Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-28T11:43:08.447Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 June 2023

Simo Särkkä
Affiliation:
Aalto University, Finland
Lennart Svensson
Affiliation:
Chalmers University of Technology, Gothenberg
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agamennoni, G., Nieto, J., and Nebot, E. 2011. An outlier-robust Kalman filter. Pages 1551–1558 of: IEEE International Conference on Robotics and Automation (ICRA). (Cited on page 353.)Google Scholar
Akashi, H., and Kumamoto, H. 1977. Random sampling approach to state estimation in switching environments. Automatica, 13(4), 429434. (Cited on pages 247 and 353.)Google Scholar
Alspach, D. L., and Sorenson, H. W. 1972. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions on Automatic Control, 17(4). (Cited on page 353.)Google Scholar
Anderson, B. D. O., and Moore, J. B. 1979. Optimal Filtering. Prentice-Hall. (Cited on page 102.)Google Scholar
Andrieu, C., De Freitas, N., and Doucet, A. 2002. Rao-Blackwellised particle filtering via data augmentation. In: Dietterich, T. G., Becker, S., and Ghahramani, Z. (eds), Advances in Neural Information Processing Systems 14. MIT Press. (Cited on page 7.)Google Scholar
Andrieu, C., Doucet, A., Singh, S., and Tadic, V. 2004. Particle methods for change detection, system identification, and control. Proceedings of the IEEE, 92(3), 423438. (Cited on pages 341 and 344.)CrossRefGoogle Scholar
Andrieu, C., and Thoms, J. 2008. A tutorial on adaptive MCMC. Statistics and Computing, 18(4), 343373. (Cited on page 325.)Google Scholar
Andrieu, C., Doucet, A., and Holenstein, R. 2010. Particle Markov chain Monte Carlo methods. The Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269342. (Cited on pages 324 and 342.)Google Scholar
Aoki, M. 1967. Optimization of Stochastic Systems. Academic Press. (Cited on page 6.)Google Scholar
Arasaratnam, I., and Haykin, S. 2009. Cubature Kalman filters. IEEE Transactions on Automatic Control, 54(6), 12541269. (Cited on pages 131, 135, 142, 143, 145, 149, 165, 280, 289, and 353.)CrossRefGoogle Scholar
Arasaratnam, I., and Haykin, S. 2011. Cubature Kalman smoothers. Automatica, 47(10), 22452250. (Cited on pages 282 and 353.)Google Scholar
Arasaratnam, I., Haykin, S., and Elliott, R. J. 2007. Discrete-time nonlinear filtering algorithms using Gauss–Hermite quadrature. Proceedings of the IEEE, 95(5), 953977. (Cited on pages 140, 168, 179, and 187.)Google Scholar
Arasaratnam, I., Haykin, S., and Hurd, T. R. 2010. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations. IEEE Transactions on Signal Processing, 58(10), 49774993. (Cited on page 352.)Google Scholar
Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174188. (Cited on page 244.)Google Scholