We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
References
Abbas, F., Bhatti, Z., Haider, J. & Mian, A. (2015). Bears in Pakistan: distribution, population biology and human conflicts. Journal of Bioresource Management2(2): 1–13.CrossRefGoogle Scholar
Abrams, J. F., Hörig, L., Brozovic, R., Axtner, J., et al. (2019). Shifting up a gear with iDNA: from mammal detection events to standardized surveys. Journal of Applied Ecology56: 1637–1648.Google Scholar
Acevedo, C., Bernal, N., Bianchi, G., et al. (2017). Conservamos la vida: Andean bear conservation at the landscape scale. In: Molina, S., Zug, B., Velez, -Liendo, X., et al. (Eds.), 25th Conference on Bear Research and Management (p. 9). Quito, Ecuador: International Association for Bear Research and Management.Google Scholar
Allen, M. L., Norton, A. S., Stauffer, G., et al. (2018). A Bayesian state–space model using age-at-harvest data for estimating the population of black bears (Ursus americanus) in Wisconsin. Scientific Reports8: 1–12.Google Scholar
Ambarlı, H. & Bilgin, C. C. (2008). Human–brown bear conflicts in Artvin, northeastern Turkey: encounters, damage, and attitudes. Ursus19(2): 146–153.Google Scholar
Amstrup, S. C., McDonald, T. L. & Stirling, I.I. (2001). Polar bears in the Beaufort Sea: a 30-year mark–recapture case history. Journal of Agricultural, Biological, and Environmental Statistics6: 221–234.CrossRefGoogle Scholar
Animals Asia. (2011). Bear farming industry in China. Chengdu, China: Animals Asia Foundation.Google Scholar
Bargali, H. S., Akhtar, N. & Chauhan, M. P. S. (2005). Characteristics of sloth bear attacks and human casualties in North Balispur Forest Division, Chhattisgarh, India. Ursus16: 263–267.Google Scholar
Bargali, H.S., Akhtar, N. & Chauhan, M. P. S. (2012). The sloth bear activity and movement in highly fragmented and disturbed habitat in central India. World Journal of India7: 312–319.Google Scholar
Beier, L. R., Lewis, S. B., Flynn, R. W., et al. (2005). A single-catch snare to collect brown bear hair for genetic mark–recapture studies. Wildlife Society Bulletin33(2): 766–773.CrossRefGoogle Scholar
Belant, J. L., Etter, D. R., Mayhew, S. L., Visser, L. G. & Friedrich, P. D. (2011). Improving large-scale mark–recapture estimates for American black bear populations. Ursus22(1): 9–23.Google Scholar
Bellemain, E., Swenson, J. E., Tallon, D., et al. (2005). Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conservation Biology19(1): 150–161.Google Scholar
Bischof, R. & Swenson, J. E. (2012). Linking noninvasive genetic sampling and traditional monitoring to aid management of a trans-border carnivore population. Ecological Applications22: 361–373.Google Scholar
Boulanger, J., Kendall, K. C., Stetz, J. B., et al. (2008). Use of multiple data sources to improve DNA-based mark–recapture population estimates of grizzly bears. Ecological Applications18(3): 577–589.Google Scholar
Broadis, N. (2011). Evolving threats; lessons learnt from 15 years of bear protection in Cambodia. Oral presentation, 21st International Conference for Bear Research and Management, Delhi, India.Google Scholar
Brown, T. H., Simangunsong, B. C. H., Sukadri, D., et al. (2005). Restructuring and revitalization of Indonesia’s wood-based industry: Synthesis of three major studies. Jakarta: MoF-NRM-CIFOR-MFP-Forest Trends-ITTO.Google Scholar
Burgess, E. A., Stoner, S. S. & Foley, K. E. (2014). Brought to bear: An analysis of seizures across Asia (2000–2011). Petaling Jaya, Selangor, Malaysia: TRAFFIC Southeast Asia.Google Scholar
Burton, A. C., Neilson, E., Moreira, D., Ladle, A., et al. (2015). Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal Applied Ecology52(3): 675–685.Google Scholar
Can, O. E., D’Cruze, N., Garshelis, D., Beecham, J. & MacDonald, D. W. (2014). Resolving human–bear conflict: a global survey of countries, experts, and key factors. Conservation Letters7(6): 510–513.Google Scholar
Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology63(2): 215–244.Google Scholar
Chapron, G., Kaczensky, P., Linnell, J. D. C., et al. (2014). Successful recovery of large carnivores in Europe’s human-dominated landscapes. Science346(6216): 1517–1519.Google Scholar
Cherry, S., Haroldson, M. A., Robison-Cox, J. & Schwartz, C.C. (2002). Estimating total human-caused mortality from reported mortality using data from radio-instrumented grizzly bears. Ursus13: 175–184.Google Scholar
CITES. (2000). Trade in bear specimens. Eleventh meeting of the Conference of the Parties Gigiri (Kenya), April 10–20, 2000. Gigiri, Kenya.Google Scholar
Clapham, M., Miller, E. & Nguyen, M. (2018). Developing automated face recognition technology for non-invasive monitoring of brown bears (Ursus arctos). In: Skrbinšek, M. A. (Ed.), 26th International Conference on Bear Research and Management. University of Ljubljana, Abstract 237 (p. 22). Available from: https://lifewithbears.eu/book-of-abstracts/Google Scholar
Clark, T. W. (2002). The policy process. A practical guide for natural resource professionals. New Haven, CT: Yale University Press.Google Scholar
Clark, T. W. & Wallace, R. L. (1999). The professional in endangered species conservation: an introduction to standpoint clarification. Endangered Species Update16(1): 9–13.Google Scholar
Crête, M., Vandal, D., Rivest, L. P. & Potvin, F. (1991). Double counts in aerial surveys to estimate polar bear numbers during the ice-free period. Arctic44(4): 275–278.Google Scholar
Crudge, B., Lees, C., Hunt, M., et al. (2019). Range-wide Conservation Action Plan for the sun bear, Helarctos malayanus, 2018–2028. Gland: IUCN SSC Bear Specialist Group/Free the Bears/TRAFFIC.Google Scholar
Curran, L. M., Trigg, S. N., McDonald, A. K., et al. (2004). Lowland forest loss in protected areas of Indonesian Borneo. Science303: 1000–1003.Google Scholar
Czetwertynski, S., Boyce, M. S. & Schmiegelow, F. K. (2007). Effects of hunting on demographic parameters of American black bears. Ursus18: 1–17.Google Scholar
Danilov, P. & Tirronen, K. (2011). Large predators in the Russian North-West. In: Beiträge zur Jagd- und Wildforschung 36 Proceedings, April 7–10, 2011 (pp. 19–25). Camp Reinsehlen, Germany.Google Scholar
Debata, S., Swain, K. K., Sahu, H. K. & Palei, H. S. (2016). Human–sloth bear conflict in a human-dominated landscape of northern Odisha, India. Ursus27: 90–98.Google Scholar
Denali National Park. (2003). Bear–human conflict management plan, Denali National Park and Preserve. Center for Resources, Science, and Learning. US National Park Service.Google Scholar
Derocher, A. E. (2012). Polar bears: A complete guide to their biology and behavior. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Derocher, A., Aars, J. A., Amstrup, S. C., et al. (2013). Rapid ecosystem change and polar bear conservation. Conservation Letters6(5): 368–375.Google Scholar
Dressel, S., Sandström, C. & Ericsson, G. (2015). A meta-analysis of studies on attitudes toward bears and wolves across Europe 1976–2012. Conservation Biology29(2): 565–574.Google Scholar
Dutta, T. J., Maldanado, E., Panwar, H. S. & Seidensticker, J. (2015). Genetic variation, structure, and gene flow in a sloth bear (Melursus ursinus) metapopulation in the Satpura-Maikal landscape of central India. PLoS ONE10(5): e0123384.Google Scholar
Eberhardt, L. L. (2002). A paradigm for population analysis of long-lived vertebrates. Ecology83: 2841–2834.Google Scholar
EIA. (2015). Sin City: Illegal wildlife trade in Laos’ Golden Triangle Special Economic Zone. London, UK: EIA.Google Scholar
Elfström, M., Davey, M. L., Zedrosser, A., et al. (2014). Do Scandinavian brown bears approach settlements to obtain high-quality food?Biological Conservation178: 128–135.Google Scholar
Ervin, J. (2003). Protected area assessments in perspective. BioScience53(9): 819–822.CrossRefGoogle Scholar
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics34: 487–515.Google Scholar
Feng, Y., Siu, K., Wang, N., et al. (2009). Bear bile: dilemma of traditional medicinal use and animal protection. Journal of Ethnobiology and Ethnomedicine5: 2.CrossRefGoogle ScholarPubMed
Fieberg, J. R., Shertzer, K W., Conn, P. B., Noyce, K. V. & Garshelis, D. (2010). Integrated population modeling of black bears in Minnesota: implications for monitoring and management. PLoS ONE5(8): e12114. https://doi.org/10.1371/jjournal.pone 0012114Google Scholar
Foley, K. E., Stengel, C. J. & Shepherd, C. R. (2011). Pills, powders, vials and flakes: The bear bile trade in Asia. Petaling Jaya, Selangor, Malaysia: TRAFFIC Southeast Asia.Google Scholar
Fredriksson, G. (2005). Human–sun bear conflicts in east Kalimantan, Indonesian Borneo. Ursus16: 130–137.Google Scholar
Fredriksson, G., Wich, S. A. & Trisno, . (2006). Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia. Biological Journal of the Linnean Society89(3): 489–508.Google Scholar
Garshelis, D. (1997). The arrogance of ignorance – a commentary on the bear trade. International Bear News6: 4–6.Google Scholar
Garshelis, D. (2002). Misconceptions, ironies, and uncertainties regarding trends in bear population. Ursus13: 321–334.Google Scholar
Garshelis, D. (2009). Family Ursidae (bears). In: Wilson, D.E. & Mittermeier, R.A. (Eds.), Handbook of the mammals of the world. Vol. 1. Carnivores (pp. 448–497). Barcelona: Lynx Editions.Google Scholar
Garshelis, D. (2011). Andean bear density and abundance estimates – how reliable and useful are they?Ursus22(1): 47–64.Google Scholar
Garshelis, D. & Hristienko, H. (2006). State and provincial estimates of American black bear numbers versus assessments of population trend. Ursus17(1): 1–7.Google Scholar
Garshelis, D. & Visser, L. G. (1997). Enumerating megapopulations of wild bears using an integrated biomarker. Journal of Wildlife Management61(2): 466–480.Google Scholar
Garshelis, D., Joshi, A. R. & Smith, J. L. D. (1999a). Estimating density and relative abundance of sloth bears. Ursus11: 87–98.Google Scholar
Garshelis, D., Joshi, A. R., Smith, J. L. D. & Rice, C. G. (1999b). Sloth bear conservation action plan. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.), Status survey and conservation action plan: Bears (chapter 12). Gland, Switzerland and Cambridge, UK: IUCN/SSC Bear and Polar Bear Specialist Groups.Google Scholar
Garshelis, D., Gibeau, M. L. & Herrero, S. (2005). Grizzly bear demographics in and around Banff National Park and Kananaskis Country, Alberta. Journal of Wildlife Management69(1): 277–297.Google Scholar
Garshelis, D., Wang, H., Wang, D., et al. (2008). Do revised giant panda population estimates aid in their conservation?Ursus19: 168–176.Google Scholar
Gaston, K. J., Jackson, S. F., Cantu-Salazar, L. & Cruz-Pinon, G. (2008). The ecological performance of protected areas. Annual Review of Ecology, Evolution, and Systematics39: 93–113.CrossRefGoogle Scholar
Geist, V. (1995). North American policies of wildlife conservation. In: Geist, V. & McTaggert-Cowan, I. (Eds.), Wildlife conservation policy (pp. 75–129). Calgary: Detselig Enterprises Limited.Google Scholar
Geist, V., Mahoney, S. P. & Organ, J. F. (2001). Why hunting has defined the North American model of wildlife conservation. Transactions of the North American Wildlife and Natural Resources Conference66: 175–185.Google Scholar
Gibeau, M. L. (2012). Of bears, chess, and checkers: moving away from pure science to solve problems. The Wildlife Professional6: 62–64.Google Scholar
Glacier National Park. (2010). Bear management plan, Glacier National Park. US National Park Service.Google Scholar
Gong, J. E. & Harris, R. B. (2006). The status of bears in China: a country report. In: Japan Bear Network (Compiler), Understanding Asian bears to secure their future (pp. 96–101). Ibaraki, Japan: Japan Bear Network.Google Scholar
Gong, M., Guan, T., Hou, M., Liu, G. & Zhou, T. (2017). Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecology and Evolution7: 596–605.Google Scholar
Gosselin, J., Zedrosser, A., Swenson, J. E. & Peletier, F. (2014). The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proceedings of the Royal Society B282: 20141840. http://dx.doi.org/10.1098.rsph.2014.1840.Google Scholar
Gray, T. N. E., Lynam, A. J., Seng, T., et al. (2017). Wildlife-snaring crisis in Asian forests. Science355: 255–256.Google Scholar
Gunther, K. (Ed.). (2015). Grizzly bear recovery in the Yellowstone Ecosystem. Yellowstone Science23(2): 4–46.Google Scholar
Harris, R. B., Schwartz, C. C., Haroldson, M. A. & White, G. C. (2006). Trajectory of the Yellowstone grizzly bear population under alternative survival rates. In: Schwartz, C. C., Haroldson, M. A., White, G. C., et al.Temporal, spatial and environmental influences on the demographics of grizzly bears in the Greater Yellowstone Ecosystem (pp. 44–56). Wildlife Monographs 161.Google Scholar
Harrison, R. D. (2011). Emptying the forest: hunting and the extirpation of wildlife from tropical nature reserves. BioScience61: 919–924.Google Scholar
Hashimoto, Y., Kaji, M., Sawada, H. & Takasuki, S. (2003). Five-year study on the autumn food habits of the Asiatic black bear in relation to nut production. Ecological Research18(5): 485–482.Google Scholar
Hatter, I. W., Mowat, G. & McLellan, B. N. (2018). Statistical population reconstruction to evaluate grizzly bear trends in British Columbia, Canada. Ursus29(1): 1–12.Google Scholar
Heller, N. E. & Zaveleta, E. S. (2009). Biodiversity management in the face of climate change: a review of 11 years of recommendations. Biological Conservation142: 14–32.Google Scholar
Hertel, A. G., Steyaert, S. M. J. G., Zedrosser, A., et al. (2016). Bears and berries: species-species selection foraging on a patchily distributed food resource in a human-altered landscape. Behavioral Ecology and Sociobiology70(6): 931–842.Google Scholar
Hertel, A. G., Bischof, R., Langval, O., et al. (2018a). Berry production drives bottom-up effects on body mass and reproductive success in an omnivore. Oikos127: 197–207.Google Scholar
Hertel, A. G., Langval, O., Swenson, J. E., Kindberg, J. & Zedrosser, A. (2018b). Fluctuating mast production does not drive Scandinavian brown bear behavior. Journal of Wildlife Management83(4): 657–668. https://doi.org/10.1002/jwmg.21619Google Scholar
Hilderbrand, G. V., Schwartz, C. C., Robbins, C. T., et al. (1999). The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Canadian Journal of Zoology77(1): 132–138.Google Scholar
Hooker, M. J., Laufenberg, J. S., Ashley, A. K., Sylvest, J. T. & Chamberlain, M. J. (2015). Abundance and density estimation of the American black bear population in central Georgia. Journal of Wildlife Management26(2): 107–115.Google Scholar
Höss, M., Kohn, M., Pääbo, S., Knauer, F. & Schröder, W. (1992). Excrement analysis by PCR. Nature359: 199.Google Scholar
Housty, W. G., Noson, A., Scoville, G. W., et al. (2014). Grizzly bear monitoring by the Heiltsuk people as a crucible for First Nation conservation practice. Ecology and Society19(2): 70.Google Scholar
Huber, D., Jakšić, Z., Frković, A., et al. (2008a). Brown bear management plan for the Republic of Croatia. Zagreb, Croatia: Ministry of Agriculture, Forestry and Water Management, and Ministry of Culture.Google Scholar
Huber, D., Kusak, J., Majić-Skrbinšek, A., Majnarić, D. & Sindićić, M. (2008b). A multidimensional approach to managing the European brown bear in Croatia. Ursus19(1): 22–32.Google Scholar
Humm, J. M., McCowen, J. W., Scheick, B. K. & Clark, J. D. (2017). Spatially explicit population estimates for black bears based on cluster sampling. Journal of Wildlife Management81(7): 1187–1201. doi: 10.1002/jwmg.21294Google Scholar
IUCN. (2012). Resolutions and Recommendations World Conservation Congress, Jeju, Republic of Korea, September 6–15, 2012. IUCN SSC Bear Specialist Group.Google Scholar
John, D., Linnell, C., Trouwborst, A., et al. (2016). Border security fencing and wildlife: the end of the transboundary paradigm in Eurasia?PLoS Biology14(6): e1002483.Google Scholar
Jones, N. A., Shaw, S., Ross, H., Witt, K. & Pinner, B. (2016). The study of human values in understanding and managing social ecological systems. Ecology and Society21(1): 15.Google Scholar
Keay, J. A., Robbins, C. T. & Farley, S D. (2018). Characteristics of a naturally regulated grizzly bear population. Journal of Wildlife Management82(4): 789–801.Google Scholar
Kellert, S.R. (1994). Public attitudes toward bears and their conservation. International Conference on Bear Research and Management9(1): 43–50.Google Scholar
Kellert, S. R. (1996). The value of life: Biological diversity and human society. Washington, DC: Island Press.Google Scholar
Kendall, K. C., Stetz, J. B., Roon, D. A., et al. (2008). Grizzly bear density in Glacier National Park, Montana. Journal of Wildlife Management72(8): 1693–1705.Google Scholar
Kendall, K. C., Stetz, J. B., Boulanger, J., et al. (2009). Demography and genetic structure of a recovering grizzly bear population. Journal of Wildlife Management73(1): 3–16.Google Scholar
Kendall, K. C., Graves, T. A., Royle, J. A., et al. (2019). Using bear rub data and spatial capture–recapture models to estimate trend in a brown bear population. Scientific Reports9: 16804.Google Scholar
Keyghobadi, N. (2007). The genetic implications of habitat fragmentation for animals. Canadian Journal of Zoology85: 1049–1064.Google Scholar
Kindberg, J., Ericsson, G. & Swenson, J. E. (2009). Monitoring rare or elusive large mammals using effort-corrected voluntary observers. Biological Conservation142: 159–165.CrossRefGoogle Scholar
Kindberg, J., Swenson, J. E., Ericsson, G., et al. (2011). Estimating population size and trends of the Swedish brown bear Ursus arctos population. Wildlife Biology17(2): 114–123. doi: 10.2981/10-100Google Scholar
Knott, E. J., Bunnefeld, N., Huber, D., et al. (2014). The potential impacts of changes in bear hunting policy for hunting organizations in Croatia. European Journal of Wildlife Research60(1): 85–97.Google Scholar
Kolenosky, G. B. (1986). The effects of hunting on an Ontario black bear population. Bears: Their Biology and Management6: 45–55.Google Scholar
Krishnasamy, K. & Shepherd, C. (2014). A review of the sun bear trade in Sarawak, Malaysia. TRAFFIC Bulletin26: 37–40.Google Scholar
Krofel, M., Spacapan, M. & Jerina, K. (2017). Winter sleep with room service: denning behaviour of brown bears with access to anthropogenic food. Journal of Zoology302(1): 8–14.Google Scholar
Kusak, J., Huber, D., Gomerčić, T., Schwaderer, G. & Gužvica, G. (2009). The permeability of a highway in Gorski Kotar (Croatia) for large mammals. European Journal of Wildlife Research55: 7–21.Google Scholar
Lamb, C. T., Mowat, G., Reid, A., et al. (2018). Effects of habitat quality and access management on the density of a recovering grizzly bear population. Journal of Applied Ecology55(3): 1406–1417.Google Scholar
Lasswell, H. D. (1971). A preview of policy sciences. New York, NY: American Elsevier.Google Scholar
Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika33(3): 183–212.Google Scholar
Li, S., Tan, H. Y., Wang, N., et al. (2016). Substitutes for bear bile for the treatment of liver diseases: research progress and future perspective. Evidence-based Complementary and Alternative Medicine2016: 4305074. https://doi.org/10.1155/2016/4305074Google Scholar
Linnell, J. D. C., Swenson, J. E. & Andersen, R. (2001). Predators and people: conservation of large carnivores is possible at high human densities if management policy is favourable. Animal Conservation4(4): 345–349.CrossRefGoogle Scholar
Linnell, J., Salvatori, V. & Boitani, L. (2008). Guidelines for population level management plans for large carnivores in Europe: A Large Carnivore Initiative for Europe report prepared for the European Commission (contract 070501/2005/424162/MAR/B2).Google Scholar
Liu, F., McShea, W. J., Garshelis, D., et al. (2011). Human–wildlife conflicts influence attitudes but not necessarily behaviors: factors driving the poaching of bears in China. Biological Conservation144: 538–547. doi:10.1016/j.biocon.2010.10.009.Google Scholar
Liu, J., Hull, V., Yang, W., et al. (2016). Pandas and people: Coupling human and natural systems for sustainability. Oxford: Oxford University Press.Google Scholar
Livingstone, E. & Shepherd, C. R. (2014). Bear farms in Lao PDR expand illegally and fail to conserve wild bears. Oryx50: 1–9.Google Scholar
Loucks, C. J., Lu, Z., Dinerstein, E., et al. (2001). Giant pandas in a changing landscape. Science294: 1465.Google Scholar
Lunn, N. J., Servanty, S., Regehr, E. V., et al. (2016). Demography of an apex predator at the end of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecological Applications26(5): 1302–1320.Google Scholar
Mace, R. D., Waller, J. S., Manley, T. L., Lyon, L. J. & Zuring, H. (1996). Relationships among grizzly bears, roads, and habitat use in the Swan Mountains, Montana. Journal of Applied Ecology33(6): 1395–1404.Google Scholar
Mace, R. D., Carney, D. W., Chilton-Radandt, T., et al. (2012). Grizzly bear population vital rates and trend in the Northern Continental Divide Ecosystem, Montana. Journal of Wildlife Management76(1): 119–128.Google Scholar
Mahoney, S. P. (2004). The seven sisters: pillars of the North American wildlife conservation model. Bugle21: 5.Google Scholar
Malenfant, R. M., Davis, C. S., Cullingham, C. I. & Coltman, D. W. (2016). Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS ONE11(3): e0148967. doi:10.1371/journal.pone.0148967.Google Scholar
Manfredo, M. J., Teel, T. L., Sullivan, L. & Dietsch, A. M. (2017). Values, trust, and cultural backlash in conservation governance: the case of wildlife management in the United States. Biological Conservation214: 303–311.Google Scholar
Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. (2014). Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change4: 1–6.Google Scholar
Mattson, D. J. & Merrill, T. (2002). Extirpations of grizzly bears in the contiguous United States, 1850–2000. Conservation Biology16(4): 1123–1136.Google Scholar
Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. (2016). Biodiversity: the ravages of guns, nets, and bulldozers. Nature News536: 143–145.Google Scholar
McLaughlin, G. P., Primm, S. & Rutherford, M. B. (2005). Participatory projects for coexistence: rebuilding civil society. In: Clark, T. W., Rutherford, M. B. & Casey, D. (Eds.), Coexisting with large carnivores: Lessons from Greater Yellowstone (pp. 177–210). Washington, DC: Island Press.Google Scholar
McLellan, B. N. (2005). Sexually selected infanticide in grizzly bears: the effects of hunting on cub survival. Ursus16: 141–156.Google Scholar
McLellan, B. N. (2011). Implications of a high-energy and low-protein diet on the body composition, fitness, and competitive abilities of black (Ursus americanus) and grizzly (Ursus arctos) bears. Canadian Journal of Zoology89(6): 546–558.Google Scholar
McLellan, B. N. (2015). Some mechanisms underlying variation on vital rates on grizzly bear in an industrial landscape. Journal of Wildlife Management79(5): 749–765.Google Scholar
McLellan, B. N. & Hovey, F. W. (2001a). Habitats selected by grizzly bears in multiple use landscapes. Journal of Wildlife Management65(1): 92–99.Google Scholar
McLellan, B. N. & Hovey, F. W. (2001b). Natal dispersal of grizzly bears. Canadian Journal of Zoology79: 838–844.Google Scholar
McLellan, B. N., Hovey, F. W., Mace, R. D., et al. (1999). Rates and causes of grizzly bear mortality in the interior mountains of British Columbia, Alberta, Montana, Washington, and Idaho. Journal of Wildlife Management63(3): 911–920.Google Scholar
McLellan, B. N., Proctor, M. F., Huber, D. & Michel, S. (2016). Ursus arctos Brown bear. IUCN Red List of Threatened Species. www.iucnredlist.org.Google Scholar
McLellan, B. N., Mowat, G., Hamilton, T. & Hatter, I. (2017). Sustainability of the grizzly bear hunt in British Columbia, Canada. Journal of Wildlife Management81(2): 218–229.Google Scholar
McLellan, B. N., Mowat, G. & Lamb, C. T. (2018). Estimating unrecorded human-caused mortalities of grizzly bears in the Flathead Valley, British Columbia, Canada. PeerJ6: e5781.Google Scholar
Mealy, S. (1979 [revised 1986]). Guidelines for management involving grizzly bears in the Greater Yellowstone Area. US Forest Service and US National Park Service.Google Scholar
Meijaard, E., Sheil, D., Nasi, R., et al. (2005). Life after logging: Reconciling wildlife conservation and production forestry in Indonesian Borneo. Bogor, Indonesia: CIFOR and UNESCO.Google Scholar
Miettinen, J., Shi, C. & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology17: 2261–2270.Google Scholar
Mikle, N., Graves, T. A., Kovach, R., Kendall, K. C. & Macleod, A. (2016). Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore. Proceedings of the Royal Society B283(1839): 20161467.Google Scholar
Miller, S. D. (1990). Population management of bears in North America. International Conference on Bear Research and Management8: 357–373.Google Scholar
Miller, S. D. & Tutterrow, V. L. (1999). Characteristics of non-sport mortalities to brown and black bears and human injuries from bears in Alaska. Ursus11: 239–252.Google Scholar
Miller, S. D., White, G. C., Sellers, R. A., et al. (1997). Brown and black bear density estimation in Alaska using radio-telemetry and replicated mark–resight techniques. Wildlife Monographs133.Google Scholar
Miller, S. D., Sellers, R. A. & Keay, J. A. (2003). Effects of hunting on brown bear cub survival and litter size in Alaska. Ursus14: 130–152.Google Scholar
Miller, S. D., McLellan, B. N. & Derocher, A. E. (2013). Conservation and management of large carnivores in North America. In: Mahoney, S. P. (Ed.), Conservation and hunting in North America. The International Journal of Environmental Studies Monographs70(3), 383–398. http://dx.doi.org/10.1080/00207233.2013:806099.Google Scholar
Miller, S. D., Schoen, J. W. & Schwartz, C. C. (2017). Trends in brown bear reduction efforts in Alaska, 1980–2017. Ursus28(2): 135–149.Google Scholar
Mills, J. & Servheen, C. (1991). The Asian trade in bears and bear parts. Washington, DC: World Wildlife Fund.Google Scholar
Millspaugh, J. J., Skalski, J. R., Townsend, R. L., et al. (2010). An evaluation of sex–age–kill (SAK) model performance. Journal of Wildlife Management73(3): 442–451.Google Scholar
Mukesh, S., Sharma, L. K., Charoo, S. A. & Sathyakumar, S. (2015). Conflict bear translocation: investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India. PLoS ONE10(8): e0132005. https://doi.org/10.1371/journal.pone.0132005Google Scholar
Müller, A. & Kaji, K. (2018). Wildlife policy and laws in East Asia. In: Leopold, B. D., Kessler, W. B. & Cummins, J. L. (Eds.) North American Wildlife Policy and Laws (pp. 445–479). Missoula, MT: Boone and Crockett Club.Google Scholar
Murdiyarso, D., Dewi, S., Lawrence, D. & Seymour, F. (2011). Indonesia’s forest moratorium: a stepping stone to better forest governance? Working Paper 76. Bogor, Indonesia: CIFOR.Google Scholar
Naughton-Treves, L., Holland, M. B. & Brandon, K. (2005). The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annual Review of Environment and Resources30: 219–252.Google Scholar
Newton, E. & Obbard, M. E. (2018). Can population reconstruction be used to estimate black bear abundance in Ontario? Ontario Ministry of Natural Resources and Forestry, Science and Research Branch, Peterborough, ON. Science & Research Information Report IR-12. www.researchgate.net/publication/323956404Google Scholar
Ngoprasert, D., Reed, D. H., Steinmetz, R. & Gale, G. A. (2012). Density estimation of Asian bears using photographic capture–recapture sampling based on chest marks. Ursus23(2): 117–133.Google Scholar
Ngoprasert, D., Gale, G. A., Vichitsoonthonkul, T. & Vaeokhaw, S. (2015). Population demographics and genetics of Asiatic black bear and sun bear in the World Heritage Dong Phayayen–Khao Yai Forest Complex. Bangkok, Thailand: King Mongkut's University of Technology.Google Scholar
Nielsen, S. E., Herrero, S., Boyce, M. S., et al. (2004). Modeling the spatial distribution of human-caused grizzly bear mortalities in the Central Rockies Ecosystem of Canada. Biological Conservation120(1): 101–113.Google Scholar
Nomura, F., Higashi, S., Ambu, L. & Mohamed, M. (2004). Notes on oil palm plantation use and seasonal spatial relationships of sun bears in Sabah, Malaysia. Ursus15(2): 227–231.Google Scholar
Obbard, M. E., Cattet, M. R. L., Moody, T., et al. (2006). Temporal trends in the body condition of southern Hudson Bay polar bears. Climate Change Research Information Note #3. Ontario: Applied Research and Development Branch.Google Scholar
Obbard, M. E., Howe, E. J., Wall, L. L., et al. (2014). Relationships among food availability, harvest, and human–bear conflict at landscape scales in Ontario, Canada. Ursus25(2): 98–110.Google Scholar
Obbard, M. E., Stapleton, S., Middel, K.R., et al. (2015). Estimating the abundance of the Southern Hudson Bay polar bear subpopulation with aerial surveys. Polar Biology38: 1713–1725.Google Scholar
Oi, T. & Yamazaki, K. (Eds.). (2009). The status of Asiatic black bears in Japan. In: Understanding Asian bears to secure their future (pp. 122–133). Ibaraki, Japan: Japan Bear Network.Google Scholar
Ordiz, A., Rodríguez, C., Naves, C., et al. (2007). Distance-based criteria to identify minimum number of brown bear females with cubs in Europe. Ursus18: 158–167.Google Scholar
Ordiz, A., Kindberg, J., Sæbø, S., Swenson, J. E. & Støen, O.-G. (2014). Brown bear circadian behavior reveals human environmental encroachment. Biological Conservation173: 1–9.Google Scholar
Organ, J. F., Geist, V., Mahoney, S. P., et al. (2012). The North American model of wildlife conservation. The Wildlife Society Technical Review 12-04. Bethesda, MD: The Wildlife Society.Google Scholar
Paetkau, D. (2003). An empirical exploration of data quality in DNA-based population inventories. Molecular Ecology12(6): 1375–1387.Google Scholar
Paetkau, D.Amstrup, S. C., Born, E. W., et al. (1999). Genetic structure of the world’s polar bear populations. Molecular Ecology8: 1571–1584.Google Scholar
Parques Nacionales Naturales de Colombia & Wildlife Conservation Society. (2018). Estrategia para la Conservación del Oso Andino en los Parques Nacionales Naturales de Colombia (2016–2031). Bogotá D.C.Google Scholar
Peacock, E., Sonsthagen, S. A., Obbard, M. L., et al. (2015). Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS ONE DOI:10.1371/journal.pone.011202.Google Scholar
Peck, C. P., Van Manen, F. T., Costello, C., et al. (2017). Potential paths for male-mediated gene flow to and from an isolated grizzly bear population. Ecosphere8(10): e0196. doi.org/10.1002/ecs2.1969.Google Scholar
Pelton, M. R. (2003). Black bear, Ursus americanus. In: Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. (Eds.), Wild mammals of North America (2nd edition, pp. 547–555). Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Penteriani, V., Melletti, M. & Delgado, M. M. (2010). Don’t feed the bears!Oryx44: 169–170.Google Scholar
Penteriani, V., Lopez-Bao, J. V., Bettega, C., et al. (2017). Consequences of brown bear tourism: a review. Biological Conservation206: 169–180.Google Scholar
Penteriani, V., Delgado, M. M., Krofel, M., et al. (2018). Evolutionary and ecological traps for brown bears in human-modified landscapes. Mammal Review48: 180–193.Google Scholar
Penteriani, V., Zarzo‐Arias, A., Novo‐Fernández, A, Bombieri, G. & López‐Sánchez, C. A. (2019). Responses of an endangered brown bear population to climate change based on predictable food resource and shelter alterations. Global Change Biology25: 1133–1151.Google Scholar
Pereira, H. M., Leadley, P. W., Proença, V., et al. (2010). Scenarios for global biodiversity in the 21st century. Science330(6010): 1496–1501. doi:10.1126/science.1196624Google Scholar
Peterson, N. N. & Nelson, M. P. (2016). Why the North American model for wildlife conservation is problematic for modern wildlife management. Human Dimensions of Wildlife22(1): 43–54.Google Scholar
Pierson, J. C., Graves, T. A., Banks, S. C., Kendall, K. C. & Lindenmayer, D.B. (2018). Relationship between effective and demographic population size in continuously distributed populations. Evolutionary Applications11(7): 1162–1175.Google Scholar
Prestrud, P. & Stirling, I. (1994). The International Polar Bear Agreement and the current status of polar bear conservation. Aquatic Mammals20: 113–124.Google Scholar
Pritchard, G. T. & Robbins, C. T. (1990). Digestive and metabolic efficiencies of grizzly and black bears. Canadian Journal of Zoology68(8): 1645–1651.Google Scholar
Proctor, M. F., McLellan, B. N., Strobeck, C. & Barclay, R. (2004). Gender specific dispersal distances of grizzly bears estimated by genetic analysis. Canadian Journal of Zoology82: 1108–1118.Google Scholar
Proctor, M. F., McLellan, B. N., Strobeck, C. & Barclay, R. (2005). Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations. Proceedings of the Royal Society, London B272: 2409–2416.Google Scholar
Proctor, M. F., McLellan, B. N., Boulanger, J., et al. (2010). Ecological investigations of grizzly bears in Canada using DNA from hair, 1995–2005. Ursus21(2): 169–188.Google Scholar
Proctor, M. F., Paetkau, D., McLellan, B. N., et al. (2012). Population fragmentation and inter-ecosystem movements of grizzly bears in western Canada and the northern United States. Wildlife Monographs180: 1–46.Google Scholar
Proctor, M. F., Lamb, C. T. & MacHutchon, A. G. (2017). The grizzly dance of berries and bullets: The relationship between bottom up food resources, huckleberries, and top down mortality risk on grizzly bear population processes in southeast British Columbia. Kaslo, BC, Canada: Trans-border Grizzly Bear Project. Available from http://transbordergrizzlybearproject.ca/research/publications.html.Google Scholar
Proctor, M. F., McLellan, B. N., Stenhouse, G. B., et al. (2018a). Resource roads and grizzly bears in British Columbia, and Alberta. Canadian Grizzly Bear Management Series, Resource Road Management. Kaslo, BC, Canada: Trans-border Grizzly Bear Project. Available from http://transbordergrizzlybearproject.ca/research/publications.html.Google Scholar
Proctor, M. F., Kasworm, W. F., Annis, K. M., et al. (2018b). Conservation of threatened Canada–USA trans-border grizzly bears linked to comprehensive conflict reduction. Human Wildlife Interactions12(3): 348–372.Google Scholar
Proctor, M. F., Kasworm, W. F., Teisberg, J. E., et al. (2020a). American black bear population fragmentation detected with pedigrees in the transborder Canada–United States region. Ursus2020(31e1): 1–15.Google Scholar
Proctor, M. F., McLellan, B. N., Stenhouse, G. B., et al. (2020b). The effects of roads and motorized human access on grizzly bear populations in British Columbia and Alberta, Canada. Ursus2019(30e2): 16–39.Google Scholar
Ratnayeke, S., van Manen, F. T., Pieris, R. & Praga, V. S. J. (2007). Landscape characteristics of sloth bear ranges in Sri Lanka. Ursus18: 189–202.Google Scholar
Ratnayeke, S., van Manen, F. T., Pieris, R. & Praga, V. S. J. (2014). Challenges of large carnivore conservation: sloth bear attacks in Sri Lanka. Human Ecology42: 467–479.Google Scholar
Redpath, S., Linnell, J. C. D., Festa-Bianchet, M., et al. (2017). Don’t forget to look down – collaborative approaches to predator conservation. Biological Reviews92(4): 2157–2163.Google Scholar
Regehr, E. V., Wilson, R. R., Rode, K. D., Runge, M. C. & Stern, H. (2017). Harvesting wildlife affected by climate change: a modelling and management approach for polar bears. Journal Applied Ecology54: 1534–1543.Google Scholar
Regehr, E. V., Hostetter, N. J., Wilson, R. R., et al. (2018). Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Scientific Reports8: 1–12.Google Scholar
Reljić, S., Jerina, K., Nilsen, E. B., et al. (2018). Challenges for transboundary management of a European brown bear population. Global Ecology and Conservation, 16: e00488. https://doi.org/10.1016/j.gecco.2018.e00488.Google Scholar
Rios-Uzeda, B. & Wallace, R. B. (2007). A preliminary density estimate for Andean bear using camera-trapping methods. Ursus18(1): 124–128.Google Scholar
Robbins, C. T., Ben-David, M., Fortin, J. K. & Nelson, O. L. (2012). Maternal condition determines birth date and growth of newborn bear cubs. Journal of Mammalogy93(2): 540–546.Google Scholar
Rolston, H. (1988). Human values and natural systems. Society and Natural Resources1(1): 271–283.Google Scholar
Royle, J., Chandler, A. B., Sollmann, R. & Gardner, B. (2014). Spatial capture–Recapture. Waltham, MA: Elsevier Academic Press.Google Scholar
Rutherford, M. B. & Clark, T. W. (2005). Coexisting with large carnivores: lessons from Greater Yellowstone. In: Clark, T. W., Rutherford, M. B. & Casey, D. (Eds.), Coexisting with large carnivores: Lessons from Greater Yellowstone (pp. 254–270). Washington, DC: Island Press.Google Scholar
Rutherford, M. B., Gibeau, M. L., Clark, S. G. & Chamberlain, E. C. (2009). Interdisciplinary problem solving workshops for grizzly bear conservation in Banff National Park, Canada. Policy Sciences42(2): 163–187.Google Scholar
Ryan, C. W., Pack, J. C., Igo, W. K. & Billings, A. (2007). Influence of mast production on black bear non-hunting mortalities in West Virginia. Ursus16(1): 46–53.Google Scholar
Sæther, B. E., Engen, S., Swenson, J. E., Bakke, Ø. & Sandegren, F. (1998). Assessing the viability of Scandinavian brown bear, Ursus arctos, populations: the effects of uncertain parameter estimates. Oikos83(2): 403–416.Google Scholar
Sathyakumar, S, Kaul, R., Ashraf, N. V. K., Mookerjee, A. & Menon, V. (2012). National bear conservation and welfare action plan. India: Ministry of Environment and Forests, Wildlife Institute of India and Wildlife Trust of India.Google Scholar
Schmidt, J. H., Rattenbury, K. L., Robison, H. L., Gorn, T. S. & Shults, B. S. (2017a). Using non-invasive mark–resight and sign occupancy surveys to monitor low-density brown bear populations across large landscapes. Biological Conservation207: 47–54.Google Scholar
Schmidt, J. H., Wilson, T. L., Thompson, W. L. & Reynolds, J. H. (2017b). Improving inference for aerial surveys of bears: the importance of assumptions and the cost of unnecessary complexity. Ecology and Evolution7(13): 4812–4821. https://doi:10.1002/ece3.2912.Google Scholar
Schwartz, C. C., Haroldson, M. A., Gunther, K. A. & Moody, D. (2002). Distribution of grizzly bears in the greater Yellowstone Ecosystem, 1990–2000. Ursus13: 203–212.Google Scholar
Schwartz, C. C., Miller, S. D. & Haroldson, M. A. (2003). Grizzly bear. In: Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. (Eds.), Wild mammals of North America: Biology, management, and conservation (2nd edition, pp. 556–586). Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Schwartz, C. C., Haroldson, M. A., White, G. C., et al. (2006). Temporal, spatial, and environmental influences on the demographics of grizzly bears in the Greater Yellowstone Ecosystem. Wildlife Monographs161.Google Scholar
Schwartz, C. C., Haroldson, M. A. & White, G. C. (2010). Hazards affecting grizzly bear survival in the greater Yellowstone ecosystem. Journal of Wildlife Management74(4): 654–667.Google Scholar
Schwartz, C. C., Fortin, J. K., Teisberg, J. E., et al. (2014). Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem. Journal of Wildlife Management78(1): 68–78.Google Scholar
Scotson, L., Vannachomchan, K. & Sharp, T. (2014). More valuable dead then deterred? Crop-raiding bears in Lao PDR. Wildlife Society Bulletin38: 783–790.Google Scholar
Scotson, L., Fredriksson, G., Ngoprasert, D., Wong, W. M. & Fieberg, J. (2017a). Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data. PLoS ONE12(9): e0185336. https://doi.org/10.1371/journal.pone.0185336.Google Scholar
Scott, J. M., Goble, D. D., Wiens, J. A., et al. (2005) Recovery of imperiled species under the Endangered Species Act: the need for a new approach. Frontiers in Ecology and the Environment3(7): 383–389.Google Scholar
Scott, J. M., Goble, D. D., Haines, A. M., Weins, J. A. & Neel, M. C. (2010). Conservation reliant species and the future of conservation. Conservation Letters3(2): 91–97.Google Scholar
Seber, G. A. F. (1982). The estimation of animal abundance. London: Charles Griffin.Google Scholar
Selva, N., Berezowska-Cnota, T. & Elguero-Claramunt, I. (2014). Unforeseen effects of supplementary feeding: ungulate baiting sites as hotspots for ground-nest predation. PLoS ONE9(3): e90740. https://doi.org/10.1371/journal.pone.0090740Google Scholar
Servheen, C. (1990). The status and conservation of the bears of the world. International Association for Bear Research and Management, Monograph #2.Google Scholar
Servheen, C. (1998). Conservation of small bear populations through strategic planning. Ursus10: 67–73.Google Scholar
Servheen, C. & Mills, J. (1991). The trade in bears and bear parts. International Conference on Bear Research and Management9: 161–167.Google Scholar
Servheen, C., Herrero, S. & Peyton, B. (Eds). (1999). Bears: Status survey and conservation action plan. Gland, Switzerland and Cambridge, UK: IUCN/SSC Bear and Polar Bear Specialist Goups.Google Scholar
Servicio Nacional de Areas Naturales Protegidas por el Estado, Gobierno Regional del Cusco, Wildlife Conservation Society, INKATERRA. (2014). Estrategia para la Conservación del Oso Andino en el Santuario Histórico de Machupicchu y el Área de Conservación Regional Choquequirao. Lima, Perú.Google Scholar
Sharma, S., Dutta, T., Maldonado, J. F., et al. (2013). Forest corridors maintain historic gene flow in a tiger metapopulation in the highlands of central India. Proceedings of the Royal Society280: 20131506.Google Scholar
Shepherd, C. R. & Shepherd, L. A. (2010). The poaching and trade of Malayan sun bears in peninsular Malaysia. Traffic Bulletin23: 68.Google Scholar
Singh, N., Sonone, S. & Dharaiya, N. (2018). Sloth bear attacks on humans in central India: implications for species conservation. Human–Wildlife Interactions12(3): 338–347. https://doi.org/10.26077/2mgq-fs29Google Scholar
Skalski, J. R., Millspaugh, J. J. & Clawson, M. V. (2012). Comparison of statistical population reconstruction using full and pooled adult age-class data. PLoS ONE7(3):e33910. https://doi.org/10.1371/journal.pone 0033910.Google Scholar
Skrbinšek, T., Jelenčič, M., Luštrik, R., et al. (2018). Using laboratory robotics, high-throughput sequencing and sampling with volunteers for quick and cost-effective large-scale genetic estimates of brown bear population size – transboundary case study in Slovenia. In: Skrbinšek, M. A. (Ed.), 26th International Conference on Bear Research and Management. University of Ljubljana, Abstract 211 (p. 76). Available from https://lifewithbears.eu/book-of-abstracts/Google Scholar
Skuban, M., Findo, S. & Kajba, M. (2016). Human impacts on bear feeding habits and habitat selection in the Poľana Mountains, Slovakia. European Journal of Wildlife Research62(3): 353–364.Google Scholar
Soulé, M. E. (1985). What is conservation biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. Bioscience35: 727–734.Google Scholar
Soulé, M. E. (1986). Conservation biology: The science of scarcity and diversity. Sunderland, MA: Sinauer Associates.Google Scholar
Stapleton, S., Atkinson, S., Hedman, D. & Garshelis, D. (2014). Revisiting Western Hudson Bay using aerial surveys to update polar bear abundance in a sentinel population. Biological Conservation170: 38–47.Google Scholar
Stapleton, S., Peacock, E. & Garshelis, D. (2015). Aerial surveys suggest long-term stability in the seasonally ice-free Foxe Basin (Nunavut) polar bear population. Marine Mammal Science32(1): 181–201. https://doi.org/10.1111/mms.12251.Google Scholar
Steinmetz, R. & Garshelis, D. (2008). Distinguishing Asiatic black bears and sun bears by claw marks on climbed trees. Journal of Wildlife Management72(3): 814–821.Google Scholar
Stenhouse, G. B., Boulanger, J., Efford, M., et al. (2015). Estimates of grizzly bear population size and density for the 2014 Alberta Yellowhead Population Unit (BMA 3) and south Jasper National Park Inventory Project. Report prepared for Weyerhaeuser Ltd., West Fraser Mills Ltd., Alberta Environment and Parks, and Jasper National Park. Available from https://friresearch.ca/resource/estimates-grizzly-bear-population-size-and-density-final-report.Google Scholar
Stenset, N. E., Lutnæs, P. N., Bjarnadóttir, V., et al. (2016). Seasonal and annual variation in the diet of brown bears (Ursus arctos) in the boreal forest of southcentral Sweden. Wildlife Biology22(3): 107–116.Google Scholar
Stetz, J. B., Kendall, K. C. & Servheen, C. (2010). Evaluation of bear rub surveys to monitor grizzly bear population trends. Journal of Wildlife Management74(4): 860–870.Google Scholar
Stetz, J. B., Kendall, K. C. & Macleod, A. C. (2014). Black bear density in Glacier National Park, Montana. Wildlife Society Bulletin38(1): 60–70.Google Scholar
Steyaert, S. M. J. G., Zedrosser, A., Elfstrom, M., et al. (2016). Ecological implication from spatial patterns in human-caused brown bear mortality. Wildlife Biology22(4): 144–152.Google Scholar
Stirling, I., Lunn, N. J. & Iacozza, J. (1999). Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climate change. Arctic52(3): 294–306.Google Scholar
Stirling, I., McDonald, T. L., Richardson, E. S., Regehr, E. V. & Amstrup, S. C. (2011). Polar bear population status in the northern Beaufort Sea, Canada 1971–2006. Ecological Applications21(3): 859–876.Google Scholar
Stringham, S. F. (1980). Possible impacts of hunting on the grizzly/brown bear, a threatened species. International Conference on Bear Research and Management5: 140–151.Google Scholar
Swaisgood, R., Wang, D. & Wei, F. (2018). Panda downlisted but not out of the woods. Conservation Letters11: 1–9.Google Scholar
Swenson, J. E. (2003). Implications of sexually selected infanticide for hunting of large carnivores. In: Festa-Bianchet, M. & Apollonio, M. (Eds.), Animal behaviour and wildlife conservation (pp. 171–190). Covelo, CA: Island Press.Google Scholar
Swenson, J. E., Wabakken, P., Sandegren, F., et al. (1995). The near extinction and recovery of brown bears in Scandinavia in relation to the bear management policies of Norway and Sweden. Wildlife Biology1(1): 11–25.Google Scholar
Swenson, J.E., Sandegren, F., Soderberg, A., et al. (1997). Infanticide caused by hunting of male bears. Nature386: 450–451.Google Scholar
Swenson, J. E., Jansson, A., Riig, R. & Sandegren, F. (1999). Bears and ants: myrmecophagy by brown bears in central Scandinavia. Canadian Journal of Zoology77(4): 551–561.Google Scholar
Swenson, J. E., Schneider, M., Zedrosser, A., et al. (2017). Challenges of managing a European brown bear population; lessons from Sweden, 1943–2013. Wildlife Biology2017(4): 1–13. wlb.00251Google Scholar
Taberlet, P. & Bouvet, J. (1992). Bear conservation genetics. Nature358: 197.Google Scholar
Taberlet, P., Griffin, S., Goossens, B., et al. (1996). Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research26: 3189–3194.Google Scholar
Taylor, M., DeMaster, D., Bunnell, F. L. & Schweinsburg, R. (1987). Modeling the sustainable harvest of female polar bears. Journal of Wildlife Management51: 811–820.Google Scholar
Tirronen, K. F., Panchenko, D. V. & Kusnecova, A. S. (2015). Brown bear (Ursus arctos L.) of the white sea of the Kola Peninsula. The Herald of Game Management12(2): 125–136.Google Scholar
Togawa, K. & Sakamoto, M. (2002). Bear markets: Japan, a summary of the findings of: “Japan’s illegal trade in bear products: A threat to bears worldwide”. Tokyo: Japan Wildlife Conservation Society.Google Scholar
Tumbelaka, L. & Fredriksson, G. M. (2006). The status of sun bears in Indonesia (pp. 73–78). Ibaraki, Japan: Japan Bear Network.Google Scholar
Tumendembergi, O., Proctor, M., Reynolds, H., et al. (2015). Gobi bear abundance and inter-oases movements, Gobi Desert, Mongolia. Ursus26(2): 129–142.Google Scholar
US Fish and Wildlife Service. (2016). National Survey of Fishing, Hunting, and Wildlife-Associated Recreation. Washington, DC: US Fish and Wildlife Service.Google Scholar
van Manen, F. T., Haroldson, M. A., Bjornlie, D. D., et al. (2016). Density dependence, whitebark pine, and vital rates of grizzly bears. Journal of Wildlife Management80(2): 300–313.Google Scholar
van Manen, F. T., Haroldson, M. A. & Karabensh, B. E. (Eds.). (2018). Yellowstone Grizzly Bear investigations: Annual report of the Interagency Grizzly Bear Study Team 2017. US Department of the Interior, US Geological Survey.Google Scholar
Velez-Liendo, X. & Garcia-Rangel, S. (2017). Tremarctos ornatus. IUCN Red List of Threatened Species. www.iucnredlist.org.Google Scholar
Viteri, M. P. (2007). Conservation genetics of Andean bears (Tremarctos ornatus) in northeastern Ecuador: molecular tools, genetic diversity and population size. PhD dissertation, University of Idaho, Moscow, Idaho, USA.Google Scholar
Walsh, P., Reynolds, J., Collins, G., et al. (2010). Application of a double-observer aerial land-transect method to estimate brown bear population density in southwestern Alaska. Journal Fish and Wildlife Management1(1): 47–58.Google Scholar
Wang, F., McShea, W. J., Wang, D., et al. (2014). Evaluating landscape options for corridor restoration between giant panda reserves. PLoS ONE9: e105086. doi:10.1371/journal.pone.0105086.Google Scholar
Wang, F., McShea, W. J., Wang, D. & Li, S. (2015). Shared resources between giant panda and sympatric wild and domestic mammals. Biological Conservation186: 319–325.Google Scholar
Wasser, S. K., Davenport, B., Ramage, E. R., et al. (2004). Scat detection dogs in wildlife research and management: application to grizzly and black bears in the Yellowhead Ecosystem, Alberta, Canada. Canadian Journal of Zoology82(3): 475–492. doi:10.1139/Z04-020.Google Scholar
Wei, F., Swaisgood, R., Hu, Y., et al. (2015). Progress in the ecology and conservation of giant pandas. Conservation Biology29: 1497–1507.Google Scholar
Wei, W., Swaisgood, R., Dai, Q., et al. (2018). Giant panda distributional and habitat-use shifts in a changing landscape. Conservation Letters11: e12575. https://doi.org/10.llll/conl.12575.Google Scholar
Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. (1998). Quantifying threats to imperiled species in the United States. BioScience48(8): 607–615.Google Scholar
Wilson, S. M., Neudecker, G. A. & Jonkel, J. J. (2014). Human–grizzly bear coexistence in the Blackfoot River Watershed, Montana: getting ahead of the conflict curve. In: Clark, S.G. & Rutherford, M. B. (Eds.), Large carnivore conservation: Integrating science and policy in the North American west (pp. 177–213). Chicago, IL: University of Chicago Press.Google Scholar
Woodroffe, R. (2000). Predators and people: using human densities to interpret declines of large carnivores. Animal Conservation3(2): 165–173.Google Scholar
Wong, S. T., Servheen, C., Ambu, L. & Norhayati, A. (2005). Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. Journal of Tropical Ecology21(6): 627–639.Google Scholar
Wong, W. M. & Linkie, M. (2013). Managing sun bears in a changing tropical landscape. Diversity and Distributions19: 700–709.Google Scholar
Wong, W. M., Leader-Williams, N. & Linke, M. (2013). Quantifying changes in sun bear distribution and their forest habitat in Sumatra. Animal Conservation16(2): 216–223.Google Scholar
Woodroffe, R. & Ginsberg, J. R. (1998). Edge effects and the extinction of populations inside protected areas. Science280(5372): 2126–2128.Google Scholar
Woods, J. G., Paetkau, D., Lewis, D., et al. (1999). Genetic tagging of free-ranging black and brown bears. Wildlife Society Bulletin27(3): 616–627.Google Scholar
World Animal Protection. (2017). Ending bear bile farming in South Korea. London, UK: World Animal Protection.Google Scholar
WWF. (2018). Living Planet Report – 2018: Aiming higher. Grooten, M. & Almond, R. E. A. (Eds.). Gland, Switzerland: WWF.Google Scholar
Yoganand, K., Rice, C. G., Johnsingh, A. J. T. & Seidensticker, J. (2006). Is the sloth bear in India secure? A preliminary report on distribution, threats and conservation requirements. Journal of the Bombay Natural History Society103(2–3): 172–181.Google Scholar
Zedrosser, A., Steyaert, S., Swenson, J. E. & Gossow, H. (2011). Brown bear conservation and the ghost of persecution past. Biological Conservation144(9): 2163–2170.Google Scholar
Zhan, X., Ling, M., Zhang, Z., et al. (2006). Molecular censusing doubles giant panda population estimate in a key nature reserve. Current Biology16(12): R451–R452Google Scholar
Zhan, X., Tao, Y., Li, M., et al. (2009). Accurate population size estimates are vital parameters for conserving the giant panda. Ursus20(1): 56–62.Google Scholar
Ziegltrum, G. J. (2004). Efficacy of black bear supplemental feeding to reduce conifer damage in western Washington. Journal of Wildlife Management. 68(3): 470–474.Google Scholar
References
Allen, M. R. & Stocker, T. F. (2014). Impact of delay in reducing carbon dioxide emissions. Nature Climate Change4(1): 23–26.Google Scholar
Amstrup, S. C., Marcot, B. G. & Douglas, D. C. (2008). A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears. In: DeWeaver, E. T., Bitz, C. M. & Tremblay, L.-B. (Eds.), Arctic sea ice decline: Observations, projections, mechanisms, and implications. Geophysical Monograph 180 (pp. 213–268). Washington DC: American Geophysical Union.Google Scholar
Amstrup, S. C., DeWeaver, E. T., Douglas, D. C., et al. (2010). Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature468(7326): 955–958.Google Scholar
Araújo, M. B. & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution22(1): 42–47.Google Scholar
Atwood, T. C., Peacock, E., McKinney, M. A., et al. (2016a). Rapid environmental change drives increased land use by an arctic marine predator. PLoS ONE11(6): e0155932.Google Scholar
Atwood, T. C., Marcot, B. G., Douglas, D. C., et al. (2016b). Forecasting the relative influence of environmental and anthropogenic stressors on polar bears. Ecosphere7(6): e01370.Google Scholar
Atwood, T. C., Duncan, C., Patyk, K. A., et al. (2017a). Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Scientific Reports7(1): 13193.Google Scholar
Atwood, T. C., Simac, K. S., Breck, S., York, G. & Wilder, J. (2017b). Human–polar bear interactions in a changing Arctic: existing and emerging concerns. Animal Welfare Series17: 397–418.Google Scholar
Barnosky, A. D., Hadly, E. A. & Bell, C. J. (2003). Mammalian response to global warming on varied temporal scales. Journal of Mammalogy84(2): 354–368.Google Scholar
Bromaghin, J. F., McDonald, T. L., Stirling, I., et al. (2015). Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecological Applications25(3): 634–651.Google Scholar
Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. (2010). Uncertainty in ensemble forecasting of species distribution. Global Change Biology16(4): 1145–1157.Google Scholar
Carter, J., Ackleh, A. S., Leonard, B. P. & Wang, H. (1999). Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideaen) life history: a structured population approach to examining carrying capacity when the prey are semelparous. Ecological Modelling123(2): 207–223.Google Scholar
Castro de la Guardia, L., Derocher, A. E., Myers, P. G., Terwisscha van Scheltinga, A. D. & Lunn, N. J. (2013). Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century. Global Change Biology19(9): 2675–2687.Google Scholar
Cherry, S. G., Derocher, A. E., Thiemann, G. W. & Lunn, N. J. (2013). Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. The Journal of Animal Ecology82(4): 912–921.Google Scholar
