, 19–24.Google ScholarPubMed
Brennan, A., Dean, C. H., Zhang, A. L., Cass, D. T., Mirsky, R. and Jessen, K. R. (2000). Endothelins control the timing of Schwann cell generation in vitro and in vivo. Develop Biol 227, 545–57.CrossRefGoogle ScholarPubMed
Brett, F. M., Costigan, D., Farrell, M. A.et al. (1998). Merosin-deficient congenital muscular dystrophy and cortical dysplasia. Eur J Paediatr Neurol 2, 77–82.CrossRefGoogle ScholarPubMed
Britsch, S., Li, L., Kirchhoff, S.et al. (1998). The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes & Development 12, 1825–36.CrossRefGoogle ScholarPubMed
Britsch, S., Goerich, D. E., Riethmacher, D.et al. (2001). The transcription factor Sox10 is a key regulator of peripheral glial development. Genes & Development 15, 66–78.CrossRefGoogle ScholarPubMed
Brown, M. C., Holland, R. L. and Hopkins, W. G. (1981). Motor nerve sprouting. Ann Rev Neurosci 4, 17–42.CrossRefGoogle ScholarPubMed
Bruck, W. (1997). The role of macrophages in Wallerian degeneration. Brain Pathol 7, 741–52.CrossRefGoogle ScholarPubMed
Bruzzone, R. and Ressot, C. (1997). Connexins, gap junctions and cell–cell signalling in the nervous system. Eur J Neurosci 9, 1–6.CrossRefGoogle Scholar
Bruzzone, R., White, T. W., Scherer, S. S., Fischbeck, K. H. and Paul, D. L. (1994). Null mutations of connexin32 in patients with X-linked Charcot–Marie–Tooth disease. Neuron 13, 1253–60.CrossRefGoogle ScholarPubMed
Bruzzone, R., White, T. W. and Paul, D. L. (1996). Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238, 1–27.CrossRefGoogle ScholarPubMed
Bult, C., Kibbe, W. A., Snoddy, J.et al. (2004). A genome end-game: understanding gene function in the nervous system. Nat Neurosci 7, 484–5.CrossRefGoogle Scholar
Bunge, M. B. (1993a). Schwann cell regulation of extracellular matrix biosynthesis and assembly. Dyck, P. J., Thomas, P. K., Griffin, J., Low, P. A., Poduslo, J. F. (Eds.) Peripheral Neuropathy, 3rd Edn, W. B. Saunders, Philadelphia, pp. 299–316.Google Scholar
Bunge, R. P. (1993b). Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Current Opin Neurobiol 3, 805–9.CrossRefGoogle Scholar
Bunge, R. P. (1994). The role of the Schwann cell in trophic support and regeneration. J Neurol 242, S19–S21.CrossRefGoogle ScholarPubMed
Bunge, M. W. P. and Wood, P. (2006). Transplantation of Schwann cells and olfactory ensheathing cells to promote regeneration in the CNS. Selzer, M.et al. (Eds.) Textbook of Neural Repair and Rehabilitation. Cambridge University Press, Cambridge. pp. 513–31.Google Scholar
Bunge, R. P. and Bunge, M. B. (1983). Interrelationship between Schwann cell function and extracellular matrix production. Trends Neurosci499–505.CrossRefGoogle Scholar
Byers, T. J., Lidov, H. G. and Kunkel, L. M. (1993). An alternative dystrophin transcript specific to peripheral nerve. Nat Genet 4, 77–81.CrossRefGoogle ScholarPubMed
Caccamo, D. V., Ho, K. L. and Garcia, J. H. (1992). Cauda equina tumor with ependymal and paraganglionic differentiation. Hum Pathol 23, 835–38.CrossRefGoogle ScholarPubMed
Cajal, S. R., DeFelipe, J. and Jones, E. G. (1991). Cajal's Degeneration and Regeneration of the Nervous System. Oxford University Press, Oxford.CrossRefGoogle Scholar
Calabresi, P. A., Fields, N. S., Maloni, H. W.et al. (1998). Phase 1 trial of transforming growth factor beta 2 in chronic progressive MS. Neurology 51, 289–92.CrossRefGoogle ScholarPubMed
Cambier, J. C., Littman, D. R. and Weiss, A. (2001). Antigen presentation to T lymphocytes. Janeway, J. (Ed.) Immunobiology. Garland Publishing, New York.Google Scholar
Cameron-Curry, P. (1995). Glial lineage of the peripheral nervous system. C R Seances Soc Biol Fil 189, 253–61.Google ScholarPubMed
Cameron-Curry, P., Dulac, C. and Douarin, N. M. (1993). Negative regulation of Schwann cell myelin protein gene expression by the dorsal root ganglionic microenvironment. Eur J Neurosci 5, 594–604.CrossRefGoogle ScholarPubMed
Cammer, W. and Tansey, F. A. (1987). Immunocytochemical localization of carbonic anhydrase in myelinated fibers in peripheral nerves of rat and mouse. J Histochem Cytochem 35, 865–70.CrossRefGoogle Scholar
Campana, W. M. and Myers, R. R. (2003). Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur J Neurosci 18, 1497–506.CrossRefGoogle ScholarPubMed
Campana, W. M., Myers, R. R. and Rearden, A. (2003). Identification of PINCH in Schwann cells and DRG neurons: shuttling and signaling after nerve injury. Glia 41, 213–23.CrossRefGoogle ScholarPubMed
Cao, G. and Ko, C. P. (2001). Schwann cell-conditioned medium modulates synaptic activities at Xenopus neuromuscular junctions in vitro. Society for Neuroscience Abstracts, 711, 12.Google Scholar
Carey, D. J. (1997). Syndecans: multifunctional cell-surface co-receptors. Biochem J 327 (Part 1), 1–16.CrossRefGoogle ScholarPubMed
Carey, D. J., Todd, M. S. and Rafferty, C. M. (1986). Schwann cell myelination: induction by exogenous basement membrane-like extracellular matrix. J Cell Biol 102, 2254–63.CrossRefGoogle ScholarPubMed
Carey, D. J., Crumbling, D. M., Stahl, R. C. and Evans, D. M. (1990). Association of cell surface heparan sulfate proteoglycans of Schwann cells with extracellular matrix proteins. J Biol Chem 265, 20627–33.Google ScholarPubMed
Carey, D. J., Evans, D. M., Stahl, R. C.et al. (1992). Molecular cloning and characterization of N-syndecan, a novel transmembrane heparan sulfate proteoglycan. J Cell Biol 117, 191–201.CrossRefGoogle ScholarPubMed
Carey, D. J., Stahl, R. C., Asundi, V. K. and Tucker, B. (1993). Processing and subcellular distribution of the Schwann cell lipid-anchored heparan sulfate proteoglycan and identification as glypican. Exp Cell Res 208, 10–18.CrossRefGoogle ScholarPubMed
Carey, D. J., Stahl, R. C., Cizmeci-Smith, G. and Asundi, V. K. (1994). Syndecan-1 expressed in Schwann cells causes morphological transformation and cytoskeletal reorganization and associates with actin during cell spreading. J Cell Biol 124, 161–70.CrossRefGoogle ScholarPubMed
Castonguay, A. and Robitaille, R. (2001). Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse. J Neurosci 21, 1911–22.CrossRefGoogle ScholarPubMed
Castro, C., Gomez-Hernandez, J. M., Silander, K. and Barrio, L. C. (1999). Altered formation of hemichannels and gap junction channels caused by C-terminal connexin-32 mutations. J Neurosci 19, 3752–60.CrossRefGoogle ScholarPubMed
Causey, G. (1960). The Cell of Schwann. E&S Livingstone Ltd, Edinburgh.Google Scholar
Cavaletti, G., Fabbrica, D., Minoia, C., Frattola, L. and Tredici, G. (1998). Carboplatin toxic effects on the peripheral nervous system of the rat. Ann Oncol 9, 443–7.CrossRefGoogle ScholarPubMed
Ceuterick-de Groote, C., Jonghe, P., Timmerman, V. (2001). Infantile demyelinating neuropathy associated with a de novo point mutation on Ser72 in PMP22 and basal lamina onion bulbs in skin biopsy. Pathol Res Pract 197, 193–8.CrossRefGoogle ScholarPubMed
Chalasani, S. H., Baribaud, F., Coughlan, C. M.et al. (2003a). The chemokine stromal cell-derived factor-1 promotes the survival of embryonic retinal ganglion cells. J Neurosci 23, 4601–12.CrossRefGoogle Scholar
Chalasani, S. H., Sabelko, K. A., Sunshine, M. J., Littman, D. R. and Raper, J. A. (2003b). A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 23, 1360–71.CrossRefGoogle Scholar
Chan, et al. (2006). The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314, 832–6.CrossRefGoogle ScholarPubMed
Chan, J. R., Cosgaya, J. M., Wu, Y. J. and Shooter, E. M. (2001). Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Nat Acad Sci USA 98, 14661–8.CrossRefGoogle ScholarPubMed
Chan, J. R., Watkins, T. A., Cosgaya, J. M.et al. (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43, 183–91.CrossRefGoogle ScholarPubMed
Chance, P. F., Alderson, M. K., Leppig, K. A.et al. (1993). DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72, 143–51.CrossRefGoogle ScholarPubMed
Chandross, K. J., Spray, D. C., Cohen, R. I.et al. (1996). TNF alpha inhibits Schwann cell proliferation, connexin46 expression, and gap junctional communication. Mol Cell Neurosci 7, 479–500.CrossRefGoogle ScholarPubMed
Chao, C. C. and Hu, S. (1994). Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev Neurosci 16, 172–9.CrossRefGoogle ScholarPubMed
Charcot, JM. and Marie, P. (1886). Sure une forme particulaire d'atrophie musculaire progressive souvent familial debutant par les pieds et les jambes et atteingnant plus tard les mains. Rev Med(Paris) 6, 97–138.Google Scholar
Chen, C., Bharucha, V., Chen, Y.et al. (2002). Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits. Proc Nat Acad Sci USA 99, 17072–7.CrossRefGoogle Scholar
Chen, C. L., Westenbroek, R. E., Xu, X. R.et al. (2004). Mice lacking sodium channel beta 1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J Neurosci 24, 4030–42.CrossRefGoogle Scholar
Chen, L. and Ko, C. P. (1994). Extension of synaptic extracellular matrix during nerve terminal sprouting in living frog neuromuscular junctions. J Neurosci 14, 796–808.CrossRefGoogle ScholarPubMed
Chen, L. E., Seaber, A. V., Wong, G. H. and Urbaniak, J. R. (1996). Tumor necrosis factor promotes motor functional recovery in crushed peripheral nerve. Neurochem Int 29, 197–203.Google ScholarPubMed
Chen, L. L., Folsom, D. B. and Ko, C. P. (1991). The remodeling of synaptic extracellular matrix and its dynamic relationship with nerve terminals at living frog neuromuscular junctions. J Neurosci 11, 2920–30.CrossRefGoogle ScholarPubMed
Chen, L. M., Bailey, D. and Fernandez-Valle, C. (2000). Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J Neurosci 20, 3776–84.CrossRefGoogle Scholar
Chen, S., Rio, C., Ji, R. R., Dikkes, P., Coggeshall, R. E., Woolf, C. J. and Corfas, G. (2003). Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nat Neurosci 6, 1186–93.CrossRefGoogle ScholarPubMed
Chen, Z. L. and Strickland, S. (2003). Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163, 889–99.CrossRefGoogle ScholarPubMed
Cheng, H. L., Russell, J. W. and Feldman, E. L. (1999). IGF-I promotes peripheral nervous system myelination. Ann NY Acad Sci 883, 124–30.CrossRefGoogle ScholarPubMed
Cheng, H. L., Steinway, M., Delaney, C. L., Franke, T. F. and Feldman, E. L. (2000). IGF-I promotes Schwann cell motility and survival via activation of Akt. Mol Cell Endocrinol 170, 211–15.CrossRefGoogle ScholarPubMed
Chernousov, M. A., Rothblum, K., Tyler, W. A., Stahl, R. C. and Carey, D. J. (2000). Schwann cells synthesize type V collagen that contains a novel alpha 4 chain. Molecular cloning, biochemical characterization, and high affinity heparin binding of alpha 4(V) collagen. J Biol Chem 275, 28208–15.Google ScholarPubMed
Chernousov, M. A. and Carey, D. J. (2003). AlphaVbeta8 integrin is a Schwann cell receptor for fibrin. Exp Cell Res 291, 514–24.CrossRefGoogle ScholarPubMed
Chernousov, M. A., Stahl, R. C. and Carey, D. J. (2001). Schwann cell type V collagen inhibits axonal outgrowth and promotes Schwann cell migration via distinct adhesive activities of the collagen and noncollagen domains. J Neurosci 21, 6125–35.CrossRefGoogle ScholarPubMed
Chiba, A., Kusunoki, S., Shimizu, T. and Kanazawa, I. (1992). Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller–Fisher syndrome. Ann Neurol 31, 677–9.CrossRefGoogle ScholarPubMed
Chiba, A., Matsumura, K., Yamada, H.et al. (1997). Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J Biol Chem 272, 2156–62.CrossRefGoogle ScholarPubMed
Chiu, S. Y., Schrager, P. and Ritchie, J. M. (1984). Neuronal-type Na+ and K+ channels in rabbit cultured Schwann cells. Nature 311, 156–7.CrossRefGoogle Scholar
Chow, I. and Poo, M. M. (1985). Release of acetylcholine from embryonic neurons upon contact with muscle cell. J Neurosci 5, 1076–82.CrossRefGoogle ScholarPubMed
Christopherson, K. S., Ullian, E. M., Stokes, C. C.et al. (2005). Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–33.CrossRefGoogle ScholarPubMed
Chun, S. J., Rasband, M. N., Sidman, R. L., Habib, A. A. and Vartanian, T. (2003). Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J Cell Biol 163, 397–408.CrossRefGoogle ScholarPubMed
Cifuentes-Diaz, C., Velasco, E., Meunier, F. A.et al. (1998). The peripheral nerve and the neuromuscular junction are affected in the tenascin-C-deficient mouse. Cell Mol Biol (Noisy-le-Grand) 44, 357–79.Google ScholarPubMed
Ciment, G. (1990). The melanocyte Schwann cell progenitor: a bipotent intermediate in the neural crest lineage. Comments Dev Neurobiol 1, 207–23.Google Scholar
Clegg, D. O., Wingerd, K. L., Hikita, S. T. and Tolhurst, E. C. (2003). Integrins in the development, function and dysfunction of the nervous system. Front Biosci 8, 723–50.CrossRefGoogle Scholar
Colby, J., Nicholson, R., Dickson, K. M.et al. (2000). PMP22 carrying the trembler or trembler-J mutation is intracellularly retained in myelinating Schwann cells. Neurobiol Dis 7, 561–73.CrossRefGoogle ScholarPubMed
Colognato, H., Winkelmann, D. A. and Yurchenco, P. D. (1999). Laminin polymerization induces a receptor-cytoskeleton network. J Cell Biol 145, 619–31.CrossRefGoogle ScholarPubMed
Colomar, A. and Robitaille, R. (2004). Glial modulation of synaptic transmission at the neuromuscular junction. Glia 47, 284–9.CrossRefGoogle ScholarPubMed
Constable, A. L., Armati, P. J., Toyka, K. V. and Hartung, H. P. (1994). Production of prostanoids by Lewis rat Schwann cells in vitro. Brain Res 635, 75–80.CrossRefGoogle ScholarPubMed
Constable, A. L., Armati, P. J. and Hartung, H. P. (1999). DMSO induction of the leukotriene LTC4 by Lewis rat Schwann cells. J Neurol Sci 162, 120–6.CrossRefGoogle ScholarPubMed
Constantin, G., Piccio, L., Bussini, S.et al. (1999). Induction of adhesion molecules on human Schwann cells by proinflammatory cytokines, an immunofluorescence study. J Neurol Sci 170, 124–30.CrossRefGoogle ScholarPubMed
Constantinescu, C. S., Hilliard, B., Lavi, E., Ventura, E., Venkatesh, V. and Rostami, A. (1996). Suppression of experimental autoimmune neuritis by phosphodiesterase inhibitor pentoxifylline. J Neurol Sci 143, 14–18.CrossRefGoogle ScholarPubMed
Cook, D. N., Pisetsky, D. S. and Schwartz, D. A. (2004). Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5, 975–9.CrossRefGoogle ScholarPubMed
Corbin, J. G., Kelly, D., Rath, E. M., Baerwald, K. D., Suzuki, K. and Popko, B. (1996). Targeted CNS expression of interferon-gamma in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol Cell Neurosci 7, 354–70.CrossRefGoogle ScholarPubMed
Corfas, G., Velardez, M. O., Ko, C. P., Ratner, N. and Peles, E. (2004). Mechanisms and roles of axon–Schwann cell interactions. J Neurosci 24, 9250–60.CrossRefGoogle ScholarPubMed
Court, F. A., Sherman, D. L., Pratt, T.et al. (2004). Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431, 191–5.CrossRefGoogle ScholarPubMed
Couteaux, R. (1938). Sur l'origine de la sole des plaques motrices. C R Soc Biol 127, 218–21.Google Scholar
Couteaux, R. (1973). Motor end-plate structure. Bourne, G. H. (Ed.) The Structure and Function of Muscle, 2nd Edn. Academic Press, New York, pp. 483–530.Google Scholar
Coyle, A. J. and Gutierrez-Ramos, J. C. (2001). The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nat Immunol 2, 203–9.CrossRefGoogle ScholarPubMed
Crawford, K. and Armati, P. J. (1982). The development of human fetal dorsal root ganglia in vitro: the first 20 days. Neuropathol Appl Neurobiol 8, 477–88.CrossRefGoogle ScholarPubMed
Cuesta, A., Pedrola, L., Sevilla, T.et al. (2001). The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot–Marie–Tooth type 4A disease. Nat Genet 30, 22–5.CrossRefGoogle ScholarPubMed
Culican, S. M., Nelson, C. C. and Lichtman, J. W. (1998). Axon withdrawal during synapse elimination at the neuromuscular junction is accompanied by disassembly of the postsynaptic specialization and withdrawal of Schwann cell processes. J Neurosci 18, 4953–65.CrossRefGoogle ScholarPubMed
Cummings, J. F., Lahunta, A. and Mitchell, W. J. Jr. (1983). Ganglioradiculitis in the dog. A clinical, light- and electron-microscopic study. Acta Neuropathol (Berl) 60, 29–39.CrossRefGoogle ScholarPubMed
Custer, A. W., Kazarinov-Noyes, K., Sakurai, T.et al. (2003). The role of the ankyrin-binding protein NrCAM in node of Ranvier formation. J Neurosci 23, 10032–9.CrossRefGoogle ScholarPubMed
D'Antonio, M., Drogitti, A., Feltri, M. L.et al. (2006). TGF beta type II recepter signalling controls Schwann cell death and proliferation in developing nerves. J Neurosci 26, 8417–27.CrossRefGoogle Scholar
D'Urso, D., Brophy, P. J., Staugaitis, S. M.et al. (1990). Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron 4, 449–60.CrossRefGoogle ScholarPubMed
Dahl, G., Werner, R., Levine, E. and Rabadan-Diehl, C. (1992). Mutational analysis of gap junction formation. Biophys J 62, 172–80.CrossRefGoogle ScholarPubMed
Dahle, C., Ekerfelt, C., Vrethem, M., Samuelsson, M. and Ernerudh, J. (1997). T helper type 2 like cytokine responses to peptides from P0 and P2 myelin proteins during the recovery phase of Guillain–Barré syndrome. J Neurol Sci 153, 54–60.CrossRefGoogle Scholar
Dalakas, M. C. and Engel, W. K. (1981). Chronic relapsing (dysimmune) polyneuropathy: pathogenesis and treatment. Ann Neurol 9 Suppl, 134–45.CrossRefGoogle ScholarPubMed
Daniloff, J. K., Crossin, K. L., Pincon-Raymond, M., Murawsky, M., Rieger, F. and Edelman, G. M. (1989). Expression of cytotactin in the normal and regenerating neuromuscular system. J Cell Biol 108, 625–35.CrossRefGoogle ScholarPubMed
Darbas, A., Jaegle, M., Walbeehm, E.et al. (2004). Cell autonomy of the mouse claw paw mutation. Develop Biol 272, 470–82.CrossRefGoogle ScholarPubMed
Day, N. C., Wood, S. J., Ince, P. G.et al. (1997). Differential localization of voltage-dependent calcium channel alpha1 subunits at the human and rat neuromuscular junction. J Neurosci 17, 6226–35.CrossRefGoogle ScholarPubMed
Waegh, S. and Brady, S. T. (1990). Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions. J Neurosci 10, 1855–65.CrossRefGoogle Scholar
Waegh, S. M., Lee, V. M. and Brady, S. T. (1992). Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68, 451–63.CrossRefGoogle ScholarPubMed
Dedek, K., Kunath, B., Kananura, C., Reuner, U., Jentsch, T. and Steinlein, O. K. (2001). Myokymia and neonatal epilepsy caused by a mutation in the voltage sensory of the KCNQ2 K − channel. Proc Nat Acad Sci USA 98, 12272–7.CrossRefGoogle Scholar
Delpech, A., Girard, N. and Delpech, B. (1982). Localization of hyaluronectin in the nervous system. Brain Res 245, 251–7.CrossRefGoogle Scholar
Dennis, M. J. and Miledi, R. (1974). Electrically induced release of acetylcholine from denervated Schwann cells. J Physiol 237, 431–52.CrossRefGoogle ScholarPubMed
Deodato, F., Sabatelli, M., Ricci, E.et al. (2002). Hypermyelinating neuropathy, mental retardation and epilepsy in a case of merosin deficiency. Neuromuscul Dis 12, 329–98.CrossRefGoogle Scholar
Desaki, J. and Uehara, Y. (1981). The overall morphology of neuromuscular junctions as revealed by scanning electron microscopy. J Neurocytol 10, 101–10.CrossRefGoogle ScholarPubMed
Descarries, L. M., Cai, S., Robitaille, R., Josephson, E. M. and Morest, D. K. (1998). Localization and characterization of nitric oxide synthase at the frog neuromuscular junction. J Neurocytol 27, 829–40.CrossRefGoogle ScholarPubMed
Deschenes, S. M., Walcott, J. L., Wexler, T. L., Scherer, S. S. and Fischbeck, K. H. (1997). Altered trafficking of mutant connexin32. J Neurosci 17, 9077–84.CrossRefGoogle ScholarPubMed
Devaux, J. J. and Scherer, S. S. (2005). Altered ion channels in an animal model of Charcot–Marie–Tooth disease type IA. J Neurosci 25, 1470–80.CrossRefGoogle Scholar
Devaux, J., Alcaraz, G., Grinspan, J.et al. (2003). Kv3.1 is a novel component of CNS nodes. J Neurosci 23, 4509–18.CrossRefGoogle Scholar
Devaux, J. J., Kleopas, A. K., Cooper, E. C. and Scherer, S. S. (2004). KCNQ2 is a nodal K+ channel. J Neurosci 24, 1236–44.CrossRefGoogle ScholarPubMed
Di Muzio, A., Angelis, M. V., Di Fulvio, P.et al. (2003). Dysmyelinating sensory-motor neuropathy in merosin-deficient congenital muscular dystrophy. Muscle Nerve 27, 500–6.CrossRefGoogle ScholarPubMed
Dickens, P., Hill, P. and Bennett, M. R. (2003). Schwann cell dynamics with respect to newly formed motor-nerve terminal branches on mature (Bufo marinus) muscle fibers. J Neurocytol 32, 381–92.CrossRefGoogle ScholarPubMed
Doetsch, F. (2003). The glial identity of neural stem cells. Nature Neurosci 6, 1127–34.CrossRefGoogle ScholarPubMed
Donaghy, M., Gray, J. A., Squier, W.et al. (1989). Recurrent Guillain–Barré syndrome after multiple exposures to cytomegalovirus. Am J Med 87, 339–41.CrossRefGoogle ScholarPubMed
Dong, Z., Brennan, A., Liu, N.et al. (1995). Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15, 585–96.CrossRefGoogle ScholarPubMed
Dong, Z., Sinanan, A., Parkinson, D., Parmantier, E., Mirsky, R. and Jessen, K. R. (1999). Schwann cell development in embryonic mouse nerves. J Neurosci Res 56, 334–48.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Dore-Duffy, P., Balabanov, R., Washington, R. and Swanborg, R. H. (1994). Transforming growth factor beta 1 inhibits cytokine-induced CNS endothelial cell activation. Mol Chem Neuropathol 22, 161–75.CrossRefGoogle ScholarPubMed
Dowsing, B. J., Morrison, W. A., Nicola, N. A., Starkey, G. P., Bucci, T. and Kilpatrick, T. J. (1999). Leukemia inhibitory factor is an autocrine survival factor for Schwann cells. J Neurochem 73, 96–104.CrossRefGoogle ScholarPubMed
Duggins, A. J., McLeod, J. G., Pollard, J. D.et al. (1999). Spinal root and plexus hypertrophy in chronic inflammatory demyelinating polyneuropathy. Brain 122 (Part 7), 1383–90.CrossRefGoogle ScholarPubMed
Dulac, C. and Douarin, N. M. (1991). Phenotypic plasticity of Schwann cells and enteric glial cells in response to the microenvironment. Proc Nat Acad Sci USA 88, 6358–62.CrossRefGoogle ScholarPubMed
Dunaevsky, A. and Connor, E. A. (1995). Long-term maintenance of presynaptic function in the absence of target muscle fibers. J Neurosci 15, 6137–44.CrossRefGoogle ScholarPubMed
Dunaevsky, A. and Connor, E. A. (1998). Stability of frog motor nerve terminals in the absence of target muscle fibers. Dev Biol 194, 61–71.CrossRefGoogle ScholarPubMed
Dunaevsky, A. and Connor, E. A. (2000). F-actin is concentrated in nonrelease domains at frog neuromuscular junctions. J Neurosci 20, 6007–12.CrossRefGoogle ScholarPubMed
Dupin, E., Baroffio, A., Dulac, C., Cameron-Curry, P. and Douarin, N. M. (1990). Schwann-cell differentiation in clonal cultures of the neural crest, as evidenced by the anti-Schwann cell myelin protein monoclonal antibody. Proc Nat Acad Sci USA 87, 1119–23.CrossRefGoogle ScholarPubMed
Dupin, E., Glavieux, C., Vaigot, P. and Douarin, N. M. (2000). Endothelin 3 induces the reversion of melanocytes to glia through a neural crest-derived glial-melanocytic progenitor. Proc Nat Acad Sci USA 97, 7882–7.CrossRefGoogle ScholarPubMed
Dupin, E., Real, C., Glavieux-Pardanaud, C., Vaigot, P. and Douarin, N. M. (2003). Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro. Proc Nat Acad Sci USA 100, 5229–33.CrossRefGoogle ScholarPubMed
Dyck, P. J. (1975). Inherited neuronal degeneration and atrophy affecting peripheral motor, sensory and autonomic neurons. Dyck, P. J. (Ed.) Peripheral Neuropathy, 1st Edn. W.B. Saunders, Philadelphia, p. 825.Google ScholarPubMed
Dyck, P. J. and Lambert, E. H. (1968a). Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. I. Neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch Neurol 18, 603–18.CrossRefGoogle Scholar
Dyck, P. J. and Lambert, E. H. (1968b). Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. II. Neurologic, genetic, and electrophysiologic findings in various neuronal degenerations. Arch Neurol 18, 619–25.CrossRefGoogle Scholar
Dyck, P. J., Lais, A. C., Ohta, M., Bastron, J. A., Okazaki, H. and Groover, R. V. (1975). Chronic inflammatory polyradiculoneuropathy. Mayo Clin Proc 50, 621–37.Google ScholarPubMed
Dytrych, L., Sherman, D. L., Gillespie, C. S. and Brophy, P. J. (1998). Two PDZ domain proteins encoded by the murine periaxin gene are the result of alternative intron retention and are differentially targeted in Schwann cells. J Biol Chem 273, 5794–800.CrossRefGoogle ScholarPubMed
Eccleston, P. A. (1992). Regulation of Schwann cell proliferation: mechanisms involved in peripheral nerve development. Expe Cell Res 199, 1–9.CrossRefGoogle ScholarPubMed
Eccleston, P. A., Jessen, K. R. and Mirsky, R. (1989). Transforming growth factor-beta and gamma-interferon have dual effects on growth of peripheral glia. J Neurosci Res 24, 524–30.CrossRefGoogle ScholarPubMed
EFN and PNS Task Force (2005). European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. J Peripher Nerv Syst 10, 220–8.CrossRef
Eichberg, J. and Iyer, S. (1996). Phosphorylation of myelin protein: recent advances. Neurochem Res 21, 527–35.CrossRefGoogle ScholarPubMed
Einheber, S., Milner, T. A., Giancotti, F. and Salzer, J. L. (1993). Axonal regulation of Schwann cell integrin expression suggests a role for alpha 6 beta 4 in myelination. J Cell Biol 123, 1223–6.CrossRefGoogle ScholarPubMed
Einheber, S., Hannocks, M. J., Metz, C. N., Rifkin, D. B. and Salzer, J. L. (1995). Transforming growth factor-beta 1 regulates axon/Schwann cell interactions. J Cell Biol 129, 443–58.CrossRefGoogle ScholarPubMed
Eldridge, C. F., Bunge, M. B., Bunge, R. P. and Wood, P. M. (1987). Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 105, 1023–34.CrossRefGoogle ScholarPubMed
Eldridge, C. F., Bunge, M. B. and Bunge, R. P. (1989). Differentiation of axon-related Schwann cell in vitro: II. Control of myelin formation by basal lamina. J Neurosci 9, 625–38.CrossRefGoogle ScholarPubMed
Elson, K., Ribeiro, R. M., Perelson, A. S., Simmons, A. and Speck, P. (2004). The life span of ganglionic glia in murine sensory ganglia estimated by uptake of bromodeoxyuridine. Exp Neurol 186, 99–103.CrossRefGoogle ScholarPubMed
Empl, M., Renaud, S., Erne, B.et al. (2001). TNF-alpha expression in painful and nonpainful neuropathies. Neurology 56, 1371–7.CrossRefGoogle ScholarPubMed
Engel, A. G. (1994). The neuromuscular junction. Engel, A. G., Franzini-Armstrong, C. (Eds.) Myology. McGraw-Hill Professional, New York.Google Scholar
English, A. W. (2003). Cytokines, growth factors and sprouting at the neuromuscular junction. J Neurocytol 32, 943–60.CrossRefGoogle ScholarPubMed
Erdman, R., Stahl, R. C., Rothblum, K., Chernousov, M. A. and Carey, D. J. (2002). Schwann cell adhesion to a novel heparan sulfate binding site in the N-terminal domain of alpha 4 type V collagen is mediated by syndecan-3. J Biol Chem 277, 7619–25.CrossRefGoogle ScholarPubMed
Ersdal, C., Ulvund, M. J., Espenes, A., Benestad, S. L., Sarradin, P. and Landsverk, T. (2005). Mapping PrPSc propagation in experimental and natural scrapie in sheep with different PrP genotypes. Vet Pathol 42, 258–74.CrossRefGoogle ScholarPubMed
Ervasti, J. M. and Campbell, K. P. (1993). A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122, 809–23.CrossRefGoogle ScholarPubMed
Exley, A. R., Smith, N. and Winer, J. B. (1994). Tumour necrosis factor-alpha and other cytokines in Guillain–Barré syndrome. J Neurol Neurosurg Psych 57, 1118–20.CrossRefGoogle ScholarPubMed
Eylar, E. H., Uyemura, K., Brostoff, S. W., Kitamura, K., Ishaque, A. and Greenfield, S. (1979). Proposed nomenclature for PNS myelin proteins. Neurochem Res 4, 289–93.CrossRefGoogle ScholarPubMed
Fabry, Z., Topham, D. J., Fee, D.et al. (1995). TGF-beta 2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo. J Immunol 155, 325–32.Google ScholarPubMed
Falls, D. L. (2003). Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284, 14–30.CrossRefGoogle ScholarPubMed
Fannon, A. M., Sherman, D. L., Ilyina-Gragerova, G., Brophy, P. J., Friedrich, V. L. Jr. and Colman, D. R. (1995). Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 129, 189–202.CrossRefGoogle ScholarPubMed
Feasby, T. E., Hahn, A. F. and Gilbert, J. J. (1982). Passive transfer studies in Guillain–Barré polyneuropathy. Neurology 32, 1159–67.CrossRefGoogle ScholarPubMed
Feasby, T. E., Gilbert, J. J., Brown, W. F.et al. (1986). An acute axonal form of Guillain–Barré polyneuropathy. Brain 109 (Part 6), 1115–26.CrossRefGoogle ScholarPubMed
Feasby, T. E., Hahn, A. F., Brown, W. F., Bolton, C. F. and Gilbert, J. J. (1988). Two types of axonal degeneration in acute Guillain–Barré syndrome. J Neurol 235, S15.Google Scholar
Feder, N. (1971). Microperoxidase – an ultrastructural tracer of low molecular weight. J Cell Biol 51, 339–43.CrossRefGoogle ScholarPubMed
Feltri, M. L. and Wrabetz, L. (2005). Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10, 128–43.CrossRefGoogle ScholarPubMed
Feltri, M. L., Scherer, S. S., Nemni, R.et al. (1994). β4 integrin expression in myelinating Schwann cells is polarized, developmentally regulated and axonally dependent. Development 120, 1287–1301.Google ScholarPubMed
Feltri, M. L., Arona, M., Scherer, S. S. and Wrabetz, L. (1997). Cloning and sequence of the cDNA encoding the beta 4 integrin subunit in rat peripheral nerve. Gene 186, 299–304.CrossRefGoogle ScholarPubMed
Feltri, M. L., Graus, P. D., Previtali, S. C.et al. (2002). Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. J Cell Biol 156, 199–209.CrossRefGoogle Scholar
Feng, Z. and Ko, C. P. (2004). Transforming growth factor (TGF)-beta 1 mediates Schwann cell-induced synaptogenesis at the neuromuscular junction in vitro. Program No 385 18, Abstract Viewer/Itinerary Planner Washington, DC: Society for Neuroscience.
Feng, G., Mellor, R. H., Bernstein, M.et al. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51.CrossRefGoogle ScholarPubMed
Feng, Z., Koirala, S. and Ko, C. P. (2005). Synapse–glia interactions at the vertebrate neuromuscular junction. Neuroscientist 11, 503–13.CrossRefGoogle ScholarPubMed
Fenzi, F., Benedetti, M. D., Moretto, G. and Rizzuto, N. (2001). Glial cell and macrophage reactions in rat spinal ganglion after peripheral nerve lesions: an immunocytochemical and morphometric study. Arch Ital Biol 139, 357–65.Google ScholarPubMed
Fernandez-Valle, C., Gwynn, L., Wood, P. M., Carbonetto, S. and Bunge, M. B. (1994). Anti-beta 1 integrin antibody inhibits Schwann cell myelination. J Neurobiol 25, 1207–26.CrossRefGoogle ScholarPubMed
Fernandez-Valle, C., Tang, Y., Ricard, J.et al. (2002). Paxillin binds Schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31, 354–62.CrossRefGoogle ScholarPubMed
Fields, R. D. and Stevens, B. (2000). ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23, 625–33.CrossRefGoogle ScholarPubMed
Fields, R. D. and Stevens-Graham, B. (2002). New insights into neuron–glia communication. Science 298, 556–62.CrossRefGoogle ScholarPubMed
Filbin, M. T., Walsh, F. S., Trapp, B. D., Pizzey, J. A. and Tennekoon, G. I. (1990). Role of myelin P0 protein as a homophilic adhesion molecule. Nature 344, 871–2.CrossRefGoogle ScholarPubMed
Filbin, M. T., Zhang, K., Li, W. and Gao, Y. (1999). Characterization of the effect on adhesion of different mutations in myelin P0 protein. Ann NY Acad Sci 883, 160–7.CrossRefGoogle ScholarPubMed
Fisher, M. (1956). Syndrome of ophthalmoplegia, ataxia and areflexia. New Engl J Med 255, 57–65.CrossRefGoogle ScholarPubMed
Foote, A. K. and Blakemore, W. F. (2005). Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128, 528–39.CrossRefGoogle ScholarPubMed
Forsberg, E., Ek, B., Engstrom, A. and Johansson, S. (1994). Purification and characterization of integrin alpha 9 beta 1. Exp Cell Res 213, 183–90.CrossRefGoogle ScholarPubMed
Fortun, J., Dunn, W. A. Jr., Joy, S., Li, J. and Notterpek, L. (2003). Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci 23, 10672–80.CrossRefGoogle ScholarPubMed
Fortun, J., Li, J., Go, J., Fenstermaker, A., Fletcher, B. S. and Notterpek, L. (2005). Impaired proteasome activity and accumulation of ubiquitinated substrates in a hereditary neuropathy model. J Neurochem 92, 1531–41.CrossRefGoogle Scholar
Fragoso, G., Robertson, J., Athlan, E., Tam, E., Almazan, G. and Mushynski, W. E. (2003). Inhibition of p38 mitogen-activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell myelination. Exp Neurol 183, 34–46.CrossRefGoogle ScholarPubMed
Frampton, G., Winer, J. B., Cameron, J. S. and Hughes, R. A. (1988). Severe Guillain–Barré syndrome: an association with IgA anti-cardiolipin antibody in a series of 92 patients. J Neuroimmunol 19, 133–9.CrossRefGoogle Scholar
Franklin, R. J. (2002). Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res Bull 57, 827–32.CrossRefGoogle ScholarPubMed
Franzke, C. W., Tasanen, K., Schumann, H. and Bruckner-Tuderman, L. (2003). Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biol 22, 299–309.CrossRefGoogle ScholarPubMed
Frei, R., Dowling, J., Carenini, S., Fuchs, E. and Martini, R. (1999). Myelin formation by Schwann cells in the absence of beta4 integrin. Glia 27, 269–74.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
French Cooperative Group on Plasma Exchange in Guillain–Barré syndrome (1987). Efficiency of plasma exchange in Guillain–Barré syndrome: role of replacement fluids. Ann Neurol 22, 753–61.CrossRef
Frostick, S. P., Yin, Q. and Kemp, G. J. (1998). Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18, 397–405.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Fu, S. Y. and Gordon, T. (1997). The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14, 67–116.CrossRefGoogle ScholarPubMed
Fujii, K., Tsuji, M. and Murota, K. (1986). Isolation of peripheral nerve collagen. Neurochem Res 11, 1439–46.CrossRefGoogle ScholarPubMed
Fujioka, T., Purev, E. and Rostami, A. (1999a). Chemokine mRNA expression in the cauda equina of Lewis rats with experimental allergic neuritis. J Neuroimmunol 97, 51–9.CrossRefGoogle Scholar
Fujioka, T., Kolson, D. L. and Rostami, A. M. (1999b). Chemokines and peripheral nerve demyelination. J Neurovirol 5, 27–31.CrossRefGoogle Scholar
Fuller, G. N., Spies, J. M., Pollard, J. D. and McLeod, J. G. (1994). Demyelinating neuropathies triggered by melanoma immunotherapy. Neurology 44, 2404–5.CrossRefGoogle ScholarPubMed
Gaboreanu, A., Hrstka, R., Xu, W.et al. (2004). A New Protein that Interacts with the Cytoplasmic Domain of P0. Am Society for Cell Biology Annual Meeting, Washington DC.Google Scholar
Gabriel, C. M., Hughes, R. A., Moore, S. E., Smith, K. J. and Walsh, F. S. (1998). Induction of experimental autoimmune neuritis with peripheral myelin protein-22. Brain 121 (Part 10), 1895–902.CrossRefGoogle ScholarPubMed
Gabriel, C. M., Gregson, N. A. and Hughes, R. A. (2000). Anti-PMP22 antibodies in patients with inflammatory neuropathy. J Neuroimmunol 104, 139–46.CrossRefGoogle ScholarPubMed
Gadient, R. A. and Otten, U. (1996). Postnatal expression of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) mRNAs in rat sympathetic and sensory ganglia. Brain Res 724, 41–6.CrossRefGoogle ScholarPubMed
Gambardella, A., Bono, F., Muglia, M., Valentino, P. and Quattrone, A. (1999). Autosomal recessive hereditary motor and sensory neuropathy with focally folded myelin sheaths (CMT4B). Ann NY Acad Sci 883, 47–55.CrossRefGoogle Scholar
Garbay, B., Heape, A. M., Sargueil, F. and Cassagne, C. (2000). Myelin synthesis in the peripheral nervous system. Prog Neurobiol 61, 267–304.CrossRefGoogle ScholarPubMed
Garbern, J. Y., Cambi, F., Tang, X. M.et al. (1997). Proteolipid protein is necessary in peripheral as well as central myelin. Neuron 19, 205–18.CrossRefGoogle ScholarPubMed
Garratt, A. N., Britsch, S. and Birchmeier, C. (2000a). Neuregulin, a factor with many functions in the life of a Schwann cell. Bioessays 22, 987–96.3.0.CO;2-5>CrossRefGoogle Scholar
Garratt, A. N., Voiculescu, O., Topilko, P., Charnay, P. and Birchmeier, C. (2000b). A dual role of erbB2 in myelination and in expansion of the Schwann cell precursor pool. J Cell Biol 148, 1035–46.CrossRefGoogle Scholar
Gatto, C. L., Walker, B. J. and Lambert, S. (2003). Local ERM activation and dynamic growth cones at Schwann cell tips implicated in efficient formation of nodes of Ranvier. J Cell Biol 162, 489–98.CrossRefGoogle ScholarPubMed
George, A., Schmidt, C., Weishaupt, A., Toyka, K. V. and Sommer, C. (1999). Serial determination of tumor necrosis factor-alpha content in rat sciatic nerve after chronic constriction injury. Exp Neurol 160, 124–32.CrossRefGoogle ScholarPubMed
George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. and Hynes, R. O. (1993). Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–91.Google ScholarPubMed
Georges-Labouesse, E. N., George, E. L., Rayburn, H. and Hynes, R. O. (1996). Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207, 145–56.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Georgiou, J. and Charlton, M. P. (1999). Non-myelin-forming perisynaptic Schwann cells express protein zero and myelin-associated glycoprotein. Glia 27, 101–9.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Georgiou, J., Robitaille, R., Trimble, W. S. and Charlton, M. P. (1994). Synaptic regulation of glial protein expression in vivo. Neuron 12, 443–55.CrossRefGoogle ScholarPubMed
Ghabriel, M. N. and Allt, G. (1981). Incisures of Schmidt–Lanterman. Prog Neurobiol 17, 25–58.CrossRefGoogle ScholarPubMed
Ghazvini, M., Mandemakers, W., Jaegle, M.et al. (2002). A cell type-specific allele of the POU gene Oct-6 reveals Schwann cell autonomous function in nerve development and regeneration. EMBO J 21, 4612–20.CrossRefGoogle ScholarPubMed
Ghislain, J., Desmarquet-Trin-Dinh, C., Jaegle, M., Meijer, D., Charnay, P. and Frain, M. (2002). Characterisation of cis-acting sequences reveals a biphasic, axon-dependent regulation of Krox20 during Schwann cell development. Development 129, 155–66.Google ScholarPubMed
Giese, K. P., Martini, R., Lemke, G., Soriano, P. and Schachner, M. (1992). Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71, 565–76.CrossRefGoogle ScholarPubMed
Gillespie, C. S., Sherman, D. L., Blair, G. E. and Brophy, P. J. (1994). Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. Neuron 12, 497–508.CrossRefGoogle ScholarPubMed
Girard, C., Bemelmans, A. P., Dufour, N.et al. (2005). Grafts of brain-derived neurotrophic factor and neurotrophin 3-transduced primate Schwann cells lead to functional recovery of the demyelinated mouse spinal cord. J Neurosci 25, 7924–33.CrossRefGoogle ScholarPubMed
Girault, J. A., Oguievetskaia, K., Carnaud, M., Denisenko-Nehrbass, N. and Goutebroze, L. (2003). Transmembrane scaffolding proteins in the formation and stability of nodes of Ranvier. Biol Cell 95, 447–52.CrossRefGoogle ScholarPubMed
Gleichmann, M., Gillen, C., Czardybon, M.et al. (2000). Cloning and characterization of SDF-1gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur J Neurosci 12, 1857–66.CrossRefGoogle Scholar
Godschalk, P. C., Heikema, A. P., Gilbert, M.et al. (2004). The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain–Barré syndrome. J Clin Invest 114, 1659–65.CrossRefGoogle ScholarPubMed
Gold, R., Toyka, K. V. and Hartung, H. P. (1995). Synergistic effect of IFN-gamma and TNF-alpha on expression of immune molecules and antigen presentation by Schwann cells. Cell Immunol 165, 65–70.CrossRefGoogle ScholarPubMed
Gold, R., Archelos, J. J. and Hartung, H. P. (1999). Mechanisms of immune regulation in the peripheral nervous system. Brain Pathol 9, 343–60.CrossRefGoogle ScholarPubMed
Gold, R., Hartung, H. P. and Toyka, K. V. (2000). Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today 6, 88–91.CrossRefGoogle ScholarPubMed
Gollan, L., Salomon, D., Salzer, J. L. and Peles, E. (2003). Caspr regulates the processing of contactin and inhibits its binding to neurofascin. J Cell Biol 163, 1213–18.CrossRefGoogle ScholarPubMed
Gonzalez-Martinez, T., Perez-Pinera, P., Diaz-Esnal, B. and Vega, J. A. (2003). S-100 proteins in the human peripheral nervous system. Microsc Res Tech 60, 633–8.CrossRefGoogle ScholarPubMed
Goodyear, C. S., O'Hanlon, G. M., Plomp, J. J.et al. (1999). Monoclonal antibodies raised against Guillain–Barré syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle–nerve preparations. J Clin Invest 104, 697–708.CrossRefGoogle ScholarPubMed
Gorson, K. C., Allam, G. and Ropper, A. H. (1997). Chronic inflammatory demyelinating polyneuropathy: clinical features and response to treatment in 67 consecutive patients with and without a monoclonal gammopathy. Neurology 48, 321–8.CrossRefGoogle ScholarPubMed
Gorson, K. C. and Chaudhry, V. (1999). Chronic inflammatory demyelinating polyneuropathy. Curr Treat Options Neurol 1, 251–62.CrossRefGoogle ScholarPubMed
Gotz, M. (2003). Glial cells generate neurons – master control within CNS regions: developmental perspectives on neural stem cells. Neuroscientist 9, 379–97.CrossRefGoogle ScholarPubMed
Gotz, M. and Barde, Y. A. (2005). Radial glial cells: defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 46, 369–72.CrossRefGoogle ScholarPubMed
Goutebroze, L., Carnaud, M., Denisenko, N., Boutterin, M. C. and Girault, J. A. (2003). Syndecan-3 and syndecan-4 are enriched in Schwann cell perinodal processes. BMC Neurosci 4, 29.CrossRefGoogle ScholarPubMed
Greenfield, S., Brostoff, S., Eylar, E. H. and Morell, P. (1973). Protein composition of myelin of the peripheral nervous system. J Neurochem 20, 1207–16.CrossRefGoogle ScholarPubMed
Gregorian, S. K., Lee, W. P., Beck, L. S., Rostami, A. and Amento, E. P. (1994). Regulation of experimental autoimmune neuritis by transforming growth factor-beta 1. Cell Immunol 156, 102–12.CrossRefGoogle ScholarPubMed
Grewal, P. K., Holzfeind, P. J., Bittner, R. E. and Hewitt, J. E. (2001). Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet 28, 151–4.CrossRefGoogle ScholarPubMed
Grieco, T. M., Malhotra, J. D., Chen, C., Isom, L. L. and Raman, I. M. (2005). Open-channel block by the cytoplasmic tail of sodium channel β4 as a mechanism for resurgent sodium current. Neuron 45, 233–44.CrossRefGoogle ScholarPubMed
Griffin, J. W. and Sheikh, K. (2005). The Guillain–Barré syndromes. Dyck, P. (Ed.) Peripheral Neuropathy, 4th Edn. Elsevier Saunders, Philadelphia, pp. 2197–219.Google Scholar
Griffin, J. W., Stoll, G., Li, C. Y., Tyor, W. and Cornblath, D. R. (1990). Macrophage responses in inflammatory demyelinating neuropathies. Ann Neurol 27 Suppl, S64–S68.CrossRefGoogle ScholarPubMed
Griffin, J. W., George, R., Lobato, C., Tyor, W. R., Yan, L. C. and Glass, J. D. (1992). Macrophage responses and myelin clearance during Wallerian degeneration: relevance to immune-mediated demyelination. J Neuroimmunol 40, 153–65.CrossRefGoogle ScholarPubMed
Griffin, J. W., George, R. and Ho, T. (1993a). Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol 52, 553–60.CrossRefGoogle Scholar
Griffin, J. W., Kidd, G. J. and Trapp, B. D. (1993b). Interactions between axons and Schwann cells. Dyck, P. J., Thomas, P. K. (Eds.) Peripheral Neuropathy, 3rd Edn. WB Saunders, Philadelphia, pp. 317–30.Google Scholar
Griffin, J. W., Li, C. Y., Ho, T. W.et al. (1995). Guillain–Barré syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain 118 (Part 3), 577–95.CrossRefGoogle ScholarPubMed
Griffin, J. W., Li, C. Y., Ho, T. W.et al. (1996a). Pathology of the motor-sensory axonal Guillain–Barré syndrome. Ann Neurol 39, 17–28.CrossRefGoogle Scholar
Griffin, J. W., Li, C. Y., Macko, C.et al. (1996b). Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain–Barré syndrome. J Neurocytol 25, 33–51.CrossRefGoogle Scholar
Griffiths, I., Dickinson, P. and Montague, P. (1995). Expression of the proteolipid protein gene in glial cells of the post-natal peripheral nervous system of rodents. Neuropathol Appl Neurobiol 21, 97–110.CrossRefGoogle ScholarPubMed
Griffiths, I., Klugmann, M., Anderson, T., Thomson, C., Vouyiouklis, D. and Nave, K. A. (1998). Current concepts of PLP and its role in the nervous system. Microsc Res Technique 41, 344–58.3.0.CO;2-Q>CrossRefGoogle Scholar
Grim, M., Halata, Z. and Franz, T. (1992). Schwann cells are not required for guidance of motor nerves in the hindlimb in Splotch mutant mouse embryos. Anat Embryol 186, 311–18.CrossRefGoogle Scholar
Grinspan, J. B., Marchionni, M. A., Reeves, M., Coulaloglou, M. and Scherer, S. S. (1996). Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins. J Neurosci 16, 6107–18.CrossRefGoogle ScholarPubMed
Groneberg, D. A., Doring, F., Nickolaus, M., Daniel, H. and Fischer, A. (2001). Expression of PEPT2 peptide transporter mRNA and protein in glial cells of rat dorsal root ganglia. Neurosci Lett 304, 181–4.CrossRefGoogle ScholarPubMed
Groschup, M. H., Beekes, M., McBride, P. A., Hardt, M., Hainfellner, J. A. and Budka, H. (1999). Deposition of disease-associated prion protein involves the peripheral nervous system in experimental scrapie. Acta Neuropathol (Berl) 98, 453–7.CrossRefGoogle ScholarPubMed
Grothe, C., Meisinger, C., Hertenstein, A., Kurz, H. and Wewetzer, K. (1997). Expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 messenger RNAs in spinal ganglia and sciatic nerve: regulation after peripheral nerve lesion. Neuroscience 76, 123–35.CrossRefGoogle ScholarPubMed
Guenard, V., Dinarello, C. A., Weston, P. J. and Aebischer, P. (1991). Peripheral nerve regeneration is impeded by interleukin-1 receptor antagonist released from a polymeric guidance channel. J Neurosci Res 29, 396–400.CrossRefGoogle ScholarPubMed
Guenard, V., Rosenbaum, T., Gwynn, L. A., Doetschman, T., Ratner, N. and Wood, P. M. (1995a). Effect of transforming growth factor-beta 1 and -beta 2 on Schwann cell proliferation on neurites. Glia 13, 309–18.CrossRefGoogle Scholar
Guenard, V., Gwynn, L. A. and Wood, P. M. (1995b). Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro. J Neurosci 15, 419–28.CrossRefGoogle Scholar
Guilbot, A., Williams, A., Ravise, N.et al. (2001). A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot–Marie–Tooth disease. Hum Mol Genet 10, 415–21.CrossRefGoogle ScholarPubMed
Guillain, G., Barré, J. A. and Strohl, A. (1916). Sur un syndrome de radiculo-névrite avec hyperalbuminose du liquide céphalo-rachidien sans réaction cellulaire. Remarques sur les caractéres cliniques et graphiques des réflexes tendineux. Bull Soc Méd Hôp Paris 40, 1462–70.Google Scholar
Guillain–Barré Syndrome Study Group (1985). Plasmapheresis and acute Guillain–Barré syndrome. Neurology 35, 1096–104.CrossRef
Guiloff, R. J. (1977). Peripheral nerve conduction in Miller–Fisher syndrome. J Neurol Neurosurg Psychiatry 40, 801–7.CrossRefGoogle ScholarPubMed
Haas, L. F. (1999). Neurological stamp. Theodore Schwann (1810–82). J Neurol Neurosurg Psychiatry 66, 103.CrossRefGoogle Scholar
Hadden, R. D., Karch, H., Hartung, H. P.et al. (2001). Preceding infections, immune factors, and outcome in Guillain–Barré syndrome. Neurology 56, 758–65.CrossRefGoogle ScholarPubMed
Hafer-Macko, C., Hsieh, S. T., Li, C. Y.et al. (1996a). Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 40, 635–44.CrossRefGoogle Scholar
Hafer-Macko, C. E., Sheikh, K. A., Li, C. Y.et al. (1996b). Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 39, 625–35.CrossRefGoogle Scholar
Hagedorn, L., Suter, U. and Sommer, L. (1999). P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors. Development 126, 3781–94.Google Scholar
Hagedorn, L., Paratore, C., Brugnoli, G.et al. (2000). The Ets domain transcription factor Erm distinguishes rat satellite glia from Schwann cells and is regulated in satellite cells by neuregulin signaling. Dev Biol 219, 44–58.CrossRefGoogle ScholarPubMed
Hahn, A. F. (1998). Guillain–Barré syndrome. Lancet 352, 635–41.CrossRefGoogle ScholarPubMed
Hahn, A. F., Bolton, C. F., White, C. M.et al. (1999). Genotype/phenotype correlations in X-linked dominant Charcot–Marie–Tooth disease. Ann NY Acad Sci 883, 366–82.CrossRefGoogle ScholarPubMed
Hahn, A. F., Ainsworth, P. J., Naus, C. C., Mao, J. and Bolton, C. F. (2000). Clinical and pathological observations in men lacking the gap junction protein connexin 32. Muscle Nerve 23, S39–S48.3.0.CO;2-C>CrossRefGoogle Scholar
Hahn, A. F., Ainsworth, P. J., Bolton, C. F., Bilbao, J. M. and Vallat, J. M. (2001). Pathological findings in the x-linked form of Charcot–Marie–Tooth disease: a morphometric and ultrastructural analysis. Acta Neuropathol (Berl) 101, 129–39.Google ScholarPubMed
Hahn, A., Ciskind, C., Krajewski, K., Lewis, R. and Me, S. (2005). Genotype–phenotype correlations in CMTX1 (Abstract). J Peripher Nerv Syst 10 (Suppl 1), 31–2.Google Scholar
Halfter, W., Dong, S., Schurer, B. and Cole, G. J. (1998). Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 273, 25404–12.CrossRefGoogle ScholarPubMed
Hall, S. M. and Williams, P. L. (1970). Studies on the “incisures” of Schmidt and Lanterman. J Cell Sci 6, 767–91.Google ScholarPubMed
Hallows, J. L. and Tempel, B. L. (1998). Expression of Kv1.1, a Shaker-like potassium channel, is temporally regulated in embryonic neurons and glia. J Neurosci 18, 5682–91.CrossRefGoogle ScholarPubMed
Halstead, S. K., O'Hanlon, G. M., Humphreys, P. D.et al. (2004). Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain 127, 2109–23.CrossRefGoogle Scholar
Halstead, S. K., Morrison, I., O'Hanlon, G. M.et al. (2005). Anti-disialosyl antibodies mediate selective neuronal or Schwann cell injury at mouse neuromuscular junctions. Glia 52, 177–89.CrossRefGoogle ScholarPubMed
Hammarberg, H., Lidman, O., Lundberg, C.et al. (2000). Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20, 5283–91.CrossRefGoogle Scholar
Hanani, M., Huang, T. Y., Cherkas, P. S., Ledda, M. and Pannese, E. (2002). Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114, 279–83.CrossRefGoogle ScholarPubMed
Hanani, M. (2005). Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48, 457–76.CrossRefGoogle Scholar
Hanemann, C. O., Bergmann, C., Senderek, J., Zerres, K. and Sperfeld, A. D. (2003). Transient, recurrent, white matter lesions in X-linked Charcot–Marie–Tooth disease with novel connexin 32 mutation. Arch Neurol 60, 605–9.CrossRefGoogle ScholarPubMed
Harboe, M., Aseffa, A. and Leekassa, R. (2005). Challenges presented by nerve damage in leprosy. Lepr Rev 76, 5–13.Google ScholarPubMed
Harding, A. E. and Thomas, P. K. (1980a). Genetic aspects of hereditary motor and sensory neuropathy (types I and II). J Med Genet 17, 329–36.CrossRefGoogle Scholar
Harding, A. E. and Thomas, P. K. (1980b). The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 103, 259–80.CrossRefGoogle Scholar
Harrison, B. M., Hansen, L. A., Pollard, J. D. and McLeod, J. G. (1984). Demyelination induced by serum from patients with Guillain–Barré syndrome. Ann Neurol 15, 163–70.CrossRefGoogle ScholarPubMed
Harrison, R. G. (1908). Embryonic transplantation and development of nervous system. Anat Rec 2, 385–410.CrossRefGoogle Scholar
Harrison, R. G. (1924). Neuroblast versus sheath cell in the development of peripheral nerves. J Comp Neurol 37, 123–205.CrossRefGoogle Scholar
Hartung, H. P., Pollard, J. D., Harvey, G. K. and Toyka, K. V. (1995a). Immunopathogenesis and treatment of the Guillain–Barré syndrome–Part II. Muscle Nerve 18, 154–64.CrossRefGoogle Scholar
Hartung, H. P., Pollard, J. D., Harvey, G. K. and Toyka, K. V. (1995b). Immunopathogenesis and treatment of the Guillain–Barré syndrome–Part I. Muscle Nerve 18, 137–153.CrossRefGoogle Scholar
Hartung, H. P., Zielasek, J., Jung, S. and Toyka, K. V. (1996a). Effector mechanisms in demyelinating neuropathies. Rev Neurol (Paris) 152, 320–7.Google Scholar
Hartung, H. P., Kiefer, R., Gold, R. and Toyka, K. V. (1996b). Autoimmunity in the peripheral nervous system. Baillieres Clin Neurol 5, 1–45.Google Scholar
Hartung, H. P., Willison, H., Jung, S., Pette, M., Toyka, K. V. and Giegerich, G. (1996c). Autoimmune responses in peripheral nerve. Springer Semin Immunopathol 18, 97–123.CrossRefGoogle Scholar
Hartung, H. P., Meche, F. G. and Pollard, J. D. (1998). Guillain–Barré syndrome, CIDP and other chronic immune-mediated neuropathies. Curr Opin Neurol 11, 497–513.CrossRefGoogle ScholarPubMed
Harvey, G. K., Pollard, J. D., Schindhelm, K. and Antony, J. (1987). Chronic experimental allergic neuritis. An electrophysiological and histological study in the rabbit. J Neurol Sci 81, 215–25.CrossRefGoogle ScholarPubMed
Harvey, G. K., Toyka, K. V., Zielasek, J., Kiefer, R., Simonis, C. and Hartung, H. P. (1995). Failure of anti-GM1 IgG or IgM to induce conduction block following intraneural transfer. Muscle Nerve 18, 388–94.CrossRefGoogle ScholarPubMed
Hase, A., Saito, F., Yamada, H., Arai, K., Shimizu, T. and Matsumura, K. (2005). Characterization of glial cell line-derived neurotrophic factor family receptor alpha-1 in peripheral nerve Schwann cells. J Neurochem 95, 537–43.CrossRefGoogle ScholarPubMed
Hassan, S. M., Jennekens, F. G., Veldman, H. and Oestreicher, B. A. (1994). GAP-43 and p75NGFR immunoreactivity in presynaptic cells following neuromuscular blockade by botulinum toxin in rat. J Neurocytol 23, 354–63.CrossRefGoogle ScholarPubMed
Hatton, G. I. and Parpura, V. (2004). Glial Neuronal Signaling. Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
Haydon, P. G. (2001). Glia: listening and talking to the synapse. Nat Rev Neurosci 2, 185–93.CrossRefGoogle ScholarPubMed
Hays, A. P., Lee, S. S. and Latov, N. (1988). Immune reactive C3d on the surface of myelin sheaths in neuropathy. J Neuroimmunol 18, 231–44.CrossRefGoogle ScholarPubMed
Hayworth, C. R., Moody, S. E., Chodosh, L. A., Krieg, P. A., Rimer, M. and Thompson, W. (2006). Induction of neuregulin signaling in mouse Schwann cells in vivo mimics responses to denervation J Neurosci26, 6873–84.
Herrera, A. A., Banner, L. R. and Nagaya, N. (1990). Repeated, in vivo observation of frog neuromuscular junctions: remodelling involves concurrent growth and retraction. J Neurocytol 19, 85–99.CrossRefGoogle Scholar
Herrera, A. A., Qiang, H. and Ko, C. P. (2000). The role of perisynaptic Schwann cells in development of neuromuscular junctions in the frog (Xenopus laevis). J Neurobiol 45, 237–54.3.0.CO;2-J>CrossRefGoogle Scholar
Heumann, R., Lindholm, D., Bandtlow, C.et al. (1987a). Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Nat Acad Sci USA 84, 8735–9.CrossRefGoogle Scholar
Heumann, R., Korsching, S., Bandtlow, C. and Thoenen, H. (1987b). Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 104, 1623–31.CrossRefGoogle Scholar
Heuser, J. E., Reese, T. S. and Landis, D. M. (1976). Preservation of synaptic structure by rapid freezing. Cold Spring Harb Symp Quant Biol 40, 17–24.CrossRefGoogle ScholarPubMed
Heuss, D., Engelhardt, A., Gobel, H. and Neundorfer, B. (1995). Light-microscopic study of phosphoprotein B-50 in myopathies. Virchows Arch 426, 69–76.Google ScholarPubMed
Hill, C. E., Moon, L. D., Wood, P. M. and Bunge, M. B. (2006). Labeled Schwann cell transplantation: cell loss, host Schwann cell replacement, and strategies to enhance survival. Glia 53, 338–43.CrossRefGoogle ScholarPubMed
Hirata, K., Zhou, C., Nakamura, K. and Kawabuchi, M. (1997). Postnatal development of Schwann cells at neuromuscular junctions, with special reference to synapse elimination. J Neurocytol 26, 799–809.CrossRefGoogle ScholarPubMed
Hirata, K., Mitoma, H., Ueno, N., He, J. W. and Kawabuchi, M. (1999). Differential response of macrophage subpopulations to myelin degradation in the injured rat sciatic nerve. J Neurocytol 28, 685–95.CrossRefGoogle ScholarPubMed
Hirota, H., Kiyama, H., Kishimoto, T. and Taga, T. (1996). Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med 183, 2627–34.CrossRefGoogle ScholarPubMed
Hisahara, S., Shoji, S., Okano, H. and Miura, M. (1997). ICE/CED-3 family executes oligodendrocyte apoptosis by tumor necrosis factor. J Neurochem 69, 10–20.CrossRefGoogle ScholarPubMed
Ho, T. W., Mishu, B., Li, C. Y.et al. (1995). Guillain–Barré syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 118 (Part 3), 597–605.CrossRefGoogle ScholarPubMed
Ho, T. W., Hsieh, S. T., Nachamkin, I.et al. (1997a). Motor nerve terminal degeneration provides a potential mechanism for rapid recovery in acute motor axonal neuropathy after Campylobacter infection. Neurology 48, 717–24.CrossRefGoogle Scholar
Ho, T. W., Li, C. Y., Cornblath, D. R.et al. (1997b). Patterns of recovery in the Guillain–Barré syndromes. Neurology 48, 695–700.CrossRefGoogle Scholar
Ho, T. W., McKhann, G. M. and Griffin, J. W. (1998). Human autoimmune neuropathies. Ann Rev Neurosci 21, 187–226.CrossRefGoogle ScholarPubMed
Ho, T. W., Willison, H. J., Nachamkin, I.et al. (1999). Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain–Barré syndrome. Ann Neurol 45, 168–73.3.0.CO;2-6>CrossRefGoogle Scholar
Hodgkinson, S. J., Westland, K. W. and Pollard, J. D. (1994). Transfer of experimental allergic neuritis by intra neural injection of sensitized lymphocytes. J Neurol Sci 123, 162–72.CrossRefGoogle ScholarPubMed
Hoebe, K., Janssen, E. and Beutler, B. (2004). The interface between innate and adaptive immunity. Nat Immunol 5, 971–4.CrossRefGoogle ScholarPubMed
Hofler, H., Walter, G. F. and Denk, H. (1984). Immunohistochemistry of folliculo-stellate cells in normal human adenohypophyses and in pituitary adenomas. Acta Neuropathol (Berl) 65, 35–40.CrossRefGoogle ScholarPubMed
Hoke, A. and Keswani, S. C. (2005). Neuroprotection in the PNS: erythropoietin and immunophilin ligands. Ann NY Acad Sci 1053, 491–501.CrossRefGoogle ScholarPubMed
Hoke, A., Ho, T., Crawford, T. O., Lebel, C., Hilt, D. and Griffin, J. W. (2003). Glial cell line-derived neurotrophic factor alters axon Schwann cell units and promotes myelination in unmyelinated nerve fibers. J Neurosci 23, 561–7.CrossRefGoogle ScholarPubMed
Holen, T. and Mobbs, C. V. (2004). Lobotomy of genes: use of RNA interference in neuroscience. Neurosci 126, 1–7.CrossRefGoogle ScholarPubMed
Holland, N. R., Crawford, T. O., Hauer, P., Cornblath, D. R., Griffin, J. W. and McArthur, J. C. (1998). Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol 44, 47–59.CrossRefGoogle ScholarPubMed
Homma, S., Yaginuma, H. and Oppenheim, R. W. (1994). Programmed cell death during the earliest stages of spinal cord development in the chick embryo: a possible means of early phenotypic selection. J Comp Neurol 345, 377–95.CrossRefGoogle ScholarPubMed
Hong, C. S. and Saint-Jeannet, J. P. (2005). Sox proteins and neural crest development. Semin Cell Dev Biol 16, 694–703.CrossRefGoogle ScholarPubMed
Hoogendijk, J. E., Janssen, E. A., Gabreels-Festen, A. A.et al. (1993). Allelic heterogeneity in hereditary motor and sensory neuropathy type Ia (Charcot–Marie–Tooth disease type 1a). Neurology 43, 1010–15.CrossRefGoogle Scholar
Houlden, H., King, R. H., Wood, N. W., Thomas, P. K. and Reilly, M. M. (2001). Mutations in the 5′ region of the myotubularin-related protein 2 (MTMR2) gene in autosomal recessive hereditary neuropathy with focally folded myelin. Brain 124, 907–15.CrossRefGoogle ScholarPubMed
Hsiao, L. L., Peltonen, J., Jaakkola, S., Gralnick, H., Uitto, J. (1991). Plasticity of integrin expression by nerve-derived connective tissue cells. Human Schwann cells, perineurial cells, and fibroblasts express markedly different patterns of beta 1 integrins during nerve development, neoplasia, and in vitro. J Clin Invest 87, 811–20.CrossRefGoogle Scholar
Hsieh, S. T., Kidd, G. J., Crawford, T. O.et al. (1994). Regional modulation of neurofilament organization by myelination in normal axons. J Neurosci 14, 6392–401.CrossRefGoogle ScholarPubMed
Hu, H. M., O'Rourke, K., Boguski, M. S. and Dixit, V. M. (1994). A novel RING finger protein interacts with the cytoplasmic domain of CD40. J Biol Chem 269, 30069–72.Google ScholarPubMed
Hu, W., Ramacher, M., Hartung, H.-P. and Kieseier, B. C. (2004). Schwann cells express Toll-like receptors. J Neuroimmunol 154, 48.Google Scholar
Huang, E. J. and Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Ann Rev Neurosci 24, 677–736.CrossRefGoogle ScholarPubMed
Hughes, B. W., Kusner, L. L. and Kaminski, H. J. (2005a). Molecular architecture of the neuromuscular junction. Muscle Nerve 33, 445–61.CrossRef
Hughes, P. M., Wells, G. M., Clements, J. M.et al. (1998). Matrix metalloproteinase expression during experimental autoimmune neuritis. Brain 121 (Part 3), 481–94.CrossRefGoogle ScholarPubMed
Hughes, R. (1990). Guillain–Barré Syndrome. Springer-Verlag, Heidelberg.
Hughes, R. (2004). Treatment of Guillain–Barré syndrome with corticosteroids: lack of benefit?Lancet 363, 181–2.CrossRefGoogle Scholar
Hughes, R. and Meche, F. G. (2000). Corticosteroids for treating Guillain–Barré syndrome. Cochrane Database Syst Rev CD001446.Google Scholar
Hughes, R., Sanders, E., Hall, S., Atkinson, P., Colchester, A. and Payan, P. (1992). Subacute idiopathic demyelinating polyradiculoneuropathy. Arch Neurol 49, 612–16.CrossRefGoogle ScholarPubMed
Hughes, R., Atkinson, P. F., Gray, I. A. and Taylor, W. A. (1987). Major histocompatibility antigens and lymphocyte subsets during experimental allergic neuritis in the Lewis rat. J Neurol 234, 390–5.CrossRefGoogle ScholarPubMed
Hughes, R., Hadden, R. D., Gregson, N. A. and Smith, K. J. (1999). Pathogenesis of Guillain–Barré syndrome. J Neuroimmunol 100, 74–97.CrossRefGoogle ScholarPubMed
Hughes, R., Raphael, J. C., Swan, A. V. and Doorn, P. A. (2001). Intravenous immunoglobulin for Guillain–Barré syndrome. Cochrane Database Syst Rev CD002063.Google Scholar
Hughes, R., Swan, A. V. and Doorn, P. A. (2003). Cytotoxic drugs and interferons for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev CD003280.Google Scholar
Hughes, R. A., Wijdicks, E. F., Benson, E.et al. (2005a). Supportive care for patients with Guillain–Barré syndrome. Arch Neurol 62, 1194–8.CrossRefGoogle Scholar
Hughes, R. A. C., Bouche, P., Cornblath, D. R.et al. (2005b). European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. J Peripher Nerv Syst 10, 220–8.Google Scholar
Huxley, C., Passage, E., Manson, A.et al. (1996). Construction of a mouse model of Charcot–Marie–Tooth disease type 1A by pronuclear injection of human YAC DNA. Hum Mol Genet 5, 563–9.CrossRefGoogle ScholarPubMed
Hyland, H. H. and Russell, W. R. (1930). Chronic progressive polyneuritis with report of a fatal case. Brain 53, 278–9.CrossRefGoogle Scholar
Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.CrossRefGoogle ScholarPubMed
Ichimura, T. and Ellisman, M. H. (1991). Three-dimensional fine structure of cytoskeletal–membrane interactions at nodes of Ranvier. J Neurocytol 20, 667–81.CrossRefGoogle ScholarPubMed
Ilyas, A. A., Mithen, F. A., Dalakas, M. C.et al. (1991). Antibodies to sulfated glycolipids in Guillain–Barré syndrome. J Neurol Sci 105, 108–17.CrossRefGoogle ScholarPubMed
Ilyas, A. A., Mithen, F. A., Dalakas, M. C., Chen, Z. W. and Cook, S. D. (1992). Antibodies to acidic glycolipids in Guillain–Barré syndrome and chronic inflammatory demyelinating polyneuropathy. J Neurol Sci 107, 111–21.CrossRefGoogle ScholarPubMed
Imamura, M., Araishi, K., Noguchi, S. and Ozawa, E. (2000). A sarcoglycan–dystroglycan complex anchors Dp116 and utrophin in the peripheral nervous system. Hum Mol Genet 9, 3091–100.CrossRefGoogle ScholarPubMed
Inoue, K., Tanabe, Y. and Lupski, J. R. (1999). Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol 46, 313–18.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Inoue, K., Shilo, K., Boerkoel, C. F.et al. (2002). Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg–Hirschsprung disease: phenotypes linked by SOX10 mutation. Ann Neurol 52, 836–42.CrossRefGoogle ScholarPubMed
Inoue, K., Khajavi, M., Ohyama, T.et al. (2004). Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36, 361–9.CrossRefGoogle ScholarPubMed
Ionasescu, V. V., Ionasescu, R., Searby, C. and Neahring, R. (1995). Dejerine–Sottas disease with de novo dominant point mutation of the PMP22 gene. Neurology 45, 1766–7.CrossRefGoogle ScholarPubMed
Ishikawa, S., Ohshima, Y., Suzuki, T. and Oboshi, S. (1979). Primitive neuroectodermal tumor (neuroepithelioma) of spinal nerve root – report of an adult case and establishment of a cell line. Acta Pathol Jpn 29, 289–301.Google ScholarPubMed
Ivanova, A. and Nachev, S. (1990). Morphological changes in the nervous system in lead poisoning. I. Experimentally induced lead neuropathy. Eksp Med Morfol 29, 18–23.Google ScholarPubMed
Iwasaki, A. and Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat Immunol 5, 987–95.CrossRefGoogle ScholarPubMed
Iwase, T., Jung, C. G., Bae, H., Zhang, M. and Soliven, B. (2005). Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. J Neurochem 94, 1488–99.CrossRefGoogle ScholarPubMed
Jaakkola, S., Peltonen, J. and Uitto, J. J. (1989). Perineurial cells coexpress genes encoding interstitial collagens and basement membrane zone components. J Cell Biol 108, 1157–63.CrossRefGoogle ScholarPubMed
Jacobs, B. C., Endtz, H., Meche, F. G., Hazenberg, M. P., Achtereekte, H. A. and Doorn, P. A. (1995). Serum anti-GQ1b IgG antibodies recognize surface epitopes on Campylobacter jejuni from patients with Miller–Fisher syndrome. Ann Neurol 37, 260–4.CrossRefGoogle ScholarPubMed
Jacobs, J. M. and Love, S. (1985). Qualitative and quantitative morphology of human sural nerve at different ages. Brain 108 (Part 4), 897–924.CrossRefGoogle ScholarPubMed
Jaegle, M., Mandemakers, W., Broos, L.et al. (1996). The POU factor Oct-6 and Schwann cell differentiation. Science 273, 507–10.CrossRefGoogle ScholarPubMed
Jaegle, M., Ghazvini, M., Mandemakers, W.et al. (2003). The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes & Development 17, 1380–91.CrossRefGoogle ScholarPubMed
Jahromi, B. S., Robitaille, R. and Charlton, M. P. (1992). Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron 8, 1069–77.CrossRefGoogle ScholarPubMed
James, S., Patel, N. J., Thomas, P. K. and Burnstock, G. (1993). Immunocytochemical localisation of insulin receptors on rat superior cervical ganglion neurons in dissociated cell culture. J Anat 182 (Part 1), 95–100.Google ScholarPubMed
Jander, S., Bussini, S., Neuen-Jacob, E.et al. (2002). Osteopontin: a novel axon-regulated Schwann cell gene. J Neurosci Res 67, 156–66.CrossRefGoogle ScholarPubMed
Janeway, C. A. Jr. (1992). The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13, 11–16.CrossRefGoogle ScholarPubMed
Jaros, E. and Bradley, W. G. (1978). Development of the amyelinated lesion in the ventral root of the dystrophic mouse. Ultrastructural, quantitative and autoradiographic study. J Neurol Sci 36, 317–39.CrossRefGoogle ScholarPubMed
Jaros, E. and Bradley, W. G. (1979). Atypical axon–Schwann cell relationships in the common peroneal nerve of the dystrophic mouse: an ultrastructural study. Neuropathol Appl Neurobiol 5, 133–47.CrossRefGoogle Scholar
Jessen, K. R. (2004). Glial cells. Int J Biochem Cell Biol 36, 1861–7.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (1980). Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286, 736–7.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (1985). Glial fibrillary acidic polypeptides in peripheral glia. Molecular weight, heterogeneity and distribution. J Neuroimmunol 8, 377–93.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (1999). Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci 22, 402–10.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (2002). Signals that determine Schwann cell identity. J Anat 200, 367–75.CrossRefGoogle ScholarPubMed
Jessen, K. R. and Mirsky, R. (2004). Schwann cell development. Lazzarini, R. A. (Ed.) Myelin Biology and Disorders. Elsevier, Philadelphia, pp. 329–59.Google Scholar
Jessen, K. R. and Mirsky, R. (2005a). The origin and development of glial cells in peripheral nerves. Nature Rev Neurosci 6, 671–82.CrossRefGoogle Scholar
Jessen, K. R. and Mirsky, R. (2005b). The Schwann cell lineage. Kettenmann, H., Ransom, B. (Eds.) Neuroglia, 2 Edn. Oxford University Press, Oxford, pp. 85–100.Google Scholar
Jessen, K. R., Morgan, L., Stewart, H. J. S. and Mirsky, R. (1990). Three markers of adult non-myelin-forming Schwann cells, 217c (Ran-1), A5E3 and GFAP: development and regulation by neuron–Schwann cell interactions. Development 109, 91–103.Google ScholarPubMed
Jessen, K. R., Brennan, A., Morgan, L.et al. (1994). The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron 12, 509–27.CrossRefGoogle ScholarPubMed
John, G. R., Shankar, S. L., Shafit-Zagardo, B.et al. (2002). Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8, 1115–21.CrossRefGoogle ScholarPubMed
Johnson, A. N. and Newfeld, S. J. (2002). The TGF-beta family: signaling pathways, developmental roles, and tumor suppressor activities. Scientific World J 2, 892–925.CrossRefGoogle ScholarPubMed
Jones, L. L., Sajed, D. and Tuszynski, M. H. (2003). Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci 23, 9276–88.CrossRefGoogle Scholar
Jones, P. L. and Jones, F. S. (2000). Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol 19, 581–96.CrossRefGoogle ScholarPubMed
Jordan, C. L. and Williams, T. J. (2001). Testosterone regulates terminal Schwann cell number and junctional size during developmental synapse elimination. Dev Neurosci 23, 441–51.CrossRefGoogle ScholarPubMed
Joseph, N. M., Mukouyama, Y. S., Mosher, J. T.et al. (2004). Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131, 5599–612.CrossRefGoogle ScholarPubMed
Kadlubowski, M. and Hughes, R. A. (1979). Identification of the neuritogen for experimental allergic neuritis. Nature 277, 140–1.CrossRefGoogle ScholarPubMed
Kadlubowski, M. and Hughes, R. A. (1980). The neuritogenicity and encephalitogenicity of P2 in the rat, guinea-pig and rabbit. J Neurol Sci 48, 171–8.CrossRefGoogle ScholarPubMed
Kaelin-Lang, A., Lauterburg, T. and Burgunder, J. M. (1998). Expression of adenosine A2a receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 246, 21–4.CrossRefGoogle ScholarPubMed
Kameda, Y. (1996). Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla of guinea pigs. J Histochem Cytochem 44, 1439–49.CrossRefGoogle ScholarPubMed
Kang, H., Tian, L. and Thompson, W. (2003). Terminal Schwann cells guide the reinnervation of muscle after nerve injury. J Neurocytol 32, 975–85.CrossRefGoogle ScholarPubMed
Katz, R. L. (1966). Nerve, Muscle and Synapse. McGraw-Hill, New York.Google Scholar
Kawabuchi, M., Zhou, C. J., Wang, S., Nakamura, K., Liu, W. T. and Hirata, K. (2001). The spatiotemporal relationship among Schwann cells, axons and postsynaptic acetylcholine receptor regions during muscle reinnervation in aged rats. Anat Rec 264, 183–202.CrossRefGoogle ScholarPubMed
Kelly, A. M. and Zacks, S. I. (1969). The fine structure of motor endplate morphogenesis. J Cell Biol 42, 154–69.CrossRefGoogle ScholarPubMed
Kennedy, W. R. (2004). Opportunities afforded by the study of unmyelinated nerves in skin and other organs. Muscle Nerve 29, 756–67.CrossRefGoogle Scholar
Kennedy, W. R., Wendelschafer-Crabb, G. and Johnson, T. (1996). Quantitation of epidermal nerves in diabetic neuropathy. Neurology 47, 1042–8.CrossRefGoogle ScholarPubMed
Kerschensteiner, M., Stadelmann, C., Dechant, G., Wekerle, H. and Hohlfeld, R. (2003). Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53, 292–304.CrossRefGoogle ScholarPubMed
Kettenmann, H. and Ransom, B. R. (2005). Neuroglia, 2nd Edn. Oxford University Press, New York.Google Scholar
Keynes, R. J. (1987). Schwann cells during neural development and regeneration: leaders or followers?Trends Neurosci 10, 137–9.CrossRefGoogle Scholar
Khalili-Shirazi, A., Hughes, R. A., Brostoff, S. W., Linington, C. and Gregson, N. (1992). T cell responses to myelin proteins in Guillain–Barré syndrome. J Neurol Sci 111, 200–3.CrossRefGoogle ScholarPubMed
Khalili-Shirazi, A., Atkinson, P., Gregson, N. and Hughes, R. A. (1993). Antibody responses to P0 and P2 myelin proteins in Guillain–Barré syndrome and chronic idiopathic demyelinating polyradiculoneuropathy. J Neuroimmunol 46, 245–51.CrossRefGoogle ScholarPubMed
Kiefer, R., Streit, W. J., Toyka, K. V., Kreutzberg, G. W. and Hartung, H. P. (1995). Transforming growth factor-beta 1: a lesion-associated cytokine of the nervous system. Int J Dev Neurosci 13, 331–9.CrossRefGoogle Scholar
Kiefer, R., Funa, K., Schweitzer, T.et al. (1996). Transforming growth factor-beta 1 in experimental autoimmune neuritis. Cellular localization and time course. Am J Pathol 148, 211–23.Google ScholarPubMed
Kiefer, R., Kieseier, B. C., Stoll, G. and Hartung, H. P. (2001). The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol 64, 109–27.CrossRefGoogle ScholarPubMed
Kieseier, B. C., Krivacic, K., Jung, S.et al. (2000). Sequential expression of chemokines in experimental autoimmune neuritis. J Neuroimmunol 110, 121–9.CrossRefGoogle ScholarPubMed
Kieseier, B. C., Dalakas, M. C. and Hartung, H. P. (2002a). Immune mechanisms in chronic inflammatory demyelinating neuropathy. Neurology 59, S7–S12.CrossRefGoogle Scholar
Kieseier, B. C., Tani, M., Mahad, D.et al. (2002b). Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IP-10. Brain 125, 823–34.CrossRefGoogle Scholar
Kieseier, B. C., Kiefer, R., Gold, R., Hemmer, B., Willison, H. J. and Hartung, H. P. (2004). Advances in understanding and treatment of immune-mediated disorders of the peripheral nervous system. Muscle Nerve 30, 131–56.CrossRefGoogle ScholarPubMed
Kim, S. A., Vacratsis, P. O., Firestein, R., Cleary, M. L. and Dixon, J. E. (2003). Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Nat Acad Sci USA 100, 4492–7.CrossRefGoogle ScholarPubMed
Kim, S. I., Voshol, H., , O. J., Hastings, T. G., Cascio, M. and Glucksman, M. J. (2004). Neuroproteomics: expression profiling of the brain's proteomes in health and disease. Neurochem Res 29, 1317–31.CrossRefGoogle ScholarPubMed
Kingsley, D. M. (1994). The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8, 133–46.CrossRefGoogle ScholarPubMed
Kingston, A. E., Bergsteinsdottir, K., Jessen, K. R., Meide, P. H., Colston, M. J. and Mirsky, R. (1989). Schwann cells co-cultured with stimulated T cells and antigen express major histocompatibility complex (MHC) class II determinants without interferon-gamma pretreatment: synergistic effects of interferon-gamma and tumor necrosis factor on MHC class II induction. Eur J Immunol 19, 177–83.CrossRefGoogle ScholarPubMed
Kinugasa, Y., Ishiguro, H., Tokita, Y., Oohira, A., Ohmoto, H. and Higashiyama, S. (2004). Neuroglycan C, a novel member of the neuregulin family. Biochem Biophys Res Commun 321, 1045–9.CrossRefGoogle ScholarPubMed
Kioussi, C., Gross, M. K. and Gruss, P. (1995). Pax3: A paired domain gene as a regulator in PNS myelination. Neuron 15, 553–62.CrossRefGoogle ScholarPubMed
Kirschner, D. A., Wrabetz, L. and Feltri, M. L. (2004). The P0 gene. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, Philadelphia, pp. 523–45.Google Scholar
Ko, C. P. (1981). Electrophysiological and freeze-fracture studies of changes following denervation at frog neuromuscular junctions. J Physiol 321, 627–39.CrossRefGoogle ScholarPubMed
Ko, C. P. (1987). A lectin, peanut agglutinin, as a probe for the extracellular matrix in living neuromuscular junctions. J Neurocytol 16, 567–76.CrossRefGoogle ScholarPubMed
Ko, C. P. and Chen, L. (1996). Synaptic remodeling revealed by repeated in vivo observations and electron microscopy of identified frog neuromuscular junctions. J Neurosci 16, 1780–90.CrossRefGoogle ScholarPubMed
Ko, C. P. and Thompson, W. (2003). Special issue – the neuromuscular junction. J Neurocytol 32, 423–1037.CrossRefGoogle Scholar
Kocsis, J. D., Akiyama, Y. and Radtke, C. (2004). Neural precursors as a cell source to repair the demyelinated spinal cord. J Neurotrauma 21, 441–9.CrossRefGoogle ScholarPubMed
Koenig, H. L., Schumacher, M., Ferzaz, B.et al. (1995). Progesterone synthesis and myelin formation by Schwann cells. Science 268, 1500–3.CrossRefGoogle ScholarPubMed
Koirala, S. and Ko, C. P. (2004). Pruning an axon piece by piece: a new mode of synapse elimination. Neuron 44, 578–80.Google ScholarPubMed
Koirala, S., Qiang, H. and Ko, C. P. (2000). Reciprocal interactions between perisynaptic Schwann cells and regenerating nerve terminals at the frog neuromuscular junction. J Neurobiol 44, 343–60.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Koirala, S., Reddy, L. V. and Ko, C. P. (2003). Roles of glial cells in the formation, function, and maintenance of the neuromuscular junction. J Neurocytol 32, 987–1002.CrossRefGoogle ScholarPubMed
Koller, H., Giesen, H. J. and Siebler, M. (1995). Impairment of electrophysiological function of astrocytes by cerebrospinal fluid from a patient with Waldenstrom's macroglobulinemia. J Neuroimmunol 61, 35–9.CrossRefGoogle ScholarPubMed
Koller, H., Kieseier, B. C., Jander, S. and Hartung, H. P. (2005). Chronic inflammatory demyelinating polyneuropathy. N Engl J Med 352, 1343–56.CrossRefGoogle ScholarPubMed
Koski, C. L. (1997). Mechanisms of Schwann cell damage in inflammatory neuropathy. J Infect Dis 176 (Suppl 2), S169–S172.CrossRefGoogle ScholarPubMed
Koski, C. L., Humphrey, R. and Shin, M. L. (1985). Anti-peripheral myelin antibody in patients with demyelinating neuropathy: quantitative and kinetic determination of serum antibody by complement component 1 fixation. Proc Nat Acad Sci USA 82, 905–9.CrossRefGoogle ScholarPubMed
Koski, C. L., Sanders, M. E., Swoveland, P. T.et al. (1987). Activation of terminal components of complement in patients with Guillain–Barré syndrome and other demyelinating neuropathies. J Clin Invest 80, 1492–7.CrossRefGoogle ScholarPubMed
Krajewski, K., Turansky, C., Lewis, R.et al. (1999). Correlation between weakness and axonal loss in patients with CMT1A. Ann NY Acad Sci 883, 490–2.CrossRefGoogle ScholarPubMed
Krajewski, K. M., Lewis, R. A., Fuerst, D. R.et al. (2000). Neurological dysfunction and axonal degeneration in Charcot–Marie–Tooth disease type 1A. Brain 123, 1516–27.CrossRefGoogle ScholarPubMed
Kramer, R. H., Cheng, Y. F. and Clyman, R. (1990). Human microvascular endothelial cells use beta 1 and beta 3 integrin receptor complexes to attach to laminin. J Cell Biol 111, 1233–43.CrossRefGoogle Scholar
Krammer, P. H. (2000). CD95's deadly mission in the immune system. Nature 407, 789–95.CrossRefGoogle ScholarPubMed
Kreusch, A., Pfaffinger, P. J., Stevens, C. F. and Choe, S. (1998). Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392, 945–8.CrossRefGoogle ScholarPubMed
Kritas, S. K., Pensaert, M. B., Nauwynck, H. J. and Kyriakis, S. C. (1999). Neural invasion of two virulent suid herpesvirus 1 strains in neonatal pigs with or without maternal immunity. Vet Microbiol 69, 143–56.CrossRefGoogle ScholarPubMed
Krucke, W. (1955). Evkrankungen des peripheren nerven systems. Evkrankungen der peripheren nerve. Lubarsch, O., Henke, F., Rossle, R. (Eds.) Handbuck der Speziellen Pathologischen Anatomie und Histologie, 13 Springer-Verlag, Berlin, pp. 164–83.Google Scholar
Kubu, C. J., Orimoto, K., Morrison, S. J., Weinmaster, G., Anderson, D. J. and Verdi, J. M. (2002). Developmental changes in Notch1 and Numb expression mediated by local cell–cell interactions underlie progressively increasing delta sensitivity in neural crest stem cells. Develop Biol 244, 199–214.CrossRefGoogle ScholarPubMed
Kuffler, D. P. (1986). Accurate reinnervation of motor end plates after disruption of sheath cells and muscle fibers. J Comp Neurol 250, 228–35.CrossRefGoogle ScholarPubMed
Kullberg, R. W., Lentz, T. L. and Cohen, M. W. (1977). Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study. Dev Biol 60, 101–29.CrossRefGoogle ScholarPubMed
Kumpulainen, T. and Korhonen, L. K. (1982). Immunohistochemical localization of carbonic anhydrase isoenzyme C in the central and peripheral nervous system of the mouse. J Histochem Cytochem 30, 283–92.CrossRefGoogle ScholarPubMed
Kurtz, A., Zimmer, A., Schnutgen, F., Bruning, G., Spener, F. and Muller, T. (1994). The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120, 2637–49.Google ScholarPubMed
Kury, P., Koller, H., Hamacher, M., Cornely, C., Hasse, B. and Muller, H. W. (2003). Cyclic AMP and tumor necrosis factor-alpha regulate CXCR4 gene expression in Schwann cells. Mol Cell Neurosci 24, 1–9.CrossRefGoogle ScholarPubMed
Kusunoki, S., Chiba, A., Hitoshi, S., Takizawa, H. and Kanazawa, I. (1995). Anti-Gal-C antibody in autoimmune neuropathies subsequent to mycoplasma infection. Muscle Nerve 18, 409–13.CrossRefGoogle ScholarPubMed
Kuwabara, S., Ogawara, K., Misawa, S.et al. (2004). Does Campylobacter jejuni infection elicit ‘demyelinating’ Guillain–Barré syndrome?Neurology 63, 529–33.CrossRefGoogle ScholarPubMed
Kwa, M. S., , S. I., Brand, A., Baas, F. and Vermeulen, M. (2001). Investigation of serum response to PMP22, connexin 32 and P(0) in inflammatory neuropathies. J Neuroimmunol 116, 220–25.CrossRefGoogle Scholar
Kwa, M. S., Van, S. I., Jonge, R. R.et al. (2003). Autoimmunoreactivity to Schwann cells in patients with inflammatory neuropathies. Brain 126, 361–75.CrossRefGoogle ScholarPubMed
La, F. M., Underwood, J. L., Rappolee, D. A. and Werb, Z. (1996). Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1. J Exp Med 184, 2311–26.Google Scholar
Lacas-Gervais, S., Guo, J., Strenzke, N.et al. (2004). βIVΣ1 spectrin stabilizes the nodes of Ranvier and axon initial segments. J Cell Biol 166, 983–90.CrossRefGoogle ScholarPubMed
Lambert, S., Davis, J. Q. and Bennett, V. (1997). Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J Neurosci 17, 7025–36.CrossRefGoogle ScholarPubMed
Lampert, P. W. (1969). Mechanism of demyelination in experimental allergic neuritis. Electron microscopic studies. Lab Invest 20, 127–38.Google ScholarPubMed
Laporte, J., Blondeau, F., Buj-Bello, A. and Mandel, J. L. (2001). The myotubularin family: from genetic disease to phosphoinositide metabolism. Trends Genet 17, 221–8.CrossRefGoogle ScholarPubMed
Latov, N. (2002). Diagnosis of CIDP. Neurology 59, S2–S6.CrossRefGoogle ScholarPubMed
Lazarini, F., Tham, T. N., Casanova, P., Renzana-Seisdedos, F. and Dubois-Dalcq, M. (2003). Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42, 139–48.CrossRefGoogle ScholarPubMed
Douarin, N. M. and Dupin, E. (1993). Cell lineage analysis in neural crest ontogeny. J Neurobiol 24, 146–61.CrossRefGoogle ScholarPubMed
Douarin, N. M. and Kalcheim, C. (1999). The Neural Crest. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Le, N., Nagarajan, R., Wang, J. Y. T.et al. (2005a). Nab proteins are essential for peripheral nervous system myelination. Nat Neurosci 8, 932–40.CrossRefGoogle Scholar
Le, N., Nagarajan, R., Wang, J. Y. T., Araki, T., Schmidt, R. E. and Milbrandt, J. (2005b). Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Nat Acad Sci USA 102, 2596–601.CrossRefGoogle Scholar
Lee, M. J., Brennan, A., Blanchard, A.et al. (1997). P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively. Mol Cell Neurosci 8, 336–50.CrossRefGoogle ScholarPubMed
Lefcort, F., Venstrom, K., McDonald, J. A. and Reichardt, L. F. (1992). Regulation of expression of fibronectin and its receptor, alpha 5 beta 1, during development and regeneration of peripheral nerve. Development 116, 767–82.Google Scholar
Leimeroth, R., Lobsiger, C., Lussi, A., Taylor, V., Suter, U. and Sommer, L. (2002). Membrane-bound neuregulin1 type III actively promotes Schwann cell differentiation of multipotent progenitor cells. Develop Biol 246, 245–58.CrossRefGoogle ScholarPubMed
Lemke, G. (2001). Glial control of neuronal development. Ann Rev Neurosci 24, 87–105.CrossRefGoogle ScholarPubMed
Lemke, G. and Axel, R. (1985). Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 40, 501–8.CrossRefGoogle ScholarPubMed
Lentz, S. I., Miner, J. H., Sanes, J. R. and Snider, W. D. (1997). Distribution of the ten known laminin chains in the pathways and targets of developing sensory axons. J Comp Neurol 378, 547–61.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Leppert, D., Hughes, P., Huber, S.et al. (1999). Matrix metalloproteinase upregulation in chronic inflammatory demyelinating polyneuropathy and nonsystemic vasculitic neuropathy. Neurology 53, 62–70.CrossRefGoogle ScholarPubMed
Letinsky, M. S., Fischbeck, K. H. and McMahan, U. J. (1976). Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush. J Neurocytol 5, 691–718.CrossRefGoogle ScholarPubMed
Levedakou, E. N., Chen, X. J., Soliven, B. and Popko, B. (2005). Disruption of the mouse Large gene in the enr and myd mutants results in nerve, muscle, and neuromuscular junction defects. Mol Cell Neurosci 28, 757–69.CrossRefGoogle ScholarPubMed
Lewis, J., Al-Ghaith, L., Swanson, G. and Khan, A. (1983). The control of axon outgrowth in the developing chick wing. Prog Clin Biol Res 110 (Part A), 195–205.Google ScholarPubMed
Lewis, R. A. and Shy, M. E. (1999). Electrodiagnostic findings in CMTX: a disorder of the Schwann cell and peripheral nerve myelin. Ann NY Acad Sci 883, 504–7.CrossRefGoogle ScholarPubMed
Li, J., Krajewski, K., Shy, M. E. and Lewis, R. A. (2002a). Hereditary neuropathy with liability to pressure palsy: the electrophysiology fits the name. Neurology 58, 1769–73.CrossRefGoogle Scholar
Li, J., Krajewski, K., Lewis, R. A. and Shy, M. E. (2004). Loss-of-function phenotype of hereditary neuropathy with liability to pressure palsies. Muscle Nerve 29, 205–10.CrossRefGoogle ScholarPubMed
Li, J., Bai, Y., Ghandour, K., Qin, P.et al. (2005a). Skin biopsies in myelin-related neuropathies: bringing molecular pathology to the bedside. Brain 128, 1168–77.CrossRefGoogle Scholar
Li, J., Grandis, M., Trostinskaia, A. et al. 32765. Intralaminar protein accumulation of myelin and axonal degeneration in a human MPZ mutation: an autopsy study.
Li, L., Xian, C. J., Zhong, J. H. and Zhou, X. F. (2003). Lumbar 5 ventral root transection-induced upregulation of nerve growth factor in sensory neurons and their target tissues: a mechanism in neuropathic pain. Mol Cell Neurosci 23, 232–50.CrossRefGoogle ScholarPubMed
Li, Q., Shirabe, K., Thisse, C.et al. (2005b). Chemokine signaling guides axons within the retina in zebrafish. J Neurosci 25, 1711–17.CrossRefGoogle Scholar
Li, S., Liquari, P., McKee, K. K.et al. (2005c). Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J Cell Biol 169, 179–89.CrossRefGoogle Scholar
Li, X., Lynn, B. D., Olson, C.et al. (2002b). Connexin29 expression, immunocytochemistry and freeze-fracture replica immunogold labelling (FRIL) in sciatic nerve. Eur J Neurosci 16, 795–806.CrossRefGoogle Scholar
Li, X., Gonias, S. L. and Campana, W. M. (2005d). Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury. Glia 51, 254–65.CrossRefGoogle Scholar
Li, J., Bai, Y. and Ianakova, E.et al. (2006). Major myelin protein gene (PO) mutation causes a novel form of axonal degeneration. J Comp Neurol 498, 252–65.CrossRefGoogle Scholar
Lichtman, J. W. and Sanes, J. R. (2003). Watching the neuromuscular junction. J Neurocytol 32, 767–75.CrossRefGoogle ScholarPubMed
Lichtman, J. W., Magrassi, L. and Purves, D. (1987). Visualization of neuromuscular junctions over periods of several months in living mice. J Neurosci 7, 1215–22.CrossRefGoogle ScholarPubMed
Lilje, O. (2002). The processing and presentation of endogenous and exogenous antigen by Schwann cells in vitro. Cell Mol Life Sci 59, 2191–8.CrossRefGoogle ScholarPubMed
Lilje, O. and Armati, P. J. (1997). The distribution and abundance of MHC and ICAM-1 on Schwann cells in vitro. J Neuroimmunol 77, 75–84.CrossRefGoogle ScholarPubMed
Lilje, O. and Armati, P. J. (1999). Restimulation of resting autoreactive T cells by Schwann cells in vitro. Exp Mol Pathol 67, 164–74.CrossRefGoogle ScholarPubMed
Lin, C., Numakura, C., Ikegami, T.et al. (1999). Deletion and nonsense mutations of the connexin 32 gene associated with Charcot–Marie–Tooth disease. Tohoku J Exp Med 188, 239–44.CrossRefGoogle ScholarPubMed
Lin, W., Sanchez, H. B., Deerinck, T., Morris, J. K., Ellisman, M. and Lee, K. F. (2000). Aberrant development of motor axons and neuromuscular synapses in erbB2-deficient mice. Proc Nat Acad Sci USA 97, 1299–304.CrossRefGoogle ScholarPubMed
Linden, D. C., Jerian, S. M. and Letinsky, M. S. (1988). Neuromuscular junction development in the cutaneous pectoris muscle of Rana catesbeiana. Exp Neurol 99, 735–60.CrossRefGoogle ScholarPubMed
Lindholm, D., Heumann, R., Meyer, M. and Thoenen, H. (1987). Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330, 658–9.CrossRefGoogle ScholarPubMed
Linington, C., Izumo, S., Suzuki, M., Uyemura, K., Meyermann, R. and Wekerle, H. (1984). A permanent rat T cell line that mediates experimental allergic neuritis in the Lewis rat in vivo. J Immunol 133, 1946–50.Google ScholarPubMed
Linington, C., Bradl, M., Lassmann, H., Brunner, C. and Vass, K. (1988). Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130, 443–54.Google ScholarPubMed
Linington, C., Lassmann, H., Ozawa, K., Kosin, S. and Mongan, L. (1992). Cell adhesion molecules of the immunoglobulin supergene family as tissue-specific autoantigens: induction of experimental allergic neuritis (EAN) by P0 protein-specific T cell lines. Eur J Immunol 22, 1813–17.CrossRefGoogle ScholarPubMed
Linington, C., Berger, T., Perry, L.et al. (1993). T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur J Immunol 23, 1364–72.CrossRefGoogle ScholarPubMed
Lisak, R. and Brown, M. J. (1987). Acquired demyelinating polyneuropathies. Semin Neurol 7, 40–8.CrossRefGoogle ScholarPubMed
Lisak, R. and Bealmear, B. (1991). Antibodies to interleukin-1 inhibit cytokine-induced proliferation of neonatal rat Schwann cells in vitro. J Neuroimmunol 31, 123–32.CrossRefGoogle ScholarPubMed
Lisak, R. and Bealmear, B. (1992). Differences in the capacity of gamma-interferons from different species to induce class I and II major histocompatibility complex antigens on neonatal rat Schwann cells in vitro. Pathobiology 60, 322–9.CrossRefGoogle Scholar
Lisak, R. and Bealmear, B. (1994). Antibodies to interleukin-6 inhibit Schwann cell proliferation induced by unfractionated cytokines. J Neuroimmunol 50, 127–32.CrossRefGoogle ScholarPubMed
Lisak, R. and Bealmear, B. (1995). Transforming growth factor-β (TGF-β) is co-mitogenic for Schwann cells (SC) with interleukin-α (IL-α). Neurology 45, A164–A165.Google Scholar
Lisak, R. and Bealmear, B. (1997). Upregulation of intercellular adhesion molecule-1 (ICAM-1) on rat Schwann cells in vitro: comparison of interferon-gamma, tumor necrosis factor-alpha and interleukin-1. J Peripher Nerv Syst 2, 233–43.Google ScholarPubMed
Lisak, R., Hirayama, M., Kuchmy, D.et al. (1983). Cultured human and rat oligodendrocytes and rat Schwann cells do not have immune response gene associated antigen (Ia) on their surface. Brain Res 289, 285–92.CrossRefGoogle Scholar
Lisak, R., Kuchmy, D., Rmati-Gulson, P. J., Brown, M. J. and Sumner, A. J. (1984). Serum-mediated Schwann cell cytotoxicity in the Guillain–Barré syndrome. Neurology 34, 1240–3.CrossRefGoogle ScholarPubMed
Lisak, R., Sobue, G., Kuchmy, D., Burns, J. B. and Pleasure, D. E. (1985). Products of activated lymphocytes stimulate Schwann cell mitosis in vitro. Neurosci Lett 57, 105–11.CrossRefGoogle ScholarPubMed
Lisak, R., Bealmear, B. and Ragheb, S. (1994). Interleukin-1 alpha, but not interleukin-1 beta, is a co-mitogen for neonatal rat Schwann cells in vitro and acts via interleukin-1 receptors. J Neuroimmunol 55, 171–7.CrossRefGoogle Scholar
Lisak, R., Bealmear, B., Benjamins, J., Yu, C. and Skoff, R. (1996). Transforming growth factor-β (TGF-β) has different effects on proliferation of neonatal central (CNS) and peripheral (PNS) macroglia in vitro. Neurology 46, A190.Google Scholar
Lisak, R., Skundric, D., Bealmear, B. and Ragheb, S. (1997). The role of cytokines in Schwann cell damage, protection, and repair. J Infect Dis 176 (Suppl 2), S173–S179.CrossRefGoogle Scholar
Lisak, R., Bealmear, B., Benjamins, J. and Skoff, A. (1998). Inflammatory cytokines inhibit upregulation of glycolipid expression by Schwann cells in vitro. Neurology 51, 1661–5.CrossRefGoogle ScholarPubMed
Lisak, R., Bealmear, B., Benjamins, J. and Skoff, A. (1999). Tumor necrosis factor-α (TNF-α) upregulation of intracellular adhesion molecule-1 by Schwann cells is predominantly mediated by TNF receptor type I. Soc Neurosci Abstr 25, 294.Google Scholar
Lisak, R., Bealmear, B., Benjamins, J. A. and Skoff, A. M. (2001). Interferon-gamma, tumor necrosis factor-alpha, and transforming growth factor-beta inhibit cyclic AMP-induced Schwann cell differentiation. Glia 36, 354–63.CrossRefGoogle ScholarPubMed
Lisak, R., Bealmear, B., Nedelkoska, L. and Benjamins, J. A. (2006). Secretory products of central nervous system glial cells induce Schwann cell proliferation and protect from cytokine-mediated death. J Neurosci Res 83, 1425–31.CrossRefGoogle ScholarPubMed
Liu, H., Nakagawa, T., Kanematsu, T., Uchida, T. and Tsuji, S. (1999). Isolation of 10 differentially expressed cDNAs in differentiated Neuro2a ceFlls induced through controlled expression of the GD3 synthase gene. J Neurochem 72, 1781–90.CrossRefGoogle ScholarPubMed
Lobsiger, C. S., Taylor, V. and Suter, U. (2002). The early life of a Schwann cell. Biol Chem 383, 245–53.CrossRefGoogle ScholarPubMed
Loeb, J. A., Khurana, T. S., Robbins, J. T., Yee, A. G. and Fischbach, G. D. (1999). Expression patterns of transmembrane and released forms of neuregulin during spinal cord and neuromuscular synapse development. Development 126, 781–91.Google ScholarPubMed
Love, F. M. and Thompson, W. J. (1998). Schwann cells proliferate at rat neuromuscular junctions during development and regeneration. J Neurosci 18, 9376–85.CrossRefGoogle ScholarPubMed
Love, F. M. and Thompson, W. J. (1999). Glial cells promote muscle reinnervation by responding to activity-dependent postsynaptic signals. J Neurosci 19, 10390–6.CrossRefGoogle ScholarPubMed
Love, F. M., Son, Y. J. and Thompson, W. J. (2003). Activity alters muscle reinnervation and terminal sprouting by reducing the number of Schwann cell pathways that grow to link synaptic sites. J Neurobiol 54, 566–76.CrossRefGoogle ScholarPubMed
Lubischer, J. L. and Bebinger, D. M. (1999). Regulation of terminal Schwann cell number at the adult neuromuscular junction. J Neurosci 19, RC46.CrossRefGoogle ScholarPubMed
Lubischer, J. L. and Thompson, W. J. (1999). Neonatal partial denervation results in nodal but not terminal sprouting and a decrease in efficacy of remaining neuromuscular junctions in rat soleus muscle. J Neurosci 19, 8931–44.CrossRefGoogle ScholarPubMed
Luitjen, J. A. F. M. and Faille-Kuyper, E. H. B. (1972). The occurrence of IgM and complement factors along myelin sheaths of peripheral nerves. An immunohistochemical study of the Guillain–Barré syndrome. J Neurol Sci 15, 219–24.Google Scholar
Lunn, M. P., Manji, H., Choudhary, P. P., Hughes, R. A. and Thomas, P. K. (1999). Chronic inflammatory demyelinating polyradiculoneuropathy: a prevalence study in south east England. J Neurol Neurosurg Psychiatry 66, 677–80.CrossRefGoogle ScholarPubMed
Lupski, J. R., Oca-Luna, R. M., Slaugenhaupt, S.et al. (1991). DNA duplication associated with Charcot–Marie–Tooth disease type 1A. Cell 66, 219–32.CrossRefGoogle ScholarPubMed
Lustig, M., Zanazzi, G., Sakurai, T.et al. (2001). Nr–CAM and neurofascin interactions regulate ankyrin G and sodium channel clustering at the node of Ranvier. Curr Biol 11, 1864–9.CrossRefGoogle Scholar
Mackie, E. J. and Tucker, R. P. (1999). The tenascin-C knockout revisited. J Cell Sci 112 (Part 22), 3847–53.Google ScholarPubMed
Macleod, G. T., Dickens, P. A. and Bennett, M. R. (2001). Formation and function of synapses with respect to Schwann cells at the end of motor nerve terminal branches on mature amphibian (Bufo marinus) muscle. J Neurosci 21, 2380–92.CrossRefGoogle ScholarPubMed
Madrid, R. E., Jaros, E., Cullen, M. J. and Bradley, W. G. (1975). Genetically determined defect of Schwann cell basement membrane in dystrophic mouse. Nature 257, 319–21.CrossRefGoogle ScholarPubMed
Magda, P., Latov, N., Brannagan, T. H. III, Weimer, L. H., Chin, R. L. and Sander, H. W. (2003). Comparison of electrodiagnostic abnormalities and criteria in a cohort of patients with chronic inflammatory demyelinating polyneuropathy. Arch Neurol 60, 1755–9.CrossRefGoogle Scholar
Magyar, J. P., Martini, R., Ruelicke, T.et al. (1996). Impaired differentiation of Schwann cells in transgenic mice with increased PMP22 gene dosage. J Neurosci 16, 5351–60.CrossRefGoogle ScholarPubMed
Maier, M., Berger, P. and Suter, U. (2002). Understanding Schwann cell–neurone interactions: the key to Charcot–Marie–Tooth disease?J Anat 200, 357–66.CrossRefGoogle ScholarPubMed
Mancardi, G. L., Cadoni, A., Zicca, A.et al. (1988). HLA-DR Schwann cell reactivity in peripheral neuropathies of different origins. Neurology 38, 848–51.CrossRefGoogle ScholarPubMed
Mandich, P., Mancardi, G. L., Varese, A.et al. (1999). Congenital hypomyelination due to myelin protein zero Q215X mutation. Ann Neurol 45, 676–8.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Marchionni, M. A., Goodearl, A. D. J., Chen, M. S.et al. (1993). Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312–18.CrossRefGoogle Scholar
Marcus, J. and Popko, B. (2002). Galactolipids are molecular determinants of myelin development and axo-glial organization. BBA Gen Subjects 1573, 406–13.CrossRefGoogle ScholarPubMed
Maro, G. S., Vermeren, M., Voiculescu, O.et al. (2004). Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7, 930–8.CrossRefGoogle ScholarPubMed
Marques, W. Jr., Thomas, P. K., Sweeney, M. G., Carr, L. and Wood, N. W. (1998). Dejerine–Sottas neuropathy and PMP22 point mutations: a new base pair substitution and a possible ‘hot spot’ on Ser72. Ann Neurol 43, 680–3.CrossRefGoogle Scholar
Martin, J. R. and Suzuki, S. (1987). Inflammatory sensory polyradiculopathy and reactivated peripheral nervous system infection in a genital herpes model. J Neurol Sci 79, 155–71.CrossRefGoogle Scholar
Martin, S., Levine, A. K., Chen, Z. J., Ughrin, Y. and Levine, J. M. (2001). Deposition of the NG2 proteoglycan at nodes of Ranvier in the peripheral nervous system. J Neurosci 21, 8119–28.CrossRefGoogle ScholarPubMed
Martini, R., Schachner, M. and Faissner, A. (1990). Enhanced expression of the extracellular matrix molecule J1/tenascin in the regenerating adult mouse sciatic nerve. J Neurocytol 19, 601–16.CrossRefGoogle ScholarPubMed
Masaki, T., Matsumura, K., Saito, F.et al. (2000). Expression of dystroglycan and laminin-2 in peripheral nerve under axonal degeneration and regeneration. Acta Neuropathol (Berl) 99, 289–95.CrossRefGoogle ScholarPubMed
Masaki, T., Matsumura, K., Hirata, A.et al. (2002). Expression of dystroglycan and the laminin-alpha 2 chain in the rat peripheral nerve during development. Exp Neurol 174, 109–17.CrossRefGoogle ScholarPubMed
Massague, J., Andres, J., Attisano, L.et al. (1992). TGF-beta receptors. Mol Reprod Dev 32, 99–104.Google ScholarPubMed
Massicotte, C. and Scherer, S. (2004). Neuropathies – Translating Causes into Treatments. Waxman, S. G. (Ed.), Elsevier, Philadelphia, pp. 401–14.Google Scholar
Mata, M., Siegel, G. J., Hieber, V., Beaty, M. W. and Fink, D. J. (1991). Differential distribution of (Na,K)-ATPase alpha isoform mRNAs in the peripheral nervous system. Brain Res 546, 47–54.CrossRefGoogle ScholarPubMed
Mathey, E. K., Pollard, J. D. and Armati, P. J. (1999). TNF alpha, IFN gamma and IL-2 mRNA expression in CIDP sural nerve biopsies. J Neurol Sci 163, 47–52.CrossRefGoogle ScholarPubMed
Matsumoto, K., Sawa, H., Sato, M., Orba, Y., Nagashima, K. and Ariga, H. (2002). Distribution of extracellular matrix tenascin-X in sciatic nerves. Acta Neuropathol (Berl) 104, 448–54.Google ScholarPubMed
Maurel, P. and Salzer, J. L. (2000). Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. J Neurosci 20, 4635–45.CrossRefGoogle ScholarPubMed
Maurer, M., Toyka, K. V. and Gold, R. (2002). Cellular immunity in inflammatory autoimmune neuropathies. Rev Neurol (Paris) 158, S7–S15.Google ScholarPubMed
McCarty, J. H., Lacy-Hulbert, A., Charest, A. et al. (2004). Selective ablation of {alpha}v integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development.CrossRef
McCombe, P. A., Clark, P., Frith, J. A.et al. (1985). Alpha-1 antitrypsin phenotypes in demyelinating disease: an association between demyelinating disease and the allele PiM3. Ann Neurol 18, 514–16.CrossRefGoogle ScholarPubMed
McCombe, P. A., McManis, P. G., Frith, J. A., Pollard, J. D. and McLeod, J. G. (1987a). Chronic inflammatory demyelinating polyradiculoneuropathy associated with pregnancy. Ann Neurol 21, 102–4.CrossRefGoogle Scholar
McCombe, P. A., Pollard, J. D. and McLeod, J. G. (1987b). Chronic inflammatory demyelinating polyradiculoneuropathy. A clinical and electrophysiological study of 92 cases. Brain 110 (Part 6), 1617–30.CrossRefGoogle Scholar
McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K. and Palis, J. (1999). Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213, 442–56.CrossRefGoogle ScholarPubMed
McKhann, G. M., Cornblath, D. R., Ho, T.et al. (1991). Clinical and electrophysiological aspects of acute paralytic disease of children and young adults in northern China. Lancet 338, 593–7.CrossRefGoogle Scholar
McKhann, G. M., Cornblath, D., Griffin, J. W.et al. (1999). Acute motor axonal neuropathy – a frequent cause of acute flaccid paralysis in China. Ann Neurol 33, 333–42.CrossRefGoogle Scholar
McLennan, I. S. and Koishi, K. (2002). The transforming growth factor-betas: multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells. Int J Dev Biol 46, 559–67.Google ScholarPubMed
McLeod, J. G., Pollard, J. D., Macaskill, P., Mohamed, A., Spring, P. and Khurana, V. (1999). Prevalence of chronic inflammatory demyelinating polyneuropathy in New South Wales, Australia. Ann Neurol 46, 910–13.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
McMahan, U. J. (1990). The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55, 407–18.CrossRefGoogle ScholarPubMed
Medzhitov, R. and Janeway, C. Jr. (2000). Innate immunity. N Engl J Med 343, 338–44.CrossRefGoogle ScholarPubMed
Meier, C., Parmantier, E., Brennan, A., Mirsky, R. and Jessen, K. R. (1999). Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. J Neurosci 19, 3847–59.CrossRefGoogle ScholarPubMed
Meier, C., Dermietzel, R., Davidson, K. G. V., Yasumura, T. and Rash, J. E. (2004). Connexin32-containing gap junctions in Schwann cells at the internodal zone of partial myelin compaction and in Schmidt–Lanterman incisures. J Neurosci 24, 3186–98.CrossRefGoogle ScholarPubMed
Meintanis, S., Thomaidou, D., Jessen, K. R., Mirsky, R. and Matsas, R. (2001). The neuron-glia signal beta-neuregulin promotes Schwann cell motility via the MAPK pathway. Glia 34, 39–51.CrossRefGoogle ScholarPubMed
Melcangi, R. C., Cavarretta, I. T. R., Ballabio, M.et al. (2005). Peripheral nerves: a target for the action of neuroactive steroids. Brain Res Rev 48, 328–38.CrossRefGoogle ScholarPubMed
Melendez-Vasquez, C., Redford, J., Choudhary, P. P.et al. (1997). Immunological investigation of chronic inflammatory demyelinating polyradiculoneuropathy. J Neuroimmunol 73, 124–34.CrossRefGoogle ScholarPubMed
Melendez-Vasquez, C. V., Rios, J. C., Zanazzi, G., Lambert, S., Bretscher, A. and Salzer, J. L. (2001). Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)-positive Schwann cell processes. Proc Nat Acad Sci USA 98, 1235–40.CrossRefGoogle ScholarPubMed
Melendez-Vasquez, C. V., Einheber, S. and Salzer, J. L. (2004). Rho kinase regulates Schwann cell myelination and formation of associated axonal domains. J Neurosci 24, 3953–63.CrossRefGoogle ScholarPubMed
Menichella, D. M., Arroyo, E. J., Awatramani, R.et al. (2001). Protein zero is necessary for e-cadherin-mediated adherens junction formation in Schwann cells. Mol Cell Neurosci 18, 606–18.CrossRefGoogle ScholarPubMed
Menichella, D. M., Goodenough, D. A., Sirkowski, E., Scherer, S. S. and Paul, D. L. (2003). Connexins are critical for normal myelination in the CNS. J Neurosci 23, 5963–73.CrossRefGoogle ScholarPubMed
Metral, S., Raphael, J. C., Hort-Legrand, C. I. and Elkharrat, D. (1989). Serum demyelinating activity and Guillain–Barré syndrome: favorable effect of plasma exchange. Rev Neurol (Paris) 145, 312–19.Google ScholarPubMed
Mews, M. and Meyer, M. (1993). Modulation of Schwann cell phenotype by TGF-beta 1: inhibition of P0 mRNA expression and downregulation of the low affinity NGF receptor. Glia 8, 208–17.CrossRefGoogle ScholarPubMed
Meyer, D., Yamaai, T., Garratt, A.et al. (1997). Isoform-specific expression and function of neuregulin. Development 124, 3575–86.Google ScholarPubMed
Michailov, G. V., Sereda, M. W., Brinkmann, B. G.et al. (2004). Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–3.CrossRefGoogle ScholarPubMed
Miledi, R. and Slater, C. R. (1968). Electrophysiology and electron-microscopy of rat neuromuscular junctions after nerve degeneration. Proc R Soc Lond B Biol Sci 169, 289–306.CrossRefGoogle ScholarPubMed
Miledi, R. and Slater, C. R. (1970). On the degeneration of rat neuromuscular junctions after nerve section. J Physiol 207, 507–28.CrossRefGoogle ScholarPubMed
Miller, D. J., Njenga, M. K., Parisi, J. E. and Rodriguez, M. (1996). Multi-organ reactivity of a monoclonal natural autoantibody that promotes remyelination in a mouse model of multiple sclerosis. J Histochem Cytochem 44, 1005–11.CrossRefGoogle Scholar
Miller, K. E., Richards, B. A. and Kriebel, R. M. (2002). Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 945, 202–11.CrossRefGoogle ScholarPubMed
Milner, P., Lovelidge, C. A., Taylor, W. A. and Hughes, R. A. (1987). P0 myelin protein produces experimental allergic neuritis in Lewis rats. J Neurol Sci 79, 275–85.CrossRefGoogle ScholarPubMed
Milner, R., Wilby, M., Nishimura, S.et al. (1997). Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands. Dev Biol 185, 215–28.CrossRefGoogle ScholarPubMed
Miner, J. H. and Yurchenco, P. D. (2004). Laminin functions in tissue morphogenesis. Ann Rev Cell Dev Biol 20, 255–84.CrossRefGoogle ScholarPubMed
Mirsky, R. and Jessen, K. R. (1983). A cell surface protein of astrocytes, Ran-2, distinguishes non-myelin-forming Schwann cells from myelin-forming Schwann cells. Dev Neurosci 6, 304–16.CrossRefGoogle ScholarPubMed
Mirsky, R. and Jessen, K. R. (1999). The neurobiology of Schwann cells. Brain Pathol 9, 293–311.CrossRefGoogle ScholarPubMed
Mirsky, R. and Jessen, K. R. (2005). Molecular signaling in Schwann cell development. Dyck, P. J., Thomas, P. K. (Eds.) Peripheral Neuropathy, 4th Edn. Elsevier, Philadelphia, pp. 341–76.Google Scholar
Mirsky, R. and Jessen, K. R. (1996). Schwann cell development, differentiation and myelination. Curr Opin Neurobiol 6, 89–96.CrossRefGoogle ScholarPubMed
Mirsky, R., Stewart, H. J., Tabernero, A.et al. (1996). Development and differentiation of Schwann cells. Rev Neurol (Paris) 152, 308–13.Google ScholarPubMed
Mirsky, R., Parkinson, D. B., Dong, Z.et al. (2001). Regulation of genes involved in Schwann cell development and differentiation. Prog Brain Res 132, 3–11.CrossRefGoogle ScholarPubMed
Mithen, F. A., Colburn, S. and Birchem, R. (1990). Human alpha tumor necrosis factor does not damage cultures containing rat Schwann cells and sensory neurons. Neurosci Res 9, 59–63.CrossRefGoogle Scholar
Mithen, F. A., Ilyas, A. A., Birchem, R. and Cook, S. D. (1992). Effects of Guillain–Barré sera containing antibodies against glycolipids in cultures of rat Schwann cells and sensory neurons. J Neurol Sci 112, 223–32.CrossRefGoogle ScholarPubMed
Modlin, R. L. (2002). Learning from leprosy: insights into contemporary immunology from an ancient disease. Skin Pharmacol Appl Skin Physiol 15, 1–6.CrossRefGoogle ScholarPubMed
Mokuno, K., Sobue, G., Reddy, U. R.et al. (1988). Regulation of Schwann cell nerve growth factor receptor by cyclic adenosine 3′,5′-monophosphate. J Neurosci Res 21, 465–72.CrossRefGoogle ScholarPubMed
Mollaaghababa, R. and Pavan, W. J. (2003). The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene 22, 3024–34.CrossRefGoogle ScholarPubMed
Morgan, L., Jessen, K. R. and Mirsky, R. (1991). The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol 112, 457–67.CrossRefGoogle ScholarPubMed
Mori, K., Chano, T., Yamamoto, K., Matsusue, Y. and Okabe, H. (2004). Expression of macrophage inflammatory protein-1alpha in Schwann cell tumors. Neuropathology 24, 131–5.CrossRefGoogle ScholarPubMed
Morris, J. K., Lin, W., Hauser, C., Marchuk, Y., Getman, D. and Lee, K. F. (1999). Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 23, 273–83.CrossRefGoogle ScholarPubMed
Morrison, S. J., White, P. M., Zock, C. and Anderson, D. J. (1999). Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–49.CrossRefGoogle ScholarPubMed
Morrison, S. J., Perez, S. E., Qiao, Z.et al. (2000). Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101, 499–510.CrossRefGoogle ScholarPubMed
Morrissey, T. K., Levi, A. D. O., Nuijens, A., Sliwkowski, M. X. and Bunge, R. P. (1995). Axon-induced mitogenesis of human Schwann cells involves heregulin and p185erbB2. Proc Nat Acad Sci USA 92, 1431–5.CrossRefGoogle ScholarPubMed
Muntoni, F., Brockington, M., Torelli, S. and Brown, S. C. (2004). Defective glycosylation in congenital muscular dystrophies. Curr Opin Neurol 17, 205–9.CrossRefGoogle ScholarPubMed
Murata, K. and Dalakas, M. C. (2000). Expression of the co-stimulatory molecule BB-1, the ligands CTLA-4 and CD28 and their mRNAs in chronic inflammatory demyelinating polyneuropathy. Brain 123 (Part 8), 1660–6.CrossRefGoogle ScholarPubMed
Murnane, R. D., Ahern-Rindell, A. J. and Prieur, D. J. (1991). Ultrastructural lesions of ovine GM1 gangliosidosis. Mod Pathol 4, 755–62.Google ScholarPubMed
Murwani, R., Hodgkinson, S. and Armati, P. (1996). Tumor necrosis factor alpha and interleukin-6 mRNA expression in neonatal Lewis rat Schwann cells and a neonatal rat Schwann cell line following interferon gamma stimulation. J Neuroimmunol 71, 65–71.CrossRefGoogle Scholar
Musarella, M., Alcaraz, G., Caillol, G., Boudier, J. L., Couraud, F. and Autillo-Touati, A. (2006). Expression of Nav1.6 sodium channels by Schwann cells at neuromuscular junctions: role in the motor endplate disease phenotype. Glia 53, 13–23.CrossRefGoogle ScholarPubMed
Nacimiento, W., Schoen, S. W., Nacimiento, A. C. and Kreutzberg, G. W. (1991). Cytochemistry of 5′-nucleotidase in the superior cervical ganglion of cat and guinea pig. Brain Res 567, 283–9.CrossRefGoogle ScholarPubMed
Nagarajan, R., Svaren, J., Le, N., Araki, T., Watson, M. and Milbrandt, J. (2001). EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30, 355–68.CrossRefGoogle ScholarPubMed
Nakagawa, M., Miyagoe-Suzuki, Y., Ikezoe, K.et al. (2001a). Schwann cell myelination occurred without basal lamina formation in laminin alpha2 chain-null mutant (dy3K/dy3K) mice. Glia 35, 101–10.CrossRefGoogle Scholar
Nakagawa, M., Takashima, H., Umehara, F.et al. (2001b). Clinical phentoype in X-linked Charcot–Marie–Tooth disease with an entire deletion of the connexin 32 coding sequence. J Neurol Sci 185, 31–6.CrossRefGoogle Scholar
Nardelli, E., Bassi, A., Mazzi, G., Anzini, P. and Rizzuto, N. (1995). Systemic passive transfer studies using IgM monoclonal antibodies to sulfatide. J Neuroimmunol 63, 29–37.CrossRefGoogle ScholarPubMed
Navon, R., Seifried, B., Gal-On, N. S. and Sadeh, M. (1996). A new point mutation affecting the fourth transmembrane domain of PMP22 results in severe de novo Charcot–Marie–Tooth disease. Hum Genet 97, 685–7.CrossRefGoogle ScholarPubMed
Nedergaard, M., Ransom, B. and Goldman, S. A. (2003). New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26, 523–30.CrossRefGoogle Scholar
Nelis, E., Timmerman, V., Jonghe, P. and Broeckhoven, C. (1994). Identification of a 5′ splice site mutation in the PMP-22 gene in autosomal dominant Charcot–Marie–Tooth disease type 1. Hum Mol Genet 3, 515–16.CrossRefGoogle ScholarPubMed
Nelis, E., Broeckhoven, C., Jonghe, P.et al. (1996). Estimation of the mutation frequencies in Charcot–Marie–Tooth disease type 1 and hereditary neuropathy with liability to pressure palsies: a European collaborative study. Eur J Hum Genet 4, 25–33.CrossRefGoogle ScholarPubMed
Newman, E. A. and Volterra, A. (2004). Glial control of synaptic function. Glia 47, 207–8.CrossRefGoogle ScholarPubMed
Nguyen, Q. T., Sanes, J. R. and Lichtman, J. W. (2002). Pre-existing pathways promote precise projection patterns. Nat Neurosci 5, 861–7.CrossRefGoogle ScholarPubMed
Nicholson, G. and Corbett, A. (1996). Slowing of central conduction in X-linked Charcot–Marie–Tooth neuropathy shown by brain stem auditory evoked responses. J Neurol Neurosurg Psychiatry 61, 43–6.CrossRefGoogle ScholarPubMed
Nicholson, G. and Nash, J. (1993). Intermediate nerve conduction velocities define X-linked Charcot–Marie–Tooth neuropathy families. Neurology 43, 2558–64.CrossRefGoogle ScholarPubMed
Nicholson, G. A., Valentijn, L. J., Cherryson, A. K.et al. (1994). A frame shift mutation in the PMP22 gene in hereditary neuropathy with liability to pressure palsies. Nat Genet 6, 263–6.CrossRefGoogle ScholarPubMed
Nickols, J. C., Valentine, W., Kanwal, S. and Carter, B. D. (2003). Activation of the transcription factor NF-kappaB in Schwann cells is required for peripheral myelin formation. Nature Neuroscience 6, 161–7.CrossRefGoogle ScholarPubMed
Niessen, C. M., Cremona, O., Daams, H., Ferraresi, S., Sonnenberg, A.Marchisio, P. C. (1994). Expression of the integrin α6β4 in peripheral nerves: localization in Schwann and perineurial cells and different variants of the β4 subunit. J Cell Sci 107, 543–52.Google Scholar
Noakes, P. G. and Bennett, M. R. (1987). Growth of axons into developing muscles of the chick forelimb is preceded by cells that stain with Schwann cell antibodies. J Comp Neurol 259, 330–47.CrossRefGoogle ScholarPubMed
Noakes, P. G., Bennett, M. R. and Stratford, J. (1988). Migration of Schwann cells and axons into developing chick forelimb muscles following removal of either the neural tube or the neural crest. J Comp Neurol 277, 214–33.CrossRefGoogle ScholarPubMed
Nolano, M., Provitera, V., Crisci, C.et al. (2003). Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol 54, 197–205.CrossRefGoogle ScholarPubMed
Nyland, H., Matre, R. and Mork, S. (1981). Immunological characterization of sural nerve biopsies from patients with Guillain–Barré syndrome. Ann Neurol 9 (Suppl), 80–6.CrossRefGoogle ScholarPubMed
O'Hanlon, G. M., Plomp, J. J., Chakrabarti, M.et al. (2001). Anti-GQ1b ganglioside antibodies mediate complement-dependent destruction of the motor nerve terminal. Brain 124, 893–906.CrossRefGoogle ScholarPubMed
O'Malley, J. P., Waran, M. T. and Balice-Gordon, R. J. (1999). In vivo observations of terminal Schwann cells at normal, denervated, and reinnervated mouse neuromuscular junctions. J Neurobiol 38, 270–86.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
O'Reilly, M. S., Boehm, T., Shing, Y.et al. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–85.CrossRefGoogle ScholarPubMed
Occhi, S., Zambroni, d., Del Carro, U.et al. (2005). Both laminin and Schwann cell dystroglycan are necessary for proper clustering of sodium channels at nodes of Ranvier. Journal of Neuroscience. 25, 9418–27.CrossRefGoogle ScholarPubMed
Odenthal, U., Haehn, S., Tunggal, P.et al. (2004). Molecular analysis of laminin N-terminal domains mediating self-interactions. J Biol Chem 279, 44504–12.CrossRefGoogle ScholarPubMed
Oh, S., Ri, Y., Bennett, M. V., Trexler, E. B., Verselis, V. K. and Bargiello, T. A. (1997). Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot–Marie–Tooth disease. Neuron 19, 927–38.CrossRefGoogle ScholarPubMed
Oh, S. J., Kurokawa, K., Almeida, D. F., Ryan, H. F. Jr. and Claussen, G. C. (2003). Subacute inflammatory demyelinating polyneuropathy. Neurology 61, 1507–12.CrossRefGoogle ScholarPubMed
Oliveira, R. B., Ochoa, M. T., Sieling, P. A.et al. (2003). Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun 71, 1427–33.CrossRefGoogle ScholarPubMed
Oliveira, R. B., Sampaio, E. P., Aarestrup, F.et al. (2005). Cytokines and Mycobacterium leprae induce apoptosis in human Schwann cells. J Neuropathol Exp Neurol 64, 882–90.CrossRefGoogle ScholarPubMed
Olsson, T., Holmdahl, R., Klareskog, L. and Forsum, U. (1983). Ia-expressing cells and T lymphocytes of different subsets in peripheral nerve tissue during experimental allergic neuritis in Lewis rats. Scand J Immunol 18, 339–43.CrossRefGoogle Scholar
Omori, Y., Mesnil, M. and Yamasaki, H. (1996). Connexin 32 mutations from X-linked Charcot–Marie–Tooth disease patients: functional defects and dominant negative effects. Mol Biol Cell 7, 907–16.CrossRefGoogle ScholarPubMed
Oomes, P. G., Meche, F. G., Markus-Silvis, L., Meulstee, J. and Kleyweg, R. P. (1991). In vivo effects of sera from Guillain–Barré subgroups: an electrophysiological and histological study on rat nerves. Muscle Nerve 14, 1013–20.CrossRefGoogle ScholarPubMed
Orlikowski, D., Chazaud, B., Plonquet, A.et al. (2003). Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain–Barré syndrome and experimental autoimmune neuritis. J Neuroimmunol 134, 118–27.CrossRefGoogle ScholarPubMed
Ota, K., Irie, H. and Takahashi, K. (1987). T cell subsets and Ia-positive cells in the sciatic nerve during the course of experimental allergic neuritis. J Neuroimmunol 13, 283–92.CrossRefGoogle ScholarPubMed
Ottani, V., Martini, D., Franchi, M., Ruggeri, A. and Raspanti, M. (2002). Hierarchical structures in fibrillar collagens. Micron 33, 587–96.CrossRefGoogle ScholarPubMed
Otten, U., Ehrhard, P. and Peck, R. (1989). Nerve growth factor induces growth and differentiation of human B lymphocytes. Proc Nat Acad Sci USA 86, 10059–63.CrossRefGoogle ScholarPubMed
Palade, G. E. and Palay, S. L. (1954). Electron microscope observations of interneuronal and neuromuscular synapses. Anat Rec 118, 335–6.Google Scholar
Palm, S. L. and Furcht, L. T. (1983). Production of laminin and fibronectin by Schwannoma cells: cell–protein interactions in vitro and protein localization in peripheral nerve in vivo. J Cell Biol 96, 1218–26.CrossRefGoogle ScholarPubMed
Palumbo, C., Massa, R., Panico, M. B.et al. (2002). Peripheral nerve extracellular matrix remodeling in Charcot–Marie–Tooth type I disease. Acta Neuropathol (Berl) 104, 287–96.Google ScholarPubMed
Panas, M., Kalfakis, N., Karadimas, C. and Vassilopoulos, D. (2001). Episodes of generalized weakness in two sibs with the C164T mutation of the connexin 32 gene. Neurology 57, 1906–8.CrossRefGoogle ScholarPubMed
Paratore, C., Goerich, D. E., Suter, U., Wegner, M. and Sommer, L. (2001). Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128, 3949–61.Google ScholarPubMed
Pareek, S., Notterpek, L., Snipes, G. J.et al. (1997). Neurons promote the translocation of peripheral myelin protein 22 into myelin. J Neurosci 17, 7754–62.CrossRefGoogle ScholarPubMed
Pareyson, D., Taroni, F., Botti, S.et al. (2000). Cranial nerve involvement in CMT disease type 1 due to early growth response 2 gene mutation. Neurology 54, 1696–8.CrossRefGoogle ScholarPubMed
Parkinson, D. B., Dong, Z., Bunting, H.et al. (2001). Transforming growth factor beta (TGFbeta) mediates Schwann cell death in vitro and in vivo: examination of c-Jun activation, interactions with survival signals, and the relationship of TGFbeta-mediated death to Schwann cell differentiation. J Neurosci 21, 8572–85.CrossRefGoogle ScholarPubMed
Parkinson, D. B., Langner, K., Namini, S. S., Jessen, K. R. and Mirsky, R. (2002). beta-neuregulin and autocrine mediated survival of Schwann cells requires activity of Ets family transcription factors. Mol Cell Neurosci 20, 154–67.CrossRefGoogle ScholarPubMed
Parkinson, D. B., Bhaskaran, A., Droggiti, A.et al. (2004). Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J Cell Biol 164, 385–94.CrossRefGoogle ScholarPubMed
Parkinson, D. B., Bhaskaran, A., Mirsky, R. and Jessen, K. R. (2005) Regulation of the myelinating phenotype of Schwann cells by Krox-20. Medimond International Proc. VII Eur. Meeting on Glial Cell Function in Health and Disease. Amsterdam, pp. 139–43.
Parmantier, E., Lynn, B., Lawson, D.et al. (1999). Schwann cell-derived desert hedgehog controls the development of peripheral nerve sheaths. Neuron 23, 713–24.CrossRefGoogle ScholarPubMed
Patton, B. L. (2003). Basal lamina and the organization of neuromuscular synapses. J Neurocytol 32, 883–903.CrossRefGoogle ScholarPubMed
Patton, B. L., Miner, J. H., Chiu, A. Y. and Sanes, J. R. (1997). Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J Cell Biol 139, 1507–21.CrossRefGoogle ScholarPubMed
Patton, B. L., Chiu, A. Y. and Sanes, J. R. (1998). Synaptic laminin prevents glial entry into the synaptic cleft. Nature 393, 698–701.CrossRefGoogle ScholarPubMed
Paulson, H. L., Garbern, J. Y., Hoban, T. F.et al. (2002). Transient central nervous system white matter abnormality in X-linked Charcot–Marie–Tooth disease. Ann Neurol 52, 429–34.CrossRefGoogle ScholarPubMed
Pedrola, L., Espert, A., Wu, X., Claramunt, R., Shy, M. E. and Palau, F. (2005). GDAP1, the protein causing Charcot–Marie–Tooth disease type 4A, is expressed in neurons and is associated with mitochondria. Hum Mol Genet 14, 1087–94.CrossRefGoogle ScholarPubMed
Pelidou, S. H., Deretzi, G., Zou, L. P., Quiding, C. and Zhu, J. (1999). Inflammation and severe demyelination in the peripheral nervous system induced by the intraneural injection of recombinant mouse interleukin-12. Scand J Immunol 50, 39–44.CrossRefGoogle ScholarPubMed
Peltonen, J., Jaakkola, S., Hsiao, L. L., Timpl, R., Chu, M. L. and Uitto, J. (1990). Type VI collagen. In situ hybridizations and immunohistochemistry reveal abundant mRNA and protein levels in human neurofibroma, Schwannoma and normal peripheral nerve tissues. Lab Invest 62, 487–92.Google ScholarPubMed
Peng, H. B., Yang, J. F., Dai, Z.et al. (2003). Differential effects of neurotrophins and Schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 23, 5050–60.CrossRefGoogle ScholarPubMed
Pereira, R. A., Tscharke, D. C. and Simmons, A. (1994). Upregulation of class I major histocompatibility complex gene expression in primary sensory neurons, satellite cells, and Schwann cells of mice in response to acute but not latent herpes simplex virus infection in vivo. J Exp Med 180, 841–50.CrossRefGoogle Scholar
Pereira, R. M., Calegari-Silva, T. C., Hernandez, M. O.et al. (2005). Mycobacterium leprae induces NF-kappaB-dependent transcription repression in human Schwann cells. Biochem Biophys Res Commun 335, 20–6.CrossRefGoogle ScholarPubMed
Perrin, F. E., Lacroix, S., Viles-Trigueros, M. and David, S. (2005). Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain 128, 854–66.CrossRefGoogle ScholarPubMed
Personius, K. E. and Sawyer, R. P. (2005). Terminal Schwann cell structure is altered in diaphragm of mdx mice. Muscle Nerve 32, 656–63.CrossRefGoogle ScholarPubMed
Pfrieger, F. W. and Barres, B. A. (1997). Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–7.CrossRefGoogle ScholarPubMed
Pietri, T., Eder, O., Breau, M. A.et al. (2004). Conditional beta 1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system. Development 131, 3871–83.CrossRefGoogle Scholar
Pingault, V., Guiochon-Mantel, A., Bondurand, N.et al. (2000). Peripheral neuropathy with hypomyelination, chronic intestinal pseudo-obstruction and deafness: a developmental ‘neural crest syndrome’ related to a SOX10 mutation. Ann Neurol 48, 671–6.3.0.CO;2-8>CrossRefGoogle Scholar
Plante-Bordeneuve, V., Guiochon-Mantel, A., Lacroix, C., Lapresle, J. and Said, G. (1999). The Roussy–Levy family: from the original description to the gene. Ann Neurol 46, 770–3.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Plomp, J. J., Molenaar, P. C., O'Hanlon, G. M.et al. (1999). Miller–Fisher anti-GQ1b antibodies: alpha-latrotoxin-like effects on motor end plates. Ann Neurol 45, 189–99.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Podratz, J. L., Rodriguez, E. H., Di Nonno, E. S. and Windebank, A. J. (1998). Myelination by Schwann cells in the absence of extracellular matrix assembly. Glia 23, 383–8.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Podratz, J. L., Rodriguez, E. and Windebank, A. J. (2001). Role of the extracellular matrix in myelination of peripheral nerve. Glia 35, 35–40.CrossRefGoogle ScholarPubMed
Podratz, J. L., Rodriguez, E. H. and Windebank, A. J. (2004). Antioxidants are necessary for myelination of dorsal root ganglion neurons, in vitro. Glia 45, 54–8.CrossRefGoogle ScholarPubMed
Poliak, S. and Peles, E. (2003). The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4, 968–80.CrossRefGoogle ScholarPubMed
Poliak, S., Salomon, S., Elhanany, H.et al. (2003). Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol 162, 1149–60.CrossRefGoogle ScholarPubMed
Pollard, J. D. (1994). Chronic inflammatory demyelinating polyradiculoneuropathy. Baillieres Clin Neurol 3, 107–27.Google ScholarPubMed
Pollard, J. D. (2002). Chronic inflammatory demyelinating polyradiculoneuropathy. Curr Opin Neurol 15, 279–83.CrossRefGoogle ScholarPubMed
Pollard, J. D., McLeod, J. G., Gatenby, P. and Kronenberg, H. (1983). Prediction of response to plasma exchange in chronic relapsing polyneuropathy. A clinico-pathological correlation. J Neurol Sci 58, 269–87.CrossRefGoogle ScholarPubMed
Pollard, J. D., McCombe, P. A., Baverstock, J., Gatenby, P. A. and McLeod, J. G. (1986). Class II antigen expression and T lymphocyte subsets in chronic inflammatory demyelinating polyneuropathy. J Neuroimmunol 13, 123–34.CrossRefGoogle Scholar
Pollard, J. D., Baverstock, J. and McLeod, J. G. (1987). Class II antigen expression and inflammatory cells in the Guillain–Barré syndrome. Ann Neurol 21, 337–41.CrossRefGoogle ScholarPubMed
Pollard, J. D., Westland, K. W., Harvey, G. K.et al. (1995). Activated T cells of nonneural specificity open the blood–nerve barrier to circulating antibody. Ann Neurol 37, 467–75.CrossRefGoogle ScholarPubMed
Polydefkis, M., Yiannoutsos, C. T., Cohen, B. A.et al. (2002). Reduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy. Neurology 58, 115–19.CrossRefGoogle ScholarPubMed
Popko, B., Corbin, J. G., Baerwald, K. D., Dupree, J. and Garcia, A. M. (1997). The effects of interferon-gamma on the central nervous system. Mol Neurobiol 14, 19–35.CrossRefGoogle ScholarPubMed
Powell, H. C., Braheny, S. L., Hughes, R. A. and Lampert, P. W. (1984). Antigen-specific demyelination and significance of the bystander effect in peripheral nerves. Am J Pathol 114, 443–53.Google ScholarPubMed
Previtali, S. C., Feltri, M. L., Archelos, J. J., Quattrini, A., Wrabetz, L. and Hartung, H. (2001). Role of integrins in the peripheral nervous system. Prog Neurobiol 64, 35–49.CrossRefGoogle ScholarPubMed
Previtali, S. C., Nodari, A., Taveggia, C.et al. (2003a). Expression of laminin receptors in Schwann cell differentiation: evidence for distinct roles. J Neurosci 23, 5520–30.CrossRefGoogle Scholar
Previtali, S. C., Dina, G., Nodari, A.et al. (2003b). Schwann cells synthesize alpha7beta1 integrin which is dispensable for peripheral nerve development and myelination. Mol Cell Neurosci 23, 210–18.CrossRefGoogle Scholar
Prineas, J. W. (1971a). Demyelination and remyelination in recurrent idiopathic polyneuropathy. An electron microscope study. Acta Neuropathol (Berl) 18, 34–57.CrossRefGoogle Scholar
Prineas, J. W. (1971b). Ultrastructural changes in the peripheral nerves in experimental dying-back polyneuropathies. Proc Aust Assoc Neurol 8, 121–3.Google Scholar
Prineas, J. W. (1972). Acute idiopathic polyneuritis. An electron microscope study. Lab Invest 26, 133–47.Google ScholarPubMed
Prineas, J. W. (1981). Pathology of the Guillain–Barré syndrome. Ann Neurol 9 (Suppl), 6–19.CrossRefGoogle ScholarPubMed
Prineas, J. W. and McLeod, J. G. (1976). Chronic relapsing polyneuritis. J Neurol Sci 27, 427–58.CrossRefGoogle ScholarPubMed
Pritchard, J. and Hughes, R. A. (2004). Guillain–Barré syndrome. Lancet 363, 2186–8.CrossRefGoogle ScholarPubMed
Pritchard, J., Hayday, A. C., Gregson, N. A. and Hughes, R. A. C. (2004). Alterations in Circulating T Cell Populations in Guillain–Barré Syndrome. 31. 2004.
Probert, L., Akassoglou, K., Pasparakis, M., Kontogeorgos, G. and Kollias, G. (1995). Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Nat Acad Sci USA 92, 11294–8.CrossRefGoogle ScholarPubMed
Probstmeier, R., Nellen, J., Gloor, S., Wernig, A. and Pesheva, P. (2001). Tenascin-R is expressed by Schwann cells in the peripheral nervous system. J Neurosci Res 64, 70–8.CrossRefGoogle ScholarPubMed
Purves, D. and Lichtman, J. W. (1985). Principles of Neural Development. Sinauer Associates, Sunderland, Mass.Google Scholar
Quijano-Roy, S., Renault, F., Romero, N., Guicheney, P., Fardeau, M. and Estournet, B. (2004). EMG and nerve conduction studies in children with congenital muscular dystrophy. Muscle Nerve 29, 292–9.CrossRefGoogle ScholarPubMed
Rabadan-Diehl, C., Dahl, G. and Werner, R. (1994). A connexin-32 mutation associated with Charcot–Marie–Tooth disease does not affect channel formation in oocytes. FEBS Lett 351, 90–4.CrossRefGoogle Scholar
Raeymaekers, P., Timmerman, V., Nelis, E.et al. (1991). Duplication in chromosome 17p11.2 in Charcot–Marie–Tooth neuropathy type 1a (CMT 1a). The HMSN Collaborative Research Group. Neuromuscul Disord 1, 93–7.CrossRefGoogle ScholarPubMed
Ragozzino, D., Renzi, M., Giovannelli, A. and Eusebi, F. (2002). Stimulation of chemokine CXC receptor 4 induces synaptic depression of evoked parallel fibers inputs onto Purkinje neurons in mouse cerebellum. J Neuroimmunol 127, 30–6.CrossRefGoogle ScholarPubMed
Raine, C. S. and Cross, A. H. (1989). Axonal dystrophy as a consequence of long-term demyelination. Lab Invest 60, 714–25.Google ScholarPubMed
Ranvier, L. (1878). Lecons sur l'Histologies du Systeme Nerveux. Savy 2, Paris.Google Scholar
Raphael, J. C., Chevret, S., Hughes, R. A. and Annane, D. (2002). Plasma exchange for Guillain–Barré syndrome. Cochrane Database Syst Rev CD001798.CrossRefGoogle ScholarPubMed
Rasband, M. N. (2004). It's ‘juxta’ potassium channel!J Neurosci Res 76, 749–57.CrossRefGoogle ScholarPubMed
Rasband, M. N., Park, E. W., Zhen, D.et al. (2002). Clustering of neuronal potassium channels is independent of their interaction with PSD-95. J Cell Biol 159, 663–72.CrossRefGoogle ScholarPubMed
Reddy, L. V., Koirala, S., Sugiura, Y., Herrera, A. A. and Ko, C. P. (2003). Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo. Neuron 40, 563–80.CrossRefGoogle ScholarPubMed
Redford, E. J., Hall, S. M. and Smith, K. J. (1995). Vascular changes and demyelination induced by the intraneural injection of tumour necrosis factor. Brain 118 (Part 4), 869–78.CrossRefGoogle ScholarPubMed
Redford, E. J., Smith, K. J., Gregson, N. A.et al. (1997). A combined inhibitor of matrix metalloproteinase activity and tumour necrosis factor-alpha processing attenuates experimental autoimmune neuritis. Brain 120 (Part 10), 1895–1905.CrossRefGoogle ScholarPubMed
Reger, J. F. (1955). Electron microscopy of the motor end-plate in rat intercostal muscle. Anat Rec 122, 1–15.CrossRefGoogle ScholarPubMed
Reichert, F., Levitzky, R. and Rotshenker, S. (1996). Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 8, 530–5.CrossRefGoogle ScholarPubMed
Reist, N. E. and Smith, S. J. (1992). Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction. Proc Nat Acad Sci USA 89, 7625–9.CrossRefGoogle ScholarPubMed
Rentier, B., Piette, J., Baudoux, L.et al. (1996). Lessons to be learned from varicella-zoster virus. Vet Microbiol 53, 55–66.CrossRefGoogle ScholarPubMed
Reynolds, M. L. and Woolf, C. J. (1992). Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. J Neurocytol 21, 50–66.CrossRefGoogle ScholarPubMed
Rezajooi, K., Pavlides, M., Winterbottom, J.et al. (2004). NG2 proteoglycan expression in the peripheral nervous system: upregulation following injury and comparison with CNS lesions. Mol Cell Neurosci 25, 572–84.CrossRefGoogle ScholarPubMed
Rich, M. M. and Pinter, M. J. (2001). Sodium channel inactivation in an animal model of acute quadriplegic myopathy. Ann Neurol 50, 26–33.CrossRefGoogle Scholar
Rich, M. M., Pinter, M. J., Kraner, S. D. and Barchi, R. L. (1998). Loss of electrical excitability in an animal model of acute quadriplegic myopathy. Ann Neurol 43, 171–9.CrossRefGoogle Scholar
Ridley, A. J., Davis, J. B., Stroobant, P. and Land, H. (1989). Transforming growth factors-beta 1 and beta 2 are mitogens for rat Schwann cells. J Cell Biol 109, 3419–24.CrossRefGoogle ScholarPubMed
Rieger, F., Daniloff, J. K., Pincon-Raymond, M., Crossin, K. L., Grumet, M. and Edelman, G. M. (1986). Neuronal cell adhesion molecules and cytotactin are colocalized at the node of Ranvier. J Cell Biol 103, 379–91.CrossRefGoogle ScholarPubMed
Riethmacher, D., Sonnenberg-Riethmacher, E., Brinkmann, V., Yamaai, T., Lewin, G. R. and Birchmeier, C. (1997). Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389, 725–30.CrossRefGoogle Scholar
Rimer, M., Prieto, A. L., Weber, J. L.et al. (2004). Neuregulin-2 is synthesized by motor neurons and terminal Schwann cells and activates acetylcholine receptor transcription in muscle cells expressing ErbB4. Mol Cell Neurosci 26, 271–81.CrossRefGoogle ScholarPubMed
Rios, J. C., Rubin, M., Martin, M. S.et al. (2003). Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J Neurosci 23, 7001–11.CrossRefGoogle ScholarPubMed
Ritz, M. F., Lechner-Scott, J., Scott, R. J.et al. (2000). Characterisation of autoantibodies to peripheral myelin protein 22 in patients with hereditary and acquired neuropathies. J Neuroimmunol 104, 155–63.CrossRefGoogle ScholarPubMed
Rizvi, T. A., Huang, Y., Sidani, A.et al. (2002). A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J Neurosci 22, 9831–40.CrossRefGoogle ScholarPubMed
Roa, B. B., Garcia, C. A., Suter, U.et al. (1993a). Charcot–Marie–Tooth disease type 1A. Association with a spontaneous point mutation in the PMP22 gene. N Engl J Med 329, 96–101.CrossRefGoogle Scholar
Roa, B. B., Garcia, C. A., Pentao, L.et al. (1993b). Evidence for a recessive PMP22 point mutation in Charcot–Marie–Tooth disease type 1A. Nat Genet 5, 189–94.CrossRefGoogle Scholar
Roa, B. B., Dyck, P. J., Marks, H. G., Chance, P. F. and Lupski, J. R. (1993c). Dejerine–Sottas syndrome associated with point mutation in the peripheral myelin protein 22 (PMP22) gene. Nat Genet 5, 269–73.CrossRefGoogle Scholar
Robbins, N. and Polak, J. (1988). Filopodia, lamellipodia and retractions at mouse neuromuscular junctions. J Neurocytol 17, 545–61.CrossRefGoogle ScholarPubMed
Roberts, A. B. and Sporn, M. B. (1993). Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8, 1–9.CrossRefGoogle Scholar
Robertson, J. D. (1956). The ultrastructure of a reptilian myoneural junction. J Biophys Biochem Cytol 2, 381–94.CrossRefGoogle ScholarPubMed
Robitaille, R. (1995). Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction. J Neurosci 15, 7121–31.CrossRefGoogle ScholarPubMed
Robitaille, R. (1998). Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21, 847–55.CrossRefGoogle ScholarPubMed
Robitaille, R., Bourque, M. J. and Vandaele, S. (1996). Localization of L-type Ca2+ channels at perisynaptic glial cells of the frog neuromuscular junction. J Neurosci 16, 148–58.CrossRefGoogle ScholarPubMed
Robitaille, R., Jahromi, B. S. and Charlton, M. P. (1997). Muscarinic Ca2+ responses resistant to muscarinic antagonists at perisynaptic Schwann cells of the frog neuromuscular junction. J Physiol 504 (Part 2), 337–47.CrossRefGoogle ScholarPubMed
Rochon, D., Rousse, I. and Robitaille, R. (2001). Synapse–glia interactions at the mammalian neuromuscular junction. J Neurosci 21, 3819–29.CrossRefGoogle ScholarPubMed
Rogers, T., Chandler, D., Angelicheva, D.et al. (2000). A novel locus for autosomal recessive peripheral neuropathy in the EGR2 region on 10q23. Am J Hum Genet 67, 664–71.CrossRefGoogle ScholarPubMed
Rosen, J. L., Brown, M. J. and Rostami, A. (1992). Evolution of the cellular response in P2-induced experimental allergic neuritis. Pathobiology 60, 108–12.CrossRefGoogle ScholarPubMed
Rosenbluth, J., Dupree, J. L. and Popko, B. (2003). Nodal sodium channel domain integrity depends on the conformation of the paranodal junction, not on the presence of transverse bands. Glia 41, 318–25.CrossRefGoogle Scholar
Rossi, D. and Zlotnik, A. (2000). The biology of chemokines and their receptors. Ann Rev Immunol 18, 217–42.CrossRefGoogle ScholarPubMed
Rostami, A., Burns, J. B., Brown, M. J.et al. (1985). Transfer of experimental allergic neuritis with P2-reactive T-cell lines. Cell Immunol 91, 354–61.CrossRefGoogle ScholarPubMed
Rostami, A., Gregorian, S. K., Brown, M. J. and Pleasure, D. E. (1990). Induction of severe experimental autoimmune neuritis with a synthetic peptide corresponding to the 53–78 amino acid sequence of the myelin P2 protein. J Neuroimmunol 30, 145–51.CrossRefGoogle ScholarPubMed
Rothblum, K., Stahl, R. C. and Carey, D. J. (2004). Constitutive release of alpha4 type V collagen N-terminal domain by Schwann cells and binding to cell surface and extracellular matrix heparan sulfate proteoglycans. J Biol Chem 279, 51282–8.CrossRefGoogle ScholarPubMed
Rothe, F., Langnaese, K. and Wolf, G. (2005). New aspects of the location of neuronal nitric oxide synthase in the skeletal muscle: a light and electron microscopic study. Nitric Oxide 13, 21–35.CrossRefGoogle ScholarPubMed
Rudel, C. and Rohrer, H. (1992). Analysis of glia cell differentiation in the developing chick peripheral nervous system: sensory and sympathetic satellite cells express different cell surface antigens. Development 115, 519–26.Google ScholarPubMed
Rufer, M., Flanders, K. and Unsicker, K. (1994). Presence and regulation of transforming growth factor beta mRNA and protein in the normal and lesioned rat sciatic nerve. J Neurosci Res 39, 412–23.CrossRefGoogle ScholarPubMed
Rungby, J. (1986). Exogenous silver in dorsal root ganglia, peripheral nerve, enteric ganglia, and adrenal medulla. Acta Neuropathol (Berl) 69, 45–53.CrossRefGoogle ScholarPubMed
Russell, J. W., Gill, J. S., Sorenson, E. J., Schultz, D. A. and Windebank, A. J. (2001). Suramin-induced neuropathy in an animal model. J Neurol Sci 192, 71–80.CrossRefGoogle Scholar
Rutkowski, J. L., Kirk, C. J., Lerner, M. A. and Tennekoon, G. I. (1995). Purification and expansion of human Schwann cells in vitro. Nat Med 1, 80–3.CrossRefGoogle ScholarPubMed
Rutkowski, J. L., Tuite, G. F., Lincoln, P. M., Boyer, P. J., Tennekoon, G. I. and Kunkel, S. L. (1999). Signals for proinflammatory cytokine secretion by human Schwann cells. J Neuroimmunol 101, 47–60.CrossRefGoogle ScholarPubMed
Sahenk, Z., Chen, L. and Mendell, J. R. (1999). Effects of PMP22 duplication and deletions on the axonal cytoskeleton. Ann Neurol 45, 16–24.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Sahenk, Z. (1999). Abnormal Schwann cell–axon interactions in CMT neuropathies. The effects of mutant Schwann cells on the axonal cytoskeleton and regeneration-associated myelination. Ann NY Acad Sci 883, 415–26.CrossRefGoogle ScholarPubMed
Said, G., Goulon-Goeau, C., Lacroix, C. and Moulonguet, A. (1994). Nerve biopsy findings in different patterns of proximal diabetic neuropathy. Ann Neurol 35, 559–69.CrossRefGoogle ScholarPubMed
Saida, K., Saida, T., Brown, M. J., Silberberg, D. H. and Asbury, A. K. (1978a). Antiserum-mediated demyelination in vivo: a sequential study using intraneural injection of experimental allergic neuritis serum. Lab Invest 39, 449–62.Google Scholar
Saida, T., Saida, K., Silberberg, D. H. and Brown, M. J. (1978b). Transfer of demyelination by intraneural injection of experimental allergic neuritis serum. Nature 272, 639–41.CrossRefGoogle Scholar
Saida, T., Saida, K., Dorfman, S. H.et al. (1979a). Experimental allergic neuritis induced by sensitization with galactocerebroside. Science 204, 1103–6.CrossRefGoogle Scholar
Saida, T., Saida, K., Brown, M. J. and Silberberg, D. H. (1979b). Peripheral nerve demyelination induced by intraneural injection of experimental allergic encephalomyelitis serum. J Neuropathol Exp Neurol 38, 498–518.CrossRefGoogle Scholar
Saida, T., Saida, K., Silberberg, D. H. and Brown, M. J. (1981). Experimental allergic neuritis induced by galactocerebroside. Ann Neurol 9 (Suppl), 87–101.CrossRefGoogle ScholarPubMed
Saida, T., Saida, K., Lisak, R. P., Brown, M. J., Silberberg, D. H. and Asbury, A. K. (1982). In vivo demyelinating activity of sera from patients with Guillain–Barré syndrome. Ann Neurol 11, 69–75.CrossRefGoogle ScholarPubMed
Saito, A. and Zacks, S. I. (1969). Ultrastructure of Schwann and perineural sheaths at the mouse neuromuscular junction. Anat Rec 164, 379–90.CrossRefGoogle ScholarPubMed
Saito, F., Masaki, T., Kamakura, K.et al. (1999). Characterization of the transmembrane molecular architecture of the dystroglycan complex in Schwann cells. J Biol Chem 274, 8240–6.CrossRefGoogle ScholarPubMed
Saito, F., Moore, S. A., Barresi, R.et al. (2003). Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 38, 747–58.CrossRefGoogle ScholarPubMed
Salloway, S., Mermel, L. A., Seamans, M.et al. (1996). Miller–Fisher syndrome associated with Campylobacter jejuni bearing lipopolysaccharide molecules that mimic human ganglioside GD3. Infect Immun 64, 2945–9.Google ScholarPubMed
Salpeter, M. M. (1987). The Vertebrate Neuromuscular Junction. A. R. Liss, New York.Google Scholar
Salzer, J. L. (2003). Polarized domains of myelinated axons. Neuron 40, 297–318.CrossRefGoogle ScholarPubMed
Salzer, J. L., Williams, A. K., Glaser, L., Bunge, R. P. (1980). Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J Cell Biol 84, 753–66.CrossRefGoogle ScholarPubMed
Salzer, J. L., Lovejoy, L., Linder, M. C. and Rosen, C. (1998). Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin. J Neurosci Res 54, 147–57.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Samii, A., Unger, J. and Lange, W. (1999). Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 262, 159–62.CrossRefGoogle ScholarPubMed
Samuel, N. M., Jessen, K. R., Grange, J. M. and Mirsky, R. (1987a). Gamma interferon, but not Mycobacterium leprae, induces major histocompatibility class II antigens on cultured rat Schwann cells. J Neurocytol 16, 281–7.CrossRefGoogle Scholar
Samuel, N. M., Mirsky, R., Grange, J. M. and Jessen, K. R. (1987b). Expression of major histocompatibility complex class I and class II antigens in human Schwann cell cultures and effects of infection with Mycobacterium leprae. Clin Exp Immunol 68, 500–9.Google Scholar
Sancho, S., Magyar, J. P., Aguzzi, A. and Suter, U (1999). Distal axonopathy in peripheral nerves of PMP22-mutant mice. Brain 122 (Part 8), 1563–77.CrossRefGoogle ScholarPubMed
Sanes, J. R. and Lichtman, J. W. (1999). Development of the vertebrate neuromuscular junction. Ann Rev Neurosci 22, 389–442.CrossRefGoogle ScholarPubMed
Sanes, J. R., Schachner, M. and Covault, J. (1986). Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J Cell Biol 102, 420–31.CrossRefGoogle Scholar
Sanes, J. R., Engvall, E., Butkowski, R. and Hunter, D. D. (1990). Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J Cell Biol 111, 1685–99.CrossRefGoogle ScholarPubMed
Sawant-Mane, S., Clark, M. B. and Koski, C. L. (1991). In vitro demyelination by serum antibody from patients with Guillain–Barré syndrome requires terminal complement complexes. Ann Neurol 29, 397–404.CrossRefGoogle ScholarPubMed
Sawant-Mane, S., Estep, A. III and Koski, C. L. (1994). Antibody of patients with Guillain–Barré syndrome mediates complement-dependent cytolysis of rat Schwann cells: susceptibility to cytolysis reflects Schwann cell phenotype. J Neuroimmunol 49, 145–52.CrossRefGoogle ScholarPubMed
Scarpini, E., Lisak, R., Beretta, S. et al. (1989). Type II major histocompatibility antigens on normal and pathological human nerves. Scarpini, E (Ed.) Peripheral Nerve Development and Regneration: Recent Advances and Clinical Applications. Livinia Press, Padova, pp. 189–92.Google Scholar
Scarpini, E., Lisak, R. P., Beretta, S.et al. (1990). Quantitative assessment of class II molecules in normal and pathological nerves. Immunocytochemical studies in vivo and in tissue culture. Brain 113 (Part 3), 659–75.CrossRefGoogle ScholarPubMed
Schafer, D. P., Bansal, R., Hedstrom, K. L., Pfeiffer, S. E. and Rasband, M. N. (2004). Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts?J Neurosci 24, 3176–85.CrossRefGoogle ScholarPubMed
Scherer, S. (1999). Axonal pathology in demyelinating diseases. Ann Neurol 45, 6–7.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Scherer, S. S. (1997). The biology and pathobiology of Schwann cells. Curr Opin Neurol 10, 386–97.CrossRefGoogle ScholarPubMed
Scherer, S. S. and Salzer, J. L. (1996). Axon–Schwann cell interactions during perpheral nerve degeneration and regeneration. Jessen, K. R., Richardson, W. D. (Eds.) Glial Cell Development: Basic Principles and Clinical Relevance. Bios Scientific Publisher Ltd, Oxford, UK, pp. 165–96.Google Scholar
Scherer, S. S. and Arroyo, E. J. (2002). Recent progress on the molecular organization of myelinated axons. J Peripher Nerv Syst 7, 1–12.CrossRefGoogle ScholarPubMed
Scherer, S. S., Arroyo, E. J. and Peles, E. (2004). Functional organization of the nodes of Ranvier. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, San Diego, pp. 89–116.Google Scholar
Scherer, S. S. and Kleopa, K. (2005). X-linked Charcot–Marie–Tooth disease. Dyck, P.J. (Ed.) Peripheral Neuropathy, 4th Edn. Elsevier, Saunders, Philadelphia, pp. 1791–805.Google Scholar
Scherer, S. S. and Salzer, J. L. (2001). Axon–Schwann cell interactions during peripheral nerve degeneration and regeneration. Jessen, K. R., Richardson, W. D. (Eds.) Glial Cell Development, 2nd Edn. Oxford University Press, Oxford.Google Scholar
Scherer, S. S., Kamholz, J. and Jakowlew, S. B. (1993). Axons modulate the expression of transforming growth factor-betas in Schwann cells. Glia 8, 265–76.CrossRefGoogle ScholarPubMed
Scherer, S. S., Wang, D. Y., Kuhn, R., Lemke, G., Wrabetz, L. and Kamholz, J. (1994). Axons regulate Schwann cell expression of the POU transcription factor SCIP. J Neurosci 14, 1930–42.CrossRefGoogle ScholarPubMed
Scherer, S. S., Xu, Y. T., Bannerman, P. G., Sherman, D. L. and Brophy, P. J. (1995). Periaxin expression in myelinating Schwann cells: modulation by axon–glial interactions and polarized localization during development. Development 121, 4265–73.Google ScholarPubMed
Scherer, S. S., Xu, Y. T., Nelles, E., Fischbeck, K., Willecke, K. and Bone, L. J. (1998). Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 24, 8–20.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Schmid, R. S., McGrath, B., Berechid, B. E.et al. (2003). Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Nat Acad Sci USA 100, 4251–6.CrossRefGoogle ScholarPubMed
Schmidbauer, M., Budka, H., Pilz, P., Kurata, T. and Hondo, R. (1992). Presence, distribution and spread of productive varicella zoster virus infection in nervous tissues. Brain 115 (Part 2), 383–98.CrossRefGoogle ScholarPubMed
Schmidt, B., Stoll, G., Hartung, H. P., Heininger, K., Schafer, B. and Toyka, K. V. (1990). Macrophages but not Schwann cells express Ia antigen in experimental autoimmune neuritis. Ann Neurol 28, 70–7.CrossRefGoogle Scholar
Schmidt, B., Toyka, K. V., Kiefer, R., Full, J., Hartung, H. P. and Pollard, J. (1996). Inflammatory infiltrates in sural nerve biopsies in Guillain–Barré syndrome and chronic inflammatory demyelinating neuropathy. Muscle Nerve 19, 474–87.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Schnaar, R. L. (2004). Glycolipid-mediated cell–cell recognition in inflammation and nerve regeneration. Arch Biochem Biophys 426, 163–72.CrossRefGoogle ScholarPubMed
Schneider-Schaulies, J., Kirchhoff, F., Archelos, J. and Schachner, M. (1991). Down-regulation of myelin-associated glycoprotein on Schwann cells by interferon-gamma and tumor necrosis factor-alpha affects neurite outgrowth. Neuron 7, 995–1005.CrossRefGoogle ScholarPubMed
Schneider, C., Wicht, H., Enderich, J., Wegner, M. and Rohrer, H. (1999). Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24, 861–70.CrossRefGoogle ScholarPubMed
Schneider, S., Bosse, F., D'Urso, D.et al. (2001). The AN2 protein is a novel marker for the Schwann cell lineage expressed by immature and nonmyelinating Schwann cells. J Neurosci 21, 920–33.CrossRefGoogle ScholarPubMed
Schroder, J. M., Ceuterick, C. M. J. J., DeJonghe, P. et al. (2001). Separation of terminal myelin loops from axons in periaxin neuropathy (CNT4F). European Charcot–Marie–Tooth Consortium Annual Symposium, Antwerp, Belgium.
Schubert, D. (1992). Synergistic interactions between transforming growth factor beta and fibroblast growth factor regulate Schwann cell mitosis. J Neurobiol 23, 143–8.CrossRefGoogle ScholarPubMed
Schuster, N., Bender, H., Rossler, O. G.et al. (2003). Transforming growth factor-beta and tumor necrosis factor-alpha cooperate to induce apoptosis in the oligodendroglial cell line OLI-neu. J Neurosci Res 73, 324–33.CrossRefGoogle ScholarPubMed
Selmaj, K. and Raine, C. S. (1988). Tumor necrosis factor mediates myelin damage in organotypic cultures of nervous tissue. Ann NY Acad Sci 540, 568–70.CrossRefGoogle ScholarPubMed
Selmaj, K., Raine, C. S., Farooq, M., Norton, W. T. and Brosnan, C. F. (1991a). Cytokine cytotoxicity against oligodendrocytes. Apoptosis induced by lymphotoxin. J Immunol 147, 1522–9.Google Scholar
Selmaj, K., Cross, A. H., Farooq, M., Brosnan, C. F. and Raine, C. S. (1991b). Non-specific oligodendrocyte cytotoxicity mediated by soluble products of activated T cell lines. J Neuroimmunol 35, 261–71.CrossRefGoogle Scholar
Semenenko, F. M., Sidebottom, E. and Cuello, A. C. (1987). A monoclonal antibody against a novel intracellular neural antigen expressed differentially in neural cell types. J Neuroimmunol 13, 243–58.CrossRefGoogle ScholarPubMed
Senderek, J., Bergmann, C., Weber, S.et al. (2003). Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot–Marie–Tooth neuropathy type 4B2/11p15. Hum Mol Genet 12, 349–56.CrossRefGoogle ScholarPubMed
Sereda, M., Griffiths, I., Puhlhofer, A.et al. (1996). A transgenic rat model of Charcot–Marie–Tooth disease. Neuron 16, 1049–60.CrossRefGoogle ScholarPubMed
Sereda, M. W., Horste, G. M. Z., Suter, U., Uzma, N. and Nave, K. A. (2003). Therapeutic administration of progesterone antagonist in a model of Charcot–Marie–Tooth disease (CMT-1A). Nat Med 9, 1533–7.CrossRefGoogle Scholar
Setoguchi, R., Hori, S., Takahashi, T. and Sakaguchi, S. (2005). Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201, 723–35.CrossRefGoogle ScholarPubMed
Seyer, J. M., Kang, A. H. and Whitaker, J. N. (1977). The characterization of type I and type III collagens from human peripheral nerve. Biochim Biophys Acta 492, 415–25.CrossRefGoogle ScholarPubMed
Shah, N. M., Marchionni, M. A., Isaacs, I., Stroobant, P. and Anderson, D. J. (1994). Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349–60.CrossRefGoogle ScholarPubMed
Shah, N. M., Groves, A. K. and Anderson, D. J. (1996). Alternative neural crest cell fates are instructively promoted by TGF beta superfamily members. Cell 85, 331–43.CrossRefGoogle Scholar
Shamash, S., Reichert, F. and Rotshenker, S. (2002). The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 22, 3052–60.CrossRefGoogle ScholarPubMed
Shames, I., Fraser, A., Colby, J., Orfali, W. and Snipes, G. J. (2003). Phenotypic differences between peripheral myelin protein-22 (PMP22) and myelin protein zero (P0) mutations associated with Charcot–Marie–Tooth-related diseases. J Neuropathol Exp Neurol 62, 751–64.CrossRefGoogle ScholarPubMed
Shanthaveerappa, T. R. and Bourne, G. H. (1966). Perineural epithelium: a new concept of its role in the integrity of the peripheral nervous system. Science 154, 1464–7.CrossRefGoogle ScholarPubMed
Shanthaveerappa, T. R. and Bourne, G. H. (1967). Nature and origin of perisynaptic cells of the motor end plate. Int Rev Cytol 21, 353–64.CrossRefGoogle ScholarPubMed
Shapiro, L., Doyle, J. P., Hensley, P., Colman, D. R. and Hendrickson, W. A. (1996). Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron 17, 435–49.CrossRefGoogle ScholarPubMed
Sharief, M. K., McLean, B. and Thompson, E. J. (1993). Elevated serum levels of tumor necrosis factor-alpha in Guillain–Barré syndrome. Ann Neurol 33, 591–6.CrossRefGoogle ScholarPubMed
Sharpe, A. H. and Freeman, G. J. (2002). The B7-CD28 superfamily. Nat Rev Immunol 2, 116–26.CrossRefGoogle ScholarPubMed
Sheikh, K. A., Ho, T. W., Nachamkin, I.et al. (1998). Molecular mimicry in Guillain–Barré syndrome. Ann NY Acad Sci 845, 307–1.CrossRefGoogle ScholarPubMed
Shellswell, G. B., Restall, D. J., Duance, V. C. and Bailey, A. J. (1979). Identification and differential distribution of collagen types in the central and peripheral nervous systems. FEBS Lett 106, 305–8.CrossRefGoogle ScholarPubMed
Sherman, D. L. and Brophy, P. J. (2000). A tripartite nuclear localization signal in the PDZ-domain protein L- periaxin. J Biol Chem 275, 4537–40.CrossRefGoogle ScholarPubMed
Sherman, D. L. and Brophy, P. J. (2005). Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6, 683–90.CrossRefGoogle ScholarPubMed
Sherman, D. L., Fabrizi, C., Gillespie, C. S. and Brophy, P. J. (2001). Specific disruption of a Schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron 30, 677–87.CrossRefGoogle Scholar
Sherman, L., Stocker, K. M., Morrison, R. and Ciment, G. (1993). Basic Fibroblast Growth Factor (bFGF) acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes. Development 118, 1313–26.Google ScholarPubMed
Shorer, Z., Philpot, J., Muntoni, F., Sewry, C. and Dubowitz, V. (1995). Demyelinating peripheral neuropathy in merosin-deficient congenital muscular dystrophy. J Child Neurol 10, 472–5.CrossRefGoogle ScholarPubMed
Shuman, S., Hardy, M., Sobue, G. and Pleasure, D. (1988). A cyclic AMP analogue induces synthesis of a myelin-specific glycoprotein by cultured Schwann cells. J Neurochem 50, 190–4.CrossRefGoogle ScholarPubMed
Shy, M. (2005). Hereditary motor and sensory neuropathies related to MPZ P0 mutations. Dyck, P. J. (Ed). Peripheral Neuropathy, 4th Edn. Saunders, Philadelphia, pp. 1681–716.Google Scholar
Shy, M. E., Jani, A., Krajewski, K. M.et al. (2004). Phenotypic clustering in MPZ mutations. Brain 127, 371–84.CrossRefGoogle ScholarPubMed
Shy, M. E., Shi, Y., Wrabetz, L., Kamholz, J. and Scherer, S. S. (1996). Axon–Schwann cell interactions regulate the expression of c-jun in Schwann cells. J Neurosci Res 43, 511–25.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Shy, M. E., Garbern, J. Y. and Kamholz, J. (2002). Hereditary motor and sensory neuropathies: a biological perspective. Lancet Neurol 1, 110–18.CrossRefGoogle ScholarPubMed
Shy, M. E., Hobson, G., Jain, M.et al. (2003). Schwann cell expression of PLP1 but not DM20 is necessary to prevent neuropathy. Ann Neurol 53, 354–65.CrossRefGoogle Scholar
Shy, M., Lupski, J. R., Chance, P. F., Klein, C. J. and Dyck, P. (2005). The hereditary motor and sensory neuropathies: an overview of the clinical, genetic, electrophysiologic and pathlogic features. Dyck, P. J. (Ed.) Peripheral Neuropathy, 4th Edn. Saunders, Philadelphia, pp. 1623–58.Google Scholar
Skoff, A. M., Lisak, R. P., Bealmear, B. and Benjamins, J. A. (1998). TNF-alpha and TGF-beta act synergistically to kill Schwann cells. J Neurosci Res 53, 747–56.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Skre, H. (1974). Genetic and clinical aspects of Charcot–Marie–Tooth's disease. Clin Genet 6, 98–118.CrossRefGoogle ScholarPubMed
Skundric, D., Bealmear, B. and Lisak, R. (1996a). Inducible coexpression of IL-1, IL-6 and TNF-α in cultured Schwann cells. J Neurochem 66, Suppl. 1, S48.Google Scholar
Skundric, D., Bealmear, B. and Lisak, R. (1996b). Inducible IL-1α, IL-1, IL-1R and IL-1 receptor antagonist (RA) expression in cultured rat Schwann cells (SC). J Neurochem 64, Suppl., S69.Google Scholar
Skundric, D., Bealmear, B. and Lisak, R. (1997a). IL-1β, IL-6 and TNF-α upregulate expression of each other in cultured Schwann cells (SC). J Neurochem 69, Suppl., S152.Google Scholar
Skundric, D. S., Bealmear, B. and Lisak, R. P. (1997b). Induced upregulation of IL-1, IL-1RA and IL-1R type I gene expression by Schwann cells. J Neuroimmunol 74, 9–18.CrossRefGoogle Scholar
Skundric, D. S., Lisak, R. P., Rouhi, M., Kieseier, B. C., Jung, S. and Hartung, H. P. (2001). Schwann cell-specific regulation of IL-1 and IL-1Ra during EAN: possible relevance for immune regulation at paranodal regions. J Neuroimmunol 116, 74–82.CrossRefGoogle ScholarPubMed
Skundric, D. S., Dai, R., James, J. and Lisak, R. P. (2002). Activation of IL-1 signaling pathway in Schwann cells during diabetic neuropathy. Ann NY Acad Sci 958, 393–8.CrossRefGoogle ScholarPubMed
Slezak, M. and Pfrieger, F. W. (2003). New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci 26, 531–5.CrossRefGoogle ScholarPubMed
Smart, S. L., Lopantsev, V., Zhang, C. L.et al. (1998). Deletion of the Kv1.1 potassium channel causes epilepsy in mice. Neuron 20, 809–19.CrossRefGoogle ScholarPubMed
Smith, K. J. and Hall, S. M. (1988). Peripheral demyelination and remyelination initiated by the calcium-selective ionophore ionomycin: in vivo observations. J Neurol Sci 83, 37–53.CrossRefGoogle ScholarPubMed
Sobue, G., Shuman, S. and Pleasure, D. (1986). Schwann cell responses to cyclic AMP: proliferation, change in shape, and appearance of surface galactocerebroside. Brain Res 362, 23–32.CrossRefGoogle ScholarPubMed
Sobue, G., Nakao, N., Murakami, K.et al. (1990). Type I familial amyloid polyneuropathy. A pathological study of the peripheral nervous system. Brain 113 (Part 4), 903–19.CrossRefGoogle ScholarPubMed
Soilu-Hanninen, M., Ekert, P., Bucci, T., Syroid, D., Bartlett, P. F. and Kilpatrick, T. J. (1999). Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway. J Neurosci 19, 4828–38.CrossRefGoogle Scholar
Soliven, B., Szuchet, S. and Nelson, D. J. (1991). Tumor necrosis factor inhibits K+ current expression in cultured oligodendrocytes. J Membr Biol 124, 127–37.CrossRefGoogle ScholarPubMed
Son, Y. J. and Thompson, W. J. (1995a). Schwann cell processes guide regeneration of peripheral axons. Neuron 14, 125–32.CrossRefGoogle Scholar
Son, Y. J. and Thompson, W. J. (1995b). Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14, 133–41.CrossRefGoogle Scholar
Sondell, M., Lundborg, G. and Kanje, M. (1999). Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 19, 5731–40.CrossRefGoogle ScholarPubMed
Southard-Smith, E. M., Kos, L. and Pavan, W. J. (1998). SOX10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18, 60–4.CrossRefGoogle ScholarPubMed
Southwood, C. M., Garbern, J., Jiang, W. and Gow, A. (2002). The unfolded protein response modulates disease severity in Pelizaeus–Merzbacher disease. Neuron 36, 585–96.CrossRefGoogle ScholarPubMed
Spierings, E., , B. T., Zulianello, L. and Ottenhoff, T. H. (2000). Novel mechanisms in the immunopathogenesis of leprosy nerve damage: the role of Schwann cells, T cells and Mycobacterium leprae. Immunol Cell Biol 78, 349–55.CrossRefGoogle ScholarPubMed
Spierings, E., , B. T., Wieles, B., Adams, L. B., Marani, E. and Ottenhoff, T. H. (2001). Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. J Immunol 166, 5883–8.CrossRefGoogle ScholarPubMed
Spies, J. M., Westland, K. W., Bonner, J. G. and Pollard, J. D. (1995a). Intraneural activated T cells cause focal breakdown of the blood–nerve barrier. Brain 118 (Part 4), 857–68.CrossRefGoogle Scholar
Spies, J. M., Pollard, J. D., Bonner, J. G., Westland, K. W. and McLeod, J. G. (1995b). Synergy between antibody and P2-reactive T cells in experimental allergic neuritis. J Neuroimmunol 57, 77–84.CrossRefGoogle Scholar
Steck, A. J., Schaeren-Wiemers, N. and Hartung, H. P. (1998). Demyelinating inflammatory neuropathies, including Guillain–Barré syndrome. Curr Opin Neurol 11, 311–18.CrossRefGoogle ScholarPubMed
Steinhoff, U. and Kaufmann, S. H. (1988). Specific lysis by CD8+ T cells of Schwann cells expressing Mycobacterium leprae antigens. Eur J Immunol 18, 969–72.CrossRefGoogle ScholarPubMed
Steinhoff, U., Schoel, B. and Kaufmann, S. H. (1990). Lysis of interferon-gamma activated Schwann cell by cross-reactive CD8+ alpha/beta T cells with specificity for the mycobacterial 65 kd heat shock protein. Int Immunol 2, 279–84.CrossRefGoogle ScholarPubMed
Stevens, B., Ishibashi, T., Chen, J. F. and Fields, R. D. (2004). Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biology 1, 23–34.CrossRefGoogle ScholarPubMed
Stewart, G. J., Pollard, J. D., McLeod, J. G. and Wolnizer, C. M. (1978). HLA antigens in the Landry–Guillain–Barré syndrome and chronic relapsing polyneuritis. Ann Neurol 4, 285–9.CrossRefGoogle ScholarPubMed
Stewart, H. J., Rougon, G., Dong, Z., Dean, C., Jessen, K. R. and Mirsky, R. (1995a). TGF-betas upregulate NCAM and L1 expression in cultured Schwann cells, suppress cyclic AMP-induced expression of O4 and galactocerebroside, and are widely expressed in cells of the Schwann cell lineage in vivo. Glia 15, 419–36.CrossRefGoogle Scholar
Stewart, H. J., Curtis, R., Jessen, K. R. and Mirsky, R. (1995b). TGF-beta s and cAMP regulate GAP-43 expression in Schwann cells and reveal the association of this protein with the trans-Golgi network. Eur J Neurosci 7, 1761–72.CrossRefGoogle Scholar
Stewart, H. J., Turner, D., Jessen, K. R. and Mirsky, R. (1997). Expression and regulation of alpha1beta1 integrin in Schwann cells. J Neurobiol 33, 914–28.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Stewart, H. J. S., Morgan, L., Jessen, K. R. and Mirsky, R. (1993). Changes in DNA synthesis rate in the Schwann cell lineage in vivo are correlated with the precursor-Schwann cell transition and myelination. Eur J Neurosci 5, 1136–44.CrossRefGoogle ScholarPubMed
Stewart, H. J. S., Bradke, F., Tabernero, A., Morrell, D., Jessen, K. R. and Mirsky, R. (1996). Regulation of rat Schwann cell P0 expression and DNA synthesis by insulin-like growth factors in vitro. Eur J Neurosci 8, 553–64.CrossRefGoogle Scholar
Stewart, H. J. S., Brennan, A., Rahman, M.et al. (2001). Developmental regulation and overexpression of the transcription factor AP-2, a potential regulator of the timing of Schwann cell generation. Eur J Neurosci 14, 363–72.CrossRefGoogle ScholarPubMed
Stirling, C. A. (1975). Abnormalities in Schwann cell sheaths in spinal nerve roots of dystrophic mice. J Anat 119, 169–80.Google ScholarPubMed
Stolinski, C., Breathnach, A. S., Thomas, P. K., Gabriel, G. and King, R. M. H. (1985). Distribution of particle aggregates in the internodal axolemma and adaxonal Schwann cell membrane of rodent peripheral nerve. J Neurol Sci 67, 213–22.CrossRefGoogle ScholarPubMed
Stoll, G. and Muller, H. W. (1999). Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 9, 313–25.CrossRefGoogle ScholarPubMed
Stoll, G., Schwendemann, G., Heininger, K.et al. (1986). Relation of clinical, serological, morphological, and electrophysiological findings in galactocerebroside-induced experimental allergic neuritis. J Neurol Neurosurg Psychiatry 49, 258–64.CrossRefGoogle ScholarPubMed
Stoll, G., Jung, S., Jander, S., , M. P. and Hartung, H. P. (1993a). Tumor necrosis factor-alpha in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. J Neuroimmunol 45, 175–82.CrossRefGoogle Scholar
Stoll, G., Jander, S.et al. (1993b). Macrophages and endothelial cells express intercellular adhesion molecule-1 in immune-mediated demyelination but not in Wallerian degeneration of the rat peripheral nervous system. Lab Invest 68, 637–44.Google Scholar
Street, V. A., Bennett, C. L., Goldy, J. D.et al. (2003). Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot–Marie–Tooth disease 1C. Neurology 60, 22–6.CrossRefGoogle ScholarPubMed
Stumm, R. K., Zhou, C., Ara, T.et al. (2003). CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 23, 5123–30.CrossRefGoogle ScholarPubMed
Sugimura, K., Haimoto, H., Nagura, H., Kato, K. and Takahashi, A. (1989). Immunohistochemical differential distribution of S-100 alpha and S-100 beta in the peripheral nervous system of the rat. Muscle Nerve 12, 929–35.CrossRefGoogle ScholarPubMed
Sumner, A., Said, G., Idy, I. and Metral, S. (1982a). Electrophysiological and morphological effects of the injection of Guillain–Barré sera in the sciatic nerve of the rat (author's transl). Rev Neurol (Paris) 138, 17–24.Google Scholar
Sumner, A. J., Saida, K., Saida, T., Silberberg, D. H. and Asbury, A. K. (1982b). Acute conduction block associated with experimental antiserum-mediated demyelination of peripheral nerve. Ann Neurol 11, 469–77.CrossRefGoogle Scholar
Sund, M., Vaisanen, T., Kaukinen, S.et al. (2001). Distinct expression of type XIII collagen in neuronal structures and other tissues during mouse development. Matrix Biol 20, 215–31.CrossRefGoogle ScholarPubMed
Suter, U. (2004). PMP22 gene. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, Philadelphia, pp. 547–64.Google Scholar
Suter, U. and Nave, K. A. (1999). Transgenic mouse models of CMT1A and HNPP. Ann NY Acad Sci 883, 247–53.CrossRefGoogle ScholarPubMed
Suter, U. and Scherer, S. S. (2003). Disease mechanisms in inherited neuropathies. Nat Neurosci Rev 4, 714–26.CrossRefGoogle ScholarPubMed
Suter, U., Moskow, J. J., Welcher, A. A.et al. (1992a). A leucine-to-proline mutation in the putative first transmembrane domain of the 22-kDa peripheral myelin protein in the trembler-J mouse. Proc Nat Acad Sci USA 89, 4382–6.CrossRefGoogle Scholar
Suter, U., Welcher, A. A., Ozcelik, T.et al. (1992b). Trembler mouse carries a point mutation in a myelin gene. Nature 356, 241–4.CrossRefGoogle Scholar
Syroid, D. E., Maycox, P. R., Burrola, P. G.et al. (1996). Cell death in the Schwann cell lineage and its regulation by neuregulin. Proc Nat Acad Sci USA 93, 9229–34.CrossRefGoogle ScholarPubMed
Syroid, D. E., Maycox, P. J., Soilu-Hanninen, M.et al. (2000). Induction of postnatal Schwann cell death by the low-affinity neurotrophin receptor in vitro and after axotomy. J Neurosci 20, 5741–7.CrossRefGoogle ScholarPubMed
Takahashi, M. and Osumi, N. (2005). Identification of a novel type II classical cadherin: rat cadherin19 is expressed in the cranial ganglia and Schwann cell precursors during development. Develop Dyn 232, 200–8.CrossRefGoogle ScholarPubMed
Takeda, K., Kaisho, T. and Akira, S. (2003). Toll-like receptors. Ann Rev Immunol 21, 335–76.CrossRefGoogle ScholarPubMed
Tam, S. L. and Gordon, T. (2003). Neuromuscular activity impairs axonal sprouting in partially denervated muscles by inhibiting bridge formation of perisynaptic Schwann cells. J Neurobiol 57, 221–34.CrossRefGoogle ScholarPubMed
Tamkun, J. W., DeSimone, D. W., Fonda, D.et al. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271–82.CrossRefGoogle ScholarPubMed
Taniuchi, M., Clark, H. B. and Johnson, E. M. Jr. (1986). Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Nat Acad Sci USA 83, 4094–8.CrossRefGoogle ScholarPubMed
Taniuchi, M., Clark, H. B., Schweitzer, J. B. and Johnson, E. M. Jr. (1988). Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties. J Neurosci 8, 664–81.CrossRefGoogle ScholarPubMed
Taskinen, H. S. and Roytta, M. (2000). Increased expression of chemokines (MCP-1, MIP-1alpha, RANTES) after peripheral nerve transection. J Peripher Nerv Syst 5, 75–81.CrossRefGoogle ScholarPubMed
Taveggia, C., Zanazzi, G., Petrylak, A.et al. (2005). Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–94.CrossRefGoogle ScholarPubMed
Taylor, J. M. and Pollard, J. D. (2001). Dominance of autoreactive T cell-mediated delayed-type hypersensitivity or antibody-mediated demyelination results in distinct forms of experimental autoimmune neuritis in the Lewis rat. J Neuropathol Exp Neurol 60, 637–46.CrossRefGoogle ScholarPubMed
Tello, J. F. (1944). Sobre una vaina que envuelve toda la ramificacion del axon en las terminaciones motrices de los musculos estriados. Trabajos del Laboratorio de Investigaciones Biologicas de la Universidad de Madrid 36, 1–59.Google Scholar
Teravainen, H. (1970). Satellite cells of striated muscle after compression injury so slight as not to cause degeneration of the muscle fibres. Z Zellforsch Mikrosk Anat 103, 320–7.CrossRefGoogle Scholar
Tham, T. N., Lazarini, F., Franceschini, I. A., Lachapelle, F., Amara, A. and Dubois-Dalcq, M. (2001). Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system. Eur J Neurosci 13, 845–56.CrossRefGoogle ScholarPubMed
Thomas, P. K., Marques, W., Davis, M. B.et al. (1997). The phenotypic manifestations of chromosome 17p11.2 duplication. Brain 120, 465–78.CrossRefGoogle ScholarPubMed
Tiegs, O. W. (1953). Innervation of voluntary muscle. Physiol Rev 33, 90–144.CrossRefGoogle ScholarPubMed
Timmerman, V., Jonghe, P., Ceuterick, C.et al. (1999). Novel missense mutation in the early growth response 2 gene associated with Dejerine–Sottas syndrome phenotype. Neurology 52, 1827–32.CrossRefGoogle ScholarPubMed
Tobler, A. R., Notterpek, L., Naef, R., Taylor, V., Suter, U. and Shooter, E. M. (1999). Transport of Trembler-J mutant peripheral myelin protein 22 is blocked in the intermediate compartment and affects the transport of the wild-type protein by direct interaction. J Neurosci 19, 2027–36.CrossRefGoogle ScholarPubMed
Tohyama, K. and Ide, C. (1984). The localization of laminin and fibronectin on the Schwann cell basal lamina. Arch Histol Jpn 47, 519–32.CrossRefGoogle ScholarPubMed
Tooth, H. (1886). The Peroneal Type of Progressive Muscular Atrophy. Lewis, London.Google Scholar
Topilko, P., Schneider-Maunoury, S., Levi, G.et al. (1994). Krox-20 controls myelination in the peripheral nervous system. Nature 371, 796–9.CrossRefGoogle ScholarPubMed
Topilko, P. and Meijer, D. (2001). Transcription factors that control Schwann cell development and myelination. Jessen, K. R., Richardson, W. D. (Eds.) Glial Cell Development. Oxford University Press, Oxford, pp. 223–44.Google Scholar
Trachtenberg, J. T. and Thompson, W. J. (1996). Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 379, 174–7.CrossRefGoogle ScholarPubMed
Trachtenberg, J. T. and Thompson, W. J. (1997). Nerve terminal withdrawal from rat neuromuscular junctions induced by neuregulin and Schwann cells. J Neurosci 17, 6243–55.CrossRefGoogle ScholarPubMed
Trapp, B. D. and Kidd, G. J. (2004). Structure of the myelinated axon. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, San Diego, pp. 3–27.Google Scholar
Tricaud, N., Perrin-Tricaud, C., Bruses, J. L. and Rutishauser, U. (2005). Adherens junctions in myelinating Schwann cells stabilize Schmidt–Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 25, 3259–69.CrossRefGoogle Scholar
Tsai, C. P., Pollard, J. D. and Armati, P. J. (1991). Interferon-gamma inhibition suppresses experimental allergic neuritis: modulation of major histocompatibility complex expression of Schwann cells in vitro. J Neuroimmunol 31, 133–45.CrossRefGoogle ScholarPubMed
Tsukada, N., Koh, C. S., Inoue, A. and Yanagisawa, N. (1987). Demyelinating neuropathy associated with hepatitis B virus infection. Detection of immune complexes composed of hepatitis B virus surface antigen. J Neurol Sci 77, 203–16.CrossRefGoogle ScholarPubMed
Tucker, R. P., Hagios, C., Santiago, A. and Chiquet-Ehrismann, R. (2001). Tenascin-Y is concentrated in adult nerve roots and has barrier properties in vitro. J Neurosci Res 66, 439–47.CrossRefGoogle ScholarPubMed
Tyson, J., Ellis, D., Fairbrother, U.et al. (1997). Hereditary demyelinating neuropathy of infancy. A genetically complex syndrome. Brain 120, 47–63.CrossRefGoogle ScholarPubMed
Uhlenberg, B., Schuelke, M., Ruschendorf, F.et al. (2004). Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am J Hum Genet 75, 251–60.CrossRefGoogle ScholarPubMed
Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. and Barres, B. A. (2001). Control of synapse number by glia. Science 291, 657–61.CrossRefGoogle ScholarPubMed
Ullian, E. M., Harris, B. T., Wu, A., Chan, J. R. and Barres, B. A. (2004a). Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci 25, 241–51.CrossRefGoogle Scholar
Ullian, E. M., Christopherson, K. S. and Barres, B. A. (2004b). Role for glia in synaptogenesis. Glia 47, 209–16.CrossRefGoogle Scholar
Ulzheimer, J. C., Peles, E., Levinson, S. R. and Martini, R. (2004). Altered expression of ion channel isoforms at the node of Ranvier in P0-deficient myelin mutants. Mol Cell Neurosci 25, 83–94.CrossRefGoogle ScholarPubMed
Uncini, A., Di, M. A., Di, G. G.et al. (1999). Effect of rhTNF-alpha injection into rat sciatic nerve. J Neuroimmunol 94, 88–94.CrossRefGoogle ScholarPubMed
Unsicker, K., Flanders, K. C., Cissel, D. S., Lafyatis, R. and Sporn, M. B. (1991). Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44, 613–25.CrossRefGoogle ScholarPubMed
Ushiki, T. and Ide, C. (1988). A modified KOH-collagenase method applied to scanning electron microscopic observations of peripheral nerves. Arch Histol Cytol 51, 223–32.Google ScholarPubMed
Uyemura, K., Asou, H. and Takeda, Y. (1995). Structure and function of peripheral nerve myelin proteins. Prog Brain Res 105, 311–18.CrossRefGoogle ScholarPubMed
Vabnick, I. and Shrager, P. (1998). Ion channel redistribution and function during development of the myelinated axon. J Neurobiol 37, 80–96.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Vabnick, I., Trimmer, J. S., Schwarz, T. L., Levinson, S. R., Risal, D. and Shrager, P. (1999). Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. J Neurosci 19, 747–58.CrossRefGoogle ScholarPubMed
Vagnerova, K., Tarumi, Y. S., Proctor, T. M. and Patton, B. L. (2003). A specialized basal lamina at the node of Ranvier. Soc Neurosci Abs 29, 351.18.Google Scholar
Valentijn, L. J., Baas, F., Wolterman, R. A.et al. (1992). Identical point mutations of PMP-22 in Trembler-J mouse and Charcot–Marie–Tooth disease type 1A. Nat Genet 2, 288–91.CrossRefGoogle ScholarPubMed
Vallat, J. M., Sindou, P., Preux, P. M.et al. (1996). Ultrastructural PMP22 expression in inherited demyelinating neuropathies. Ann Neurol 39, 813–17.CrossRefGoogle ScholarPubMed
Laan, L. J., Ruuls, S. R., Weber, K. S., Lodder, I. J., Dopp, E. A. and Dijkstra, C. D. (1996). Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide. J Neuroimmunol 70, 145–52.CrossRefGoogle ScholarPubMed
Meche, F. G. and Schmitz, P. I. (1992). A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain–Barré syndrome. Dutch Guillain–Barré Study Group. N Engl J Med 326, 1123–9.CrossRefGoogle ScholarPubMed
Doorn, P. A. (2005). Treatment of Guillain–Barré syndrome and CIDP. J Peripher Nerv Syst 10, 113–27.CrossRefGoogle ScholarPubMed
Rhijn, I., Berg, L. H., Bosboom, W. M., Otten, H. G. and Logtenberg, T. (2000a). Expression of accessory molecules for T-cell activation in peripheral nerve of patients with CIDP and vasculitic neuropathy. Brain 123 (Part 10), 2020–9.CrossRefGoogle Scholar
Rhijn, L. W., Jansen, E. J. and Pruijs, H. E. (2000b). Long-term follow-up of conservatively treated popliteal cysts in children. J Pediatr Orthop B 9, 62–4.CrossRefGoogle Scholar
Van, K. R., Doorn, P. A., Schmitz, P. I., Ang, C. W. and Meche, F. G. (2000). Mild forms of Guillain-Barré syndrome in an epidemiologic survey in The Netherlands. Neurology 54, 620–5.Google Scholar
Van, K. R., Schmitz, P. I., Meche, F. G., Visser, L. H., Meulstee, J. and Doorn, P. A. (2004). Effect of methylprednisolone when added to standard treatment with intravenous immunoglobulin for Guillain–Barré syndrome: randomised trial. Lancet 363, 192–6.Google Scholar
Vardhini, D., Suneetha, S., Ahmed, N.et al. (2004). Comparative proteomics of the Mycobacterium leprae binding protein myelin P0: its implication in leprosy and other neurodegenerative diseases. Infect Genet Evol 4, 21–8.CrossRefGoogle ScholarPubMed
Vaughan, R. W., Adam, A. M., Gray, I. A.et al. (1990). Major histocompatibility complex class I and class II polymorphism in chronic idiopathic demyelinating polyradiculoneuropathy. J Neuroimmunol 27, 149–53.CrossRefGoogle Scholar
Vega, J. A., Valle-Soto, M. E., Calzada, B. and Alvarez-Mendez, J. C. (1991). Immunohistochemical localization of S-100 protein subunits (alpha and beta) in dorsal root ganglia of the rat. Cell Mol Biol 37, 173–81.Google ScholarPubMed
Venstrom, K. and Reichardt, L. (1995). Beta 8 integrins mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. Mol Biol Cell 6, 419–31.CrossRefGoogle ScholarPubMed
Viskochil, D. H. (2003). It takes two to tango: mast cell and Schwann cell interactions in neurofibromas. J Clin Invest 112, 1791–3.CrossRefGoogle ScholarPubMed
Volterra, A., Magistretti, P. J. and Haydon, P. G. (2002). The Tripartite Synapse: Glia in Synaptic Transmission. Oxford University Press, Oxford.Google Scholar
Vriesendorp, F. J., Mishu, B., Blaser, M. J. and Koski, C. L. (1993). Serum antibodies to GM1, GD1b, peripheral nerve myelin, and Campylobacter jejuni in patients with Guillain–Barré syndrome and controls: correlation and prognosis. Ann Neurol 34, 130–5.CrossRefGoogle ScholarPubMed
Vroemen, M. and Weidner, N. (2003). Purification of Schwann cells by selection of p75 low affinity nerve growth factor receptor expressing cells from adult peripheral nerve. J Neurosci Methods 124, 135–43.CrossRefGoogle ScholarPubMed
Wagner, R. and Myers, R. R. (1996a). Endoneurial injection of TNF-alpha produces neuropathic pain behaviors. Neuroreport 7, 2897–901.CrossRefGoogle Scholar
Wagner, R. and Myers, R. R. (1996b). Schwann cells produce tumor necrosis factor alpha: expression in injured and non-injured nerves. Neuroscience 73, 625–9.CrossRefGoogle Scholar
Wakamatsu, Y., Maynard, T. M. and Weston, J. A. (2000). Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis. Development 127, 2811–21.Google ScholarPubMed
Waksman, B. H. and Adams, R. D. (1956). A comparative study of experimental allergic neuritis in the rabbit, guinea pig, and mouse. J Neuropathol Exp Neurol 15, 293–334.CrossRefGoogle Scholar
Wallquist, W., Patarroyo, M., Thams, S.et al. (2002). Laminin chains in rat and human peripheral nerve: distribution and regulation during development and after axonal injury. J Comp Neurol 454, 284–93.CrossRefGoogle ScholarPubMed
Wallquist, W., Plantman, S., Thams, S.et al. (2005). Impeded interaction between Schwann cells and axons in the absence of laminin alpha4. J Neurosci 25, 3692–700.CrossRefGoogle ScholarPubMed
Walport, M. (1998). Complement. Roitti, I., Brostoff, J., Male, D. (Eds.) Immunology. Mosby, Philadelphia, pp. 43–61.Google Scholar
Wanaka, A., Carroll, S. L. and Milbrandt, J. (1993). Developmentally regulated expression of pleiotrophin, a novel heparin binding growth factor, in the nervous system of the rat. Brain Res Dev Brain Res 72, 133–44.CrossRefGoogle ScholarPubMed
Wang, J. Y., Miller, S. J. and Falls, D. L. (2001). The N-terminal region of neuregulin isoforms determines the accumulation of cell surface and released neuregulin ectodomain. J Biol Chem 276, 2841–51.CrossRefGoogle ScholarPubMed
Wang, S. and Barres, B. A. (2000). Up a notch: instructing gliogenesis. Neuron 27, 197–200.CrossRefGoogle ScholarPubMed
Wanner, I., Guerra, N. K., Mahoney, J. et al. (2006). Role of N-cadherin in Schwann cell precursors of growing nerves. Glia 54, 439–59.CrossRef
Warner, L. E., Hilz, M. J., Appel, S. H.et al. (1996). Clinical phenotypes of different MPZ (P0) mutations may include Charcot–Marie–Tooth type 1B, Dejerine–Sottas, and congenital hypomyelination. Neuron 17, 451–60.CrossRefGoogle ScholarPubMed
Warner, L. E., Mancias, P., Butler, I. J.et al. (1998). Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 18, 382–4.CrossRefGoogle ScholarPubMed
Watson, D. F., Nachtman, F. N., Kuncl, R. W. and Griffin, J. W. (1994). Altered neurofilament phosphorylation and beta tubulin isotypes in Charcot–Marie–Tooth disease type 1. Neurology 44, 2383–7.CrossRefGoogle ScholarPubMed
Watts, R. J., Schuldiner, O., Perrino, J., Larsen, C. and Luo, L. (2004). Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14, 678–84.CrossRefGoogle ScholarPubMed
Waxman, S. G. (2005). Cerebellar dysfunction in multiple sclerosis: evidence for an acquired channelopathy. Prog Brain Res 148, 353–65.CrossRefGoogle ScholarPubMed
Webster, H. D. (1971). The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves. J Cell Biol 48, 348–67.CrossRefGoogle ScholarPubMed
Webster, H.d.F., Favilla, J. T. (1984). Development of peripheral nerve fibers. Dyck, P. J., Thomas, P. K., Lambert, E. H., Bunge, R. P. (Eds.) Peripheral Neuropathy, 2nd Edn. WB Saunders, Philadelphia, pp. 329–59.Google Scholar
Webster, H. (1993). Development of peripheral nerve fibers. Dyck, P. J., Thomas, P. K., Lambert, E. H., Bunge, R. P. (Eds.) Peripheral Neuropathy, 3rd Edn. WB Saunders, Philadelphia, pp. 243–66.Google Scholar
Wegner, M. (2000a). Transcriptional control in myelinating glia: the basic recipe. Glia 29, 118–23.3.0.CO;2-Q>CrossRefGoogle Scholar
Wegner, M. (2000b). Transcriptional control in myelinating glia: flavors and spices. Glia 31, 1–14.3.0.CO;2-V>CrossRefGoogle Scholar
Wehrle-Haller, B. and Chiquet, M. (1993). Dual function of tenascin: simultaneous promotion of neurite growth and inhibition of glial migration. J Cell Sci 106 (Part 2), 597–610.Google ScholarPubMed
Weiner, H. L., Friedman, A., Miller, A.et al. (1994). Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 12, 809–37.CrossRefGoogle ScholarPubMed
Weiner, J. A. and Chun, J. (1999). Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc Nat Acad Sci USA 96, 5233–8.CrossRefGoogle ScholarPubMed
Weiss, M. D., Luciano, C. A., Semino-Mora, C., Dalakas, M. C. and Quarles, R. H. (1998). Molecular mimicry in chronic inflammatory demyelinating polyneuropathy and melanoma. Neurology 51, 1738–41.CrossRefGoogle ScholarPubMed
Wekerle, H., Schwab, M., Linington, C. and Meyermann, R. (1986). Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes. Eur J Immunol 16, 1551–7.CrossRefGoogle Scholar
Wernig, A. and Herrera, A. A. (1986). Sprouting and remodelling at the nerve–muscle junction. Prog Neurobiol 27, 251–91.CrossRefGoogle ScholarPubMed
Wernig, A., Pecot-Dechavassine, M. and Stover, H. (1980). Sprouting and regression of the nerve at the frog neuromuscular junction in normal conditions and after prolonged paralysis with curare. J Neurocytol 9, 278–303.CrossRefGoogle ScholarPubMed
Wetmore, C. and Olson, L. (1995). Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J Comp Neurol 353, 143–59.CrossRefGoogle ScholarPubMed
White, P. M., Morrison, S. J., Orimoto, K., Kubu, C. J., Verdi, J. M. and Anderson, D. J. (2001). Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29, 57–71.CrossRefGoogle ScholarPubMed
Wigston, D. J. (1989). Remodeling of neuromuscular junctions in adult mouse soleus. J Neurosci 9, 639–47.CrossRefGoogle ScholarPubMed
Wilkinson, R., Leaver, C., Simmons, A. and Pereira, R. A. (1999). Restricted replication of herpes simplex virus in satellite glial cell cultures clonally derived from adult mice. J Neurovirol 5, 384–91.CrossRefGoogle ScholarPubMed
Williams, L. L., Kissel, J. T., Shannon, B. T., Wright, F. S. and Mendell, J. R. (1992). Expression of Schwann cell and peripheral T-cell activation epitopes in hereditary motor and sensory neuropathy. J Neuroimmunol 36, 147–55.CrossRefGoogle ScholarPubMed
Willison, H. J. (2005). The immunobiology of Guillain–Barré syndromes. J Peripher Nerv Syst 10, 94–112.CrossRefGoogle ScholarPubMed
Willison, H. J. and Yuki, N. (2002). Peripheral neuropathies and anti-glycolipid antibodies. Brain 125, 2591–625.CrossRefGoogle ScholarPubMed
Winer, J. B., Hughes, R. A. and Osmond, C. (1988). A prospective study of acute idiopathic neuropathy. I. Clinical features and their prognostic value. J Neurol Neurosurg Psychiat 51, 605–12.CrossRefGoogle ScholarPubMed
Winseck, A. K., Caldero, J., Ciutat, D.et al. (2002). In vivo analysis of Schwann cell programmed cell death in the embryonic chick: regulation by axons and glial growth factor. J Neurosci 22, 4509–21.CrossRefGoogle ScholarPubMed
Wohlleben, G., Hartung, H. P. and Gold, R. (1999). Humoral and cellular immune functions of cytokine-treated Schwann cells. Adv Exp Med Biol 468, 151–6.CrossRefGoogle ScholarPubMed
Wohlleben, G., Ibrahim, S. M., Schmidt, J., Toyka, K. V., Hartung, H. P. and Gold, R. (2000). Regulation of Fas and FasL expression on rat Schwann cells. Glia 30, 373–81.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Woldeyesus, M. T., Britsch, S., Riethmacher, D.et al. (1999). Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev 13, 2538–48.CrossRefGoogle ScholarPubMed
Wolpowitz, D., Mason, T. B., Dietrich, P., Mendelsohn, M., Talmage, D. A. and Role, L. W. (2000). Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 25, 79–91.CrossRefGoogle ScholarPubMed
Woodhoo, A., Dean, C. H., Droggiti, A., Mirsky, R. and Jessen, K. R. (2004). The trunk neural crest and its early glial derivatives: a study of survival responses, developmental schedules and autocrine mechanisms. Mol Cell Neurosci 25, 30–41.CrossRefGoogle ScholarPubMed
Woolf, C. J., Reynolds, M. L., Chong, M. S., Emson, P., Irwin, N. and Benowitz, L. I. (1992). Denervation of the motor endplate results in the rapid expression by terminal Schwann cells of the growth-associated protein GAP-43. J Neurosci 12, 3999–4010.CrossRefGoogle ScholarPubMed
Wrabetz, L., Feltri, M. L., Quattrini, A.et al. (2000). P(0) glycoprotein overexpression causes congenital hypomyelination of peripheral nerves. J Cell Biol 148, 1021–34.CrossRefGoogle Scholar
Wrabetz, L., Feltri, M. L., Kleopa, K. A. and Scherer, S. S. (2004). Inherited neuropathies – clinical, genetic, and biological features. Lazzarini, R. L. (Ed.) Myelin Biology and Disorders. Elsevier, San Diego, pp. 905–951.Google Scholar
Xiao, Z. C., Revest, J. M., Laeng, P., Rougon, G., Schachner, M. and Montag, D. (1998). Defasciculation of neurites is mediated by tenascin-R and its neuronal receptor F3/11. J Neurosci Res 52, 390–404.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Xiao, Z. C., Ragsdale, D. S., Malhotra, J. D.et al. (1999). Tenascin-R is a functional modulator of sodium channel beta subunits. J Biol Chem 274, 26511–17.CrossRefGoogle ScholarPubMed
Xu, H., Wu, X. R., Wewer, U. M. and Engvall, E. (1994). Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nat Genet 8, 297–302.CrossRefGoogle ScholarPubMed
Xu, W., Manichella, D., Jiang, H.et al. (2000). Absence of P0 leads to the dysregulation of myelin gene expression and myelin morphogenesis. J Neurosci Res 60, 714–24.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Xu, W., Shy, M., Kamholz, J., Elferink, L., Xu, G., Lilien, J. and Balsamo, J. (2001). Mutations in the cytoplasmic domain of P0 reveal a role for PKC- mediated phosphorylation in adhesion and myelination. J Cell Biol 155, 439–46.CrossRefGoogle ScholarPubMed
Yamada, H., Shimizu, T., Tanaka, T., Campbell, K. P. and Matsumura, K. (1994). Dystroglycan is a binding protein of laminin and merosin in peripheral nerve. FEBS Lett 352, 49–53.CrossRefGoogle ScholarPubMed
Yamada, H., Chiba, A., Endo, T.et al. (1996a). Characterization of dystroglycan-laminin interaction in peripheral nerve. J Neurochem 66, 1518–24.CrossRefGoogle Scholar
Yamada, H., Denzer, A. J., Hori, H.et al. (1996b). Dystroglycan is a dual receptor for agrin and laminin-2 in Schwann cell membrane. J Biol Chem 271, 23418–23.CrossRefGoogle Scholar
Yamamoto, M., Fan, L., Wakayama, T., Amano, O. and Iseki, S. (2001). Constitutive expression of the 27-kDa heat-shock protein in neurons and satellite cells in the peripheral nervous system of the rat. Anat Rec 262, 213–20.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Yamashita, N., Sakai, K., Furuya, S. and Watanabe, M. (2003). Selective expression of L-serine synthetic enzyme 3PGDH in Schwann cells, perineuronal glia, and endoneurial fibroblasts along rat sciatic nerves and its upregulation after crush injury. Arch Histol Cytol 66, 429–36.CrossRefGoogle ScholarPubMed
Yamauchi, J., Chan, J. R. and Shooter, E. M. (2004). Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Nat Acad Sci USA 101, 8774–9.CrossRefGoogle ScholarPubMed
Yan, W. X., Taylor, J., Ndrias-Kauba, S. and Pollard, J. D. (2000). Passive transfer of demyelination by serum or IgG from chronic inflammatory demyelinating polyneuropathy patients. Ann Neurol 47, 765–75.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Yan, W. X., Archelos, J. J., Hartung, H. P. and Pollard, J. D. (2001). P0 protein is a target antigen in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol 50, 286–92.CrossRefGoogle ScholarPubMed
Yanase, H., Shimizu, H., Yamada, K. and Iwanaga, T. (2002). Cellular localization of the diazepam binding inhibitor in glial cells with special reference to its coexistence with brain-type fatty acid binding protein. Arch Histol Cytol 65, 27–36.CrossRefGoogle ScholarPubMed
Yang, D., Bierman, J., Tarumi, Y. S.et al. (2005). Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol. 168, 655–66.CrossRefGoogle ScholarPubMed
Yang, F. C., Ingram, D. A., Chen, S.et al. (2003). Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/- mast cells. J Clin Invest 112, 1851–61.Google ScholarPubMed
Yang, H., Xiao, Z. C., Becker, B., Hillenbrand, R., Rougon, G. and Schachner, M. (1999). Role for myelin-associated glycoprotein as a functional tenascin-R receptor. J Neurosci Res 55, 687–701.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Yang, J. F., Cao, G., Koirala, S., Reddy, L. V. and Ko, C. P. (2001). Schwann cells express active agrin and enhance aggregation of acetylcholine receptors on muscle fibers. J Neurosci 21, 9572–84.CrossRefGoogle ScholarPubMed
Yang, J. T., Rayburn, H. and Hynes, R. O. (1993). Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119, 1093–105.Google ScholarPubMed
Yang, Y., LacasGervais, S., Morest, D. K., Solimena, M. and Rasband, M. N. (2004). beta IV spectrins are essential for membrane stability and the molecular organization of nodes of Ranvier. J Neurosci 24, 7230–40.CrossRefGoogle Scholar
Yntema, C. L. (1943). Deficient efferent innervation of the extremities following removal of neural crest in Amblystoma. J Exp Zool 94, 319–49.CrossRefGoogle Scholar
Yokoi, H., Tsuruo, Y. and Ishimura, K. (1998). Steroid 5alpha-reductase type 1 immunolocalized in the rat peripheral nervous system and paraganglia. Histochem J 30, 731–9.CrossRefGoogle ScholarPubMed
Yoshihara, T., Kanda, F., Yamamoto, M.et al. (2001). A novel missense mutation in the early growth response 2 gene associated with late-onset Charcot–Marie–Tooth disease type 1. J Neurol Sci 184, 149–53.CrossRefGoogle ScholarPubMed
Young, J. Z. (1938). The functioning of the giant nerve fibres of the squid. J Exp Biol 15, 170–85.Google Scholar
Young, P., Boussadia, O., Berger, P.et al. (2002). E-cadherin is required for the correct formation of autotypic adherens junctions of the outer mesaxon but not for the integrity of myelinated fibers of peripheral nerves. Mol Cell Neurosci 21, 341–51.CrossRefGoogle Scholar
Young, P., Nie, J., Wang, X., McGlade, C. J., Rich, M. M. and Feng, G. (2005). LNX1 is a perisynaptic Schwann cell specific E3 ubiquitin ligase that interacts with ErbB2. Mol Cell Neurosci 30, 238–48.CrossRefGoogle ScholarPubMed
Yu, L. T., Rostami, A., Silvers, W. K., Larossa, D. and Hickey, W. F. (1990). Expression of major histocompatibility complex antigens on inflammatory peripheral nerve lesions. J Neuroimmunol 30, 121–8.CrossRefGoogle ScholarPubMed
Yu, W. M., Feltri, M. L., Wrabetz, L., Strickland, S. and Chen, Z. L. (2005). Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci 25, 4463–72.CrossRefGoogle ScholarPubMed
Yuki, N., Taki, T., Takahashi, M.et al. (1994). Molecular mimicry between GQ1b ganglioside and lipopolysaccharides of Campylobacter jejuni isolated from patients with Fisher's syndrome. Ann Neurol 36, 791–3.CrossRefGoogle ScholarPubMed
Yuki, N., Tagawa, Y. and Handa, S. (1996). Autoantibodies to peripheral nerve glycosphingolipids SPG, SLPG, and SGPG in Guillain–Barré syndrome and chronic inflammatory demyelinating polyneuropathy. J Neuroimmunol 70, 1–6.CrossRefGoogle ScholarPubMed
Yuki, N., Yamada, M., Koga, M.et al. (2001). Animal model of axonal Guillain–Barré syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 49, 712–20.CrossRefGoogle ScholarPubMed
Yuki, N., Susuki, K., Koga, M.et al. (2004). Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain–Barré syndrome. Proc Nat Acad Sci USA 101, 11404–9.CrossRefGoogle ScholarPubMed
Yurchenco, P. D., Cheng, Y. S. and Colognato, H. (1992). Laminin forms an independent network in basement membranes. J Cell Biol 117, 1119–33.CrossRefGoogle ScholarPubMed
Zehntner, S. P., Brisebois, M., Tran, E., Owens, T. and Fournier, S. (2003). Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease. FASEB J 17, 1910–12.CrossRefGoogle ScholarPubMed
Zhou, D. X., Lambert, S., Malen, P. L., Carpenter, S., Boland, L. M. and Bennett, V. (1998). AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 143, 1295–304.CrossRefGoogle ScholarPubMed
Ziskind-Conhaim, L. (1988). Physiological and morphological changes in developing peripheral nerves of rat embryos. Brain Res 470, 15–28.CrossRefGoogle ScholarPubMed
Zlotnik, A. and Yoshie, O. (2000). Chemokines: a new classification system and their role in immunity. Immunity 12, 121–7.CrossRefGoogle ScholarPubMed
Zorick, T. S. and Lemke, G. (1996). Schwann cell differentiation. Curr Opin Cell Biol 8, 870–6.CrossRefGoogle ScholarPubMed
Zorick, T. S., Syroid, D. E., Arroyo, E., Scherer, S. S. and Lemke, G. (1996). The transcription factors SCIP and Krox-20 mark distinct stages and cell fates in Schwann cell differentiation. Mol Cell Neurosci 8, 129–45.CrossRefGoogle ScholarPubMed
Zou, L. P., Pelidou, S. H., Abbas, N.et al. (1999). Dynamics of production of MIP-1alpha, MCP-1 and MIP-2 and potential role of neutralization of these chemokines in the regulation of immune responses during experimental autoimmune neuritis in Lewis rats. J Neuroimmunol 98, 168–75.CrossRefGoogle ScholarPubMed
Zuo, Y., Lubischer, J. L., Kang, H.et al. (2004). Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination. J Neurosci 24, 10999–1009.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Patricia Armati, University of Sydney
  • Book: The Biology of Schwann Cells
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541605.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Patricia Armati, University of Sydney
  • Book: The Biology of Schwann Cells
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541605.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Patricia Armati, University of Sydney
  • Book: The Biology of Schwann Cells
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541605.012
Available formats
×