Collins, M., Knutti, R., Arblaster, J., et al. (2013). Long-term climate change: projections, commitments and irreversibility. In: IPCC (Ed.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1029–1136). Cambridge: Cambridge University Press.Google Scholar
Derocher, A. E., Stirling, I. & Andriashek, D. (1992). Pregnancy rates and serum progesterone levels of polar bears in western Hudson Bay. Canadian Journal of Zoology70(3): 561–566.Google Scholar
Diniz-Filho, J. A. F., Bini, L. M., Rangel, T. F., et al. (2009). Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography32(6): 897–906.Google Scholar
Douglas, D. C. & Atwood, T. C. (2017). Uncertainties in forecasting the response of polar bears to global climate change. In: Butterworth, A. (Ed.), Marine mammal welfare (pp. 463–473). Cham: Springer.Google Scholar
Durner, G. M., Douglas, D. C., Nielson, R. M., et al. (2009). Predicting 21st-century polar bear habitat distribution from global climate models. Ecological Monographs79(1): 25–58.Google Scholar
Durner, G. M., Douglas, D. C., Albeke, S. E., et al. (2017). Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Global Change Biology23(9): 3460–3473.Google Scholar
Durner, G. M., Laidre, K. L. & York, G. S. (2018). Polar bears: proceedings of the 18th working meeting of the IUCN/SSC Polar Bear Specialist Group, Anchorage, Alaska, June 7–11, 2016. Retrieved from https://portals.iucn.org/library/node/47667.Google Scholar
Fan, J., Li, J., Xia, R., et al. (2014). Assessing the impact of climate change on the habitat distribution of the giant panda in the Qinling Mountains of China. Ecological Modelling274: 12–20.Google Scholar
Feng, W. H. (1991). The collection of research papers on Giant Panda. Journal of Sichuan University3: 7–13 [in Chinese].Google Scholar
Gautier, D. L., Bird, K. J., Charpentier, R. R., et al. (2009). Assessment of undiscovered oil and gas in the Arctic. Science324(5931): 1175–1179.Google Scholar
Gong, M., Guan, T., Hou, M., Liu, G. & Zhou, T. (2016). Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecology and Evolution7(2): 596–605.Google Scholar
Guralnick, R. (2006). The legacy of past climate and landscape change on species’ current experienced climate and elevation ranges across latitude: a multispecies study utilizing mammals in western North America. Global Ecology and Biogeography15(5): 505–518.Google Scholar
Hamilton, S. G., de la Guardia, L. C., Derocher, A. E., et al. (2014). Projected polar bear sea ice habitat in the Canadian Arctic Archipelago. PLoS ONE9(11): e113746.Google Scholar
Hansen, R. L., Carr, M. M., Apanavicius, C. J., et al. (2010). Seasonal shifts in giant panda feeding behavior: relationships to bamboo plant part consumption. Zoo Biology29(4): 470–483.Google Scholar
Harris, R., Garshelis, D., McShea, W. J. & Wang, D. (2014). Introduction. In: McShea, W. J., Garshelis, D., Harris, R., et al. (Eds.), A chance for lasting survival: Ecology and behavior of wild giant pandas (pp. 1–25). Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Heikkinen, R. K., Luoto, M., Araújo, M. B., et al. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography: Earth and Environment30(6): 751–777.Google Scholar
Huang, Q., Sauer, J. R. & Dubayah, R. O. (2017). Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Global Change Biology23(9): 3610–3622.Google Scholar
Huang, Q., Fleming, C. H., Robb, B., Lothspeich, A. & Songer, M. (2018). How different are species distribution model predictions? – Application of a new measure of dissimilarity and level of significance to giant panda Ailuropoda melanoleuca. Ecological Informatics46: 114–124.Google Scholar
IPCC. (2007). Summary for policymakers. In: Parry, M., Canziani, O., Palutikof, J., van der Linden, P. & Hanson, C. (Eds.), Climate Change 2007: Impacts, Adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
IPCC. (2014). Summary for policymakers. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y.et al. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
IPCC. (2018). Summary for policymakers. Global warming of 1.5°C (p. 32). Geneva: World Meteorological Organization.Google Scholar
Isaac, J. L., Vanderwal, J., Johnson, C. N. & Williams, S. E. (2009). Resistance and resilience: quantifying relative extinction risk in a diverse assemblage of Australian tropical rainforest vertebrates. Diversity and Distributions15(2), 280–288.Google Scholar
IUCN. (2008). Species susceptibility to climate change impacts. Gland, Switzerland: World Conservation Union.Google Scholar
Jenssen, B. M., Villanger, G. D., Gabrielsen, K. M., et al. (2015). Anthropogenic flank attack on polar bears: interacting consequences of climate warming and pollutant exposure. Frontiers in Ecology and Evolution3: 16. doi:10.3389/fevo.2015.00016.Google Scholar
Jian, J., Jiang, H., Jiang, Z., et al. (2014). Predicting giant panda habitat with climate data and calculated habitat suitability index (HSI) map. Meteorological Applications21(2): 210–217.Google Scholar
Kelly, B. P., Burns, J. J. & Quakenbush, L. T. (1988). Responses of ringed seals (Phoca hispida) to noise disturbance. In: Sackinger, W., Jeffries, M., Imm, J. & Tracey, S. (Eds.). Port and ocean engineering under Arctic conditions. Volume II. Symposium on noise and marine mammals (p. 13). Fairbanks, AK: Geophysical Institute, University of Alaska.Google Scholar
Kokic, P., Crimp, S. & Howden, M. (2014). A probabilistic analysis of human influence on recent record global mean temperature changes. Climate Risk Management3: 1–12.Google Scholar
Laidre, K. L., Born, E. W., Heagerty, P., et al. (2015). Shifts in female polar bear (Ursus maritimus) habitat use in East Greenland. Polar Biology38(6): 879–893.Google Scholar
Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. (2012). Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature489(7417): 554–557.Google Scholar
Li, B. V. & Pimm, S. L. (2016). China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conservation Biology30(2): 329–339.Google Scholar
Li, R., Xu, M., Wong, M. H. G., et al. (2015a). Climate change threatens giant panda protection in the 21st century. Biological Conservation182: 93–101.Google Scholar
Li, R., Xu, M., Wong, M. H. G., et al. (2015b). Climate change-induced decline in bamboo habitats and species diversity: implications for giant panda conservation. Diversity and Distributions21(4): 379–391.Google Scholar
Li, R., Xu, M., Powers, R., et al. (2017). Quantifying the evidence for co-benefits between species conservation and climate change mitigation in giant panda habitats. Scientific Reports7(1): 12705.Google Scholar
Lone, K., Merkel, B., Lydersen, C., Kovacs, K. M. & Aars, J. (2018). Sea ice resource selection models for polar bears in the Barents Sea subpopulation. Ecography41(4): 567–578.Google Scholar
Loucks, C. J., Lü, Z., Dinerstein, E., et al. (2001). Giant pandas in a changing landscape. Science294(5546): 1465–1465.Google Scholar
Lu, Z., Johnson, W. E., Menotti‐Raymond, M., et al. (2001). Patterns of genetic diversity in remaining giant panda populations. Conservation Biology15(6): 1596–1607.Google Scholar
Lunn, N. J., Servanty, S., Regehr, E. V., et al. (2016). Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecological Applications: A Publication of the Ecological Society of America26(5): 1302–1320.Google Scholar
McDonald, K. A. & Brown, J. H. (1992). Using montane mammals to model extinctions due to global change. Conservation Biology6(3): 409–415.Google Scholar
Meehl, G. A., Hu, A., Tebaldi, C., et al. (2012). Relative outcomes of climate change mitigation related to global temperature versus sea-level rise. Nature Climate Change2: 576.Google Scholar
Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. (2010). Predicting survival, reproduction and abundance of polar bears under climate change. Biological Conservation143(7): 1612–1622.Google Scholar
Molnár, P. K., Derocher, A. E., Klanjscek, T. & Lewis, M. A. (2011). Predicting climate change impacts on polar bear litter size. Nature Communications2: 186.Google Scholar
National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Board on Research Data and Information & Committee on Toward an Open Science Enterprise. (2018). Open Science by Design: Realizing a Vision for 21st Century Research. Appendix C, Office of Science and Technology Policy 2013 Memorandum: Increasing Access to the Results of Federally Funded Scientific Research. Washington, DC: National Academies Press. Available from: www.ncbi.nlm.nih.gov/books/NBK525415/Google Scholar
Nuijten, R. J. M., Hendriks, A. J., Jenssen, B. M. & Schipper, A. M. (2016). Circumpolar contaminant concentrations in polar bears (Ursus maritimus) and potential population-level effects. Environmental Research151: 50–57.Google Scholar
Obbard, M. E., Cattet, M. R. L., Howe, E. J., et al. (2016). Trends in body condition in polar bears (Ursus maritimus) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Science2(1): 15–32.Google Scholar
Obbard, M. E., Stapleton, S., Szor, G., et al. (2018). Re-assessing abundance of Southern Hudson Bay polar bears by aerial survey: effects of climate change at the southern edge of the range. Arctic Science4(4): 634–655.Google Scholar
O’Brien, S. J., Wenshi, P. & Zhi, L. (1994). Pandas, people and policy. Nature369(6477): 179.Google Scholar
Overland, J. E., Wood, K. R. & Wang, M. (2011). Warm Arctic – cold continents: climate impacts of the newly open Arctic Sea. Polar Research30(1): 15787.Google Scholar
Overland, J., Dunlea, E., Box, J. E., et al. (2019). The urgency of Arctic change. Polar Science21: 6–13. doi:10.1016/j.polar.2018.11.008.Google Scholar
Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature421(6918): 37–42.Google Scholar
Peacock, E. L., Taylor, M. K., Laake, J. L. & Stirling, I. (2013). Population ecology of polar bears in Davis Strait, Canada and Greenland. Journal of Wildlife Management77(3): 14.Google Scholar
Peters, R. L. & Darling, J. D. S. (1985). The greenhouse effect and nature reserves. Global warming would diminish biological diversity by causing extinctions among reserve species. BioScience35(11): 707–717.Google Scholar
Pilfold, N. W., Derocher, A. E., Stirling, I., Richardson, E. & Andriashek, D. (2012). Age and sex composition of seals killed by polar bears in the Eastern Beaufort Sea. PLoS ONE7(7): e41429.Google Scholar
Pilfold, N. W., Derocher, A. E., Stirling, I. & Richardson, E. (2014). Polar bear predatory behaviour reveals seascape distribution of ringed seal lairs. Population Ecology56(1): 129–138.Google Scholar
Pilfold, N. W., Hedman, D., Stirling, I., et al. (2016). Mass loss rates of fasting polar bears. Physiological and Biochemical Zoology89(5): 377–388.Google Scholar
Pilfold, N. W., McCall, A., Derocher, A. E., Lunn, N. J. & Richardson, E. (2017). Migratory response of polar bears to sea ice loss: to swim or not to swim. Ecography40(1): 189–199.Google Scholar
Post, E., Bhatt, U. S., Bitz, C. M., et al. (2013). Ecological consequences of sea-ice decline. Science341(6145): 519–524.Google Scholar
Qiu, J. (2015). Experts question China’s panda survey. Nature News. doi:10.1038/nature.2015.17020Google Scholar
Ramsay, M. A. & Stirling, I. (1988). Reproductive biology and ecology of female polar bears (Ursus maritimus). Journal of Zoology214(4): 601–633.Google Scholar
Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. (2007). Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. Journal of Wildlife Management71(8): 2673–2683.Google Scholar
Regehr, E. V., Laidre, K. L., Akçakaya, H. R., et al. (2016). Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biology Letters12(12): 20160556.Google Scholar
Regehr, E. V., Hostetter, N. J., Wilson, R. R., et al. (2018). Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Scientific Reports8(1): 16780.Google Scholar
Reid, D. G., Jinchu, H., Sai, D., Wei, W. & Yan, H. (1989). Giant panda Ailuropoda melanoleuca behaviour and carrying capacity following a bamboo die-off. Biological Conservation49(2): 85–104.Google Scholar
Reid, D. G., Taylor, A. H., Jinchu, H. & Zisheng, Q. (1991). Environmental influences on bamboo Bashania fangiana growth and implications for giant panda conservation. Journal of Applied Ecology28(3): 855–868.Google Scholar
Ricke, K. L. & Caldeira, K. (2014). Maximum warming occurs about one decade after a carbon dioxide emission. Environmental Research Letters9(12): 124002.Google Scholar
Rode, K. D., Amstrup, S. C. & Regehr, E. V. (2010). Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecological Applications: A Publication of the Ecological Society of America20(3): 768–782.Google Scholar
Rode, K. D., Peacock, E. L., Taylor, M. K., et al. (2012). A tale of two polar bear populations: ice habitat, harvest, and body condition. Population Ecology54(1): 318.Google Scholar
Rode, K. D., Regehr, E. V., Douglas, D. C., et al. (2014). Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Global Change Biology20(1): 76–88.Google Scholar
Rode, K. D., Wilson, R. R., Regehr, E. V., et al. (2015a). Increased land use by Chukchi Sea polar bears in relation to changing sea ice conditions. PLoS ONE10(11): e0142213.Google Scholar
Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. (2015b). Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?Frontiers in Ecology and the Environment13(3): 138–145.Google Scholar
Rode, K. D., Wilson, R. R., Douglas, D. C., et al. (2018). Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity. Global Change Biology24(1): 410–423.Google Scholar
Rosenzweig, C., Casassa, G., Karoly, D. J., et al. (2007). Assessment of observed changes and responses in natural and managed systems. In: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E. (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 79–131). Cambridge: Cambridge University Press.Google Scholar
Rosenzweig, C., Karoly, D., Vicarelli, M., et al. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature453(7193): 353–357.Google Scholar
Rummukainen, M. (2015). Our commitment to climate change is dependent on past, present and future emissions and decisions. Climate Research64(1): 7–14.Google Scholar
Schaller, G., Jinchu, H., Wenshi, P. & Zhu, J. (1985). The giant pandas of Wolong. The Quarterly Review of Biology60(4): 524–525.Google Scholar
Shen, G., Pimm, S. L., Feng, C., et al. (2015). Climate change challenges the current conservation strategy for the giant panda. Biological Conservation190: 43–50.Google Scholar
Smith, L. C. & Stephenson, S. R. (2013). New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences110(13): 4871–4872.Google Scholar
Songer, M., Delion, M., Biggs, A. & Huang, Q. (2012). Modeling impacts of climate change on giant panda habitat. International Journal of Ecology3: e108752.Google Scholar
State Forestry Administration of China. (2006). The third national survey report on giant panda in China. Beijing: Science Press.Google Scholar
State Forestry Administration of China. (2015). The fourth national giant panda survey. Beijing: Science Press.Google Scholar
Stern, H. L. & Laidre, K. L. (2016). Sea-ice indicators of polar bear habitat. The Cryosphere10(5): 2027–2041.Google Scholar
Stirling, I. (2002). Polar bears and seals in the Eastern Beaufort Sea and Amundsen Gulf: a synthesis of population trends and ecological relationships over three decades. ARCTIC55(5): 59–76.Google Scholar
Stirling, I., McDonald, T. L., Richardson, E. S., Regehr, E. V. & Amstrup, S. C. (2011). Polar bear population status in the northern Beaufort Sea, Canada, 1971–2006. Ecological Applications21(3): 859–876.Google Scholar
Swaisgood, R. R., Wang, D. & Wei, F. (2017). Ailuropoda melanoleuca (errata version published in 2017). The IUCN Red List of Threatened Species. www.iucnredlist.org/en.Google Scholar
Tang, X., Jia, J., Wang, Z., et al. (2015). Scheme design and main result analysis of the fourth national survey on giant panda. Forest Resource Management1: 11–16.Google Scholar
Thackeray, S. J., Henrys, P. A., Hemming, D., et al. (2016). Phenological sensitivity to climate across taxa and trophic levels. Nature535(7611): 241–245.Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography32(3): 369–373.Google Scholar
Tuanmu, M.-N., Viña, A., Winkler, J. A., et al. (2013). Climate-change impacts on understorey bamboo species and giant pandas in China’s Qinling Mountains. Nature Climate Change3(3): 249–253.Google Scholar
Wang, F., McShea, W. J., Wang, D., et al. (2014). Evaluating landscape options for corridor restoration between giant panda reserves. PLoS ONE9(8): e105086.Google Scholar
Wang, F., Zhao, Q., McShea, W. J., et al. (2018). Incorporating biotic interactions reveals potential climate tolerance of giant pandas. Conservation Letters11(6): e12592.Google Scholar
Wang, R., Fan, X., Liu, Q. & Chen, W. (2010). The potential impacts of climate change on giant panda habitats in Sichuan Province. Plateau and Mountain Meteorology Research30(4): 57–60.Google Scholar
Watts, P. & Hansen, S. (1987). Cyclic starvation as a reproductive strategy in the polar bear. Symposium of the Zoological Society of London57: 305–318.Google Scholar
Wei, F., Costanza, R., Dai, Q., et al. (2018). The value of ecosystem services from giant panda reserves. Current Biology28(13): 2174–2180.e7.Google Scholar
Wei, W., Nie, Y., Zhang, Z., et al. (2015). Hunting bamboo: foraging patch selection and utilization by giant pandas and implications for conservation. Biological Conservation186: 260–267.Google Scholar
Wei, W., Swaisgood, R. R., Dai, Q., et al. (2018). Giant panda distributional and habitat-use shifts in a changing landscape. Conservation Letters11(6): e12575.Google Scholar
Wigley, T. M. L. (2005). The climate change commitment. Science307(5716): 1766–1769.Google Scholar
Wiig, Ø., Amstrup, S., Atwood, T., et al. (2015). Ursus maritimus. The IUCN Red List of Threatened Species 2015. doi:10.2305/IUCN.UK.2015-4.RLTS.T22823A14871490.en.Google Scholar
Wilson, R. R., Regehr, E. V., Rode, K. D. & St Martin, M. (2016). Invariant polar bear habitat selection during a period of sea ice loss. Proceedings of the Royal Society B: Biological Sciences283(1836). doi:10.1098/rspb.2016.0380.Google Scholar
Wu, H., Zhan, X.-J., Zhang, Z-.J., et al. (2009). Thirty-three microsatellite loci for noninvasive genetic studies of the giant panda (Ailuropoda melanoleuca). Conservation Genetics10(3): 649–652.Google Scholar
Yan, T., Ran, J., Zhao, C., Zhong, X. & Liang, M. (2017). Climate-change impacts on bamboo distribution and giant panda habitat in Qionglai Mountains. Acta Ecologica Sinica37(7): 2360–2367.Google Scholar
Yang, H., Viña, A., Tang, Y., et al. (2017). Range-wide evaluation of wildlife habitat change: a demonstration using giant pandas. Biological Conservation213: 203–209.Google Scholar
Yee, M., Reimer, J., Lunn, N. J., et al. (2017). Polar bear (Ursus maritimus) migration from maternal dens in Western Hudson Bay. ARCTIC70(3): 319–327.Google Scholar
Yu, L., Li, Y.-W., Ryder, O. A. & Zhang, Y.-P. (2007). Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evolutionary Biology7(1): 198.Google Scholar
Yurkowski, D. J., Hussey, N. E., Ferguson, S. H. & Fisk, A. T. (2018). A temporal shift in trophic diversity among a predator assemblage in a warming Arctic. Royal Society Open Science5(10). doi:https://doi.org/10.1098/rsos.180259.Google Scholar
Zhang, Y., Mathewson, P. D., Zhang, Q., Porter, W. P. & Ran, J. (2018). An ecophysiological perspective on likely giant panda habitat responses to climate change. Global Change Biology24(4): 1804–1816.Google Scholar
Zhang, Z., Swaisgood, R. R., Zhang, S., et al. (2011). Old-growth forest is what giant pandas really need. Biology Letters7(3): 403–406.Google Scholar
Zhang, Z., Sheppard, J. K., Swaisgood, R. R., et al. (2014). Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas. Integrative Zoology9(1): 46–60.Google Scholar
Zhao, S., Zheng, P., Dong, S., et al. (2013). Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics45(1): 67–71.Google Scholar
Zhu, L., Wu, Q., Dai, J., Zhang, S. & Wei, F. (2011). Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences108(43): 17,714–17,719.Google Scholar
Zhu, X., Lindburg, D. G., Pan, W., Forney, K. A. & Wang, D. (2001). The reproductive strategy of giant pandas (Ailuropoda melanoleuca): infant growth and development and mother–infant relationships. Journal of Zoology253(2): 141–155.Google Scholar
References
Abbas, F., Bhatti, Z. I., Haider, J. & Mian, A. (2015). Bears in Pakistan: distribution, population biology and human conflicts. Journal of Bioresource Management2: 1–13.Google Scholar
Acevedo, C., Bernal, N., Bianchi, G., et al. (2017). Conservamos la vida: Andean bear conservation at the landscape scale. 25th Conference on Bear Research and Management, Quito, Ecuador.Google Scholar
Akhtar, N., Bargali, H. & Chauhan, N. (2004). Sloth bear habitat use in disturbed and unprotected areas of Madhya Pradesh, India. Ursus15: 203–211.Google Scholar
Almasieh, K., Kaboli, M. & Beier, P. (2016). Identifying habitat cores and corridors for the Iranian black bear in Iran. Ursus27: 18–30.Google Scholar
Apps, C., Paetkau, D., Rochetta, S., et al. (2014). Grizzly bear population abundance, distribution & connectivity across British Columbia’s southern Coastal Ranges, v. 2.2. Victoria, British Columbia: Aspen Wildlife Research and Ministry of Environment.Google Scholar
Aramilev, V. V. (2006). The conservation status of Asiatic black bears in the Russian Far East. In: Understanding Asian bears to secure their future (pp. 86–89). Ibaraki, Japan: Japan Bear Network.Google Scholar
Atwood, T. C., Young, J. K., Beckman, J. P., et al. (2011). Modeling connectivity of black bears in a desert sky island archipelago. Biological Conservation144: 2851–2862.Google Scholar
Beckmann, J. P., Waites, L. P., Hurt, A., Whitelaw, A. & Bergen, S. (2015). Using detection dogs and RSFP models to assess habitat suitability for bears in greater Yellowstone. Western North American Naturalist75: 396–405.Google Scholar
Benson, J. F. & Chamberlain, M. J. (2007). Space use, survival, movements, and reproduction of reintroduced Louisiana black bears. Journal of Wildlife Management71: 2393–2403.Google Scholar
Boitani, L., Alvarez, F., Anders, O., et al. (2015). Key actions for large carnivore populations in Europe. Report to DG Environment. Brussels: European Commission.Google Scholar
Brodie, J. F., Giordano, A. J., Dickson, B., et al. (2015). Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conservation Biology29: 122–132.Google Scholar
Brook, B. W., Sodhi, N. S. & Peter, K. L. N. (2003). Catastrophic extinctions follow deforestation in Singapore. Nature424. Available from www.nature.com/articles/nature01795 (accessed April 23, 2019).Google Scholar
Brown, S. K., Hull, J. M., Updike, D. R., Fain, S. R. & Ernest, H. B. (2009). Black bear population genetics in California signatures of population structure, competitive release, and historical translocation. Journal of Mammalogy90: 1066–1074.Google Scholar
Clark, J. D., Huber, D. & Servheen, C. (2002). Bear reintroductions: lessons and challenges. Ursus13: 335–345.Google Scholar
Clark, J. D., Laufenberg, J. S., Davidson, M. & Murrow, J. L. (2015). Connectivity among subpopulation of a Louisiana black bears as estimated by a step function. Journal of Wildlife Management79: 1347–1360.Google Scholar
Corlett, R. T. (1992). The ecological transformation of Singapore. Journal of Biogeography19: 411–420.Google Scholar
Cosse, M., Del Moral Sachetti, J. F., Mannise, N. & Acosta, M.M. (2014). Genetic evidence confirms presence of Andean bears in Argentina. Ursus25: 163–171.Google Scholar
Creative Conservation Alliance. (2016). A preliminary wildlife survey in Sangu-Matamuhuri Reserve Forest, Chittagong Hill Tracts, Bangladesh. Unpublished report submitted to Bangladesh Forest Department, Dhaka, Bangladesh.Google Scholar
Crudge, B. N., Wilkinson, N. M., Do, V. T., et al. (2016). Status and distribution of bears in Vietnam. Technical Report. Free the Bears/Animals Asia, Vietnam.Google Scholar
Cuesta, F., Peralvo, M. F. & Manen, F. T. (2003). Andean bear habitat use in the Oyacachi River Basin, Ecuador. Ursus14: 198–209.Google Scholar
Cushman, S. A., McKelvey, K. S., Hayden, J. & Schwartz, M. K. (2006). Gene flow in complex landscapes: testing multiple hypotheses with casual modeling. The American Naturalist168: 486–499.Google Scholar
Cushman, S. A., McKelvey, K. S. & Schwartz, M. K. (2009). Use of empirically derived source-destination models to map regional conservation corridors. Conservation Biology23: 368–276.Google Scholar
Cushman, S. A., Lewis, J. S. & Landguth, E. L. (2013). Evaluating the intersection of a regional wildlife connectivity network with highways. Movement Ecology1: 1–12.Google Scholar
Cushman, S. A., Lewis, J. S. & Landguth, E. L. (2014). Why did the bear cross the road? Comparing the performance of multiple resistance surfaces and connectivity modeling methods. Diversity6: 844–854.Google Scholar
Cushman, S. A., Macdonald, E. A., Landguth, E. L., Malhi, Y. & Macdonald, D. W. (2017). Multiple-scale prediction of forest loss risk across Borneo. Landscape Ecology32: 1581–1598.Google Scholar
Das, S., Dutta, S., Sen, S., et al. (2014). Identifying regions for conservation of sloth bears through occupancy modelling in north-eastern Karnataka, India. Ursus25: 111–120.Google Scholar
De Silva, M. (1998). Status and conservation of the elephant and the alleviation of man–elephant conflict in Sri Lanka. Gajah19: 1–24.Google Scholar
Dhamorikar, A. H., Mehta, P., Bargali, H. & Gore, K. (2017). Characteristics of human–sloth bear (Melursus ursinus) encounters and the resulting human casualties in the Kanha–Pench corridor, Madhya Pradesh, India. PLoS ONE12: e0176612.Google Scholar
Dharaiya, N, Garshelis, D. L., Sharp, T., et al. (2015). Do sloth bears live in Bhutan?International Bear News24: 10–13.Google Scholar
Dixon, J. D., Oli, M. K., Wooten, M. C., et al. (2006). Effectiveness of a regional corridor in connecting two Florida black bear populations. Conservation Biology20: 155–162.Google Scholar
Dixon, J. D., Oli, M. K., Wooten, M. C., et al. (2007). Genetic consequences of habitat fragmentation and loss: the case of the Florida black bear (Ursus americanus floridanus). Conservation Genetics8: 455–464.Google Scholar
Doko, T., Fukui, H., Kooiman, A., et al. (2011). Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan. Ecological Modelling222: 748–761.Google Scholar
Duckworth, J.W., Batters, G., Belant, J. L., et al. (2012). Why South-East Asia should be the world’s priority for averting imminent species extinctions, and a call to join a developing cross-institutional programme to tackle this urgent issue. Surveys and Perspectives Integrating Environment and Society5. Available from www.researchgate.net/publication/235248971Google Scholar
Durner, G. M. & Amstrup, S. C. (1995). Movements of a polar bear from northern Alaska to northern Greenland. ARCTIC48: 338–341.CrossRefGoogle Scholar
Durner, G. M., Laidre, K. L. & York, G. S. (Eds.). (2018). Polar bears: Proceedings of the 18th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 7–11 June 2016, Anchorage, Alaska. Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Dutta, T., Sharma, S., Maldonado, J. E., Panwar, H. S., Seidensticker, J. (2015). Genetic variation, structure, and gene flow in a sloth bear (Melursus ursinus) meta-population in the Satpura-Maikal landscape of Central India. PLoS ONE10: e0123384.CrossRefGoogle Scholar
Dutta, T., Sharma, S., McRae, B. H., Roy, P. S. & DeFries, R. (2016). Connecting the dots: mapping habitat connectivity for tigers in central India. Regional Environmental Change16: 53–67.Google Scholar
Escobar, L. E., Awan, M. N. & Qiao, H. (2015). Anthropogenic disturbance and habitat loss for the red-listed Asiatic black bears (Ursus thibetanus): using ecological niche modeling and nighttime light satellite imagery. Biological Conservation191: 400–407.Google Scholar
Fahrig, L. (2002). Effects of habitat fragmentation on the extinction threshold: a synthesis. Ecological Applications12: 246–353.Google Scholar
Farashi, A. & Erfani, M. (2018). Modeling of habitat suitability on Asiatic black bears (Ursus thibetanus gedrosianus) in Iran in future. Acta Ecologica Sinica38: 9–14.Google Scholar
Gantchoff, M. G. & Belant, J. L. (2017). Regional connectivity for recolonizing American black bears (Ursus americanus) in southcentral USA. Biological Conservation214: 66–75.CrossRefGoogle Scholar
García-Rangel, S. (2011). Ecology and conservation of the Andean bear in Venezuela. PhD thesis, University of Cambridge.Google Scholar
García-Rangel, S. (2012) Andean bear Tremarctos ornatus natural history and conservation. Mammal Review42(2): 85–119.Google Scholar
Gong, J. & Harris, R. B. (2013). The status of bears in China. In: Understanding Asian bears to secure their future (pp. 96–101). Ibaraki: Japan Bear Network.Google Scholar
Gonzalez, E. G., Blanco, J. C., Ballersteros, F., et al. (2016). Genetic and demographic recovery of an isolated population of brown bear Ursus arctos L., 1758. PeerJ4: e1928. DOI 10.7717/peerj.1928.Google Scholar
Guharajan, R., Arnold, T. W., Bolongon, G., et al. (2018). Survival strategies of a frugivore, the sun bear, in a forest–oil palm landscape. Biodiversity and Conservation27: 3657–3677.Google Scholar
Guharajan, R., Abram, N. K., Magguna, M. A., et al. (2019). Does the Vulnerable sun bear Helarctos malayanus damage crops and threaten people in oil palm plantations?Oryx53: 611–619. https://doi.org/10.1017/S0030605317001089.Google Scholar
Han, H., Wei, W., Hu, Y., et al. (2019). Diet evolution and habitat contraction of giant pandas via stable isotope analysis. Current Biology29: 664–669.Google Scholar
Hellgren, E. C., Onorato, D. P. & Skiles, J. R. (2005). Dynamics of a black bear population within a desert metapopulation. Biological Conservation122: 131–140.Google Scholar
Horino, S. & Miura, S.2000. Population viability analysis of a Japanese black bear population. Population Ecology42: 37–44.Google Scholar
Hu, Y., Nie, Y., Wei, W., et al. (2017). Inbreeding and inbreeding avoidance in wild giant pandas. Molecular Ecology26: 5793–5806.Google Scholar
Imai, N., Samejima, H., Langner, A., et al. (2009). Co-benefits of sustainable forest management in biodiversity conservation and carbon sequestration. PLoS ONE4: e8267.Google Scholar
Islam, M. A., Uddin, M., Aziz, M. A. & Muzaffar, S. B. (2013). Status of bears in Bangladesh: going, going, gone?Ursus24: 83–90.Google Scholar
Jhala, Y. V., Qureshi, Q., Gopal, R. & Sinha, P. R. (2011). Status of tigers, co-predators and prey in India (p. 302). TR 2011/003. Dehradun, Dehradun and New Delhi, India: National Tiger Conservation Authority, Govt. of India and Wildlife Institute of India.Google Scholar
Jhala, Y. V., Qureshi, Q. & Gopal, R. (2015). The status of tigers, co-predators & prey in India 2014. Dehradun, Dehradun and New Delhi, India: National Tiger Conservation Authority, Govt. of India, and Wildlife Institute of India.Google Scholar
Kaczensky, P., Gossow, H., Knauer, F., et al. (2003). The impact of high speed, high volume traffic axes on brown bears in Slovenia. Biological Conservation111: 191–204.Google Scholar
Kaczensky, P., Jerina, K., Jonozovic, M., et al. (2011). Illegal killings may hamper brown bear recovery in the Eastern Alps. Ursus22: 37–46.Google Scholar
Kanchanasakha, B., Tanhikorn, S., Vinitpornsawan, V., Prayoon, A. & Paengphupha, G. (2010). Status of large mammals in Thailand. Bangkok: Department of National Parks, Wildlife, and Plant Conservation.Google Scholar
Karamanlidis, A. A., Straka, M., Drosopoulou, E., et al. (2012). Genetic diversity, structure, and size of an endangered brown bear population threatened by highway construction in the Pindos Mountains, Greece. European Journal of Wildlife Research58: 511–522.Google Scholar
Kattan, G., Hernandez, O. L., Goldstein, I., et al. (2004). Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx38: 155–163.Google Scholar
Khan, M., Rosen, T. & Zahler, P. (2012). Status and conservation of Asiatic black bears in Diamer District, Pakistan. International Bear News21: 13–14.Google Scholar
Kopatz, A., Eiken, H. K., Hagen, S. B., et al. (2012). Connectivity and population subdivision at the fringe of a large brown bear (Ursus arctos) population in North Western Europe. Conservation Genetics13: 681–692.Google Scholar
Kusak, J., Huber, D., Gomerčić, T., Schwaderer, G. & Gužvica, G. (2009). The permeability of highway in Gorski kotar (Croatia) for large mammals. European Journal of Wildlife Research55: 7–21.Google Scholar
Lackey, C. W., Beckmann, J. P. & Sedinger, J. (2013). Bear historical ranges revisited: documenting the increase of a once-extirpated population in Nevada. Journal of Wildlife Management77: 812–820.Google Scholar
Larkin, J. L., Maehr, D. S., Orlando, M. A., Hoctor, T. S. & Whitney, K. (2004). Landscape linkages and conservation planning for the black bear in west-central Florida. Animal Conservation7: 23–34.Google Scholar
Laufenberg, J. S. & Clark, J. D. (2014). Population viability and connectivity of the Louisiana black bear (Ursus americanus luteolus). U.S. Geological Survey Open-File Report.Google Scholar
Lewis, J. S., Rachlow, J. L., Horne, J. S., et al. (2011). Identifying habitat characteristics to predict highway crossing areas for black bears within a human-modified landscape. Landscape and Urban Planning101: 99–107.Google Scholar
Li, F., Zheng, X., Jiang, X. L. & Chan, B. P. L. (2017). Rediscovery of the sun bear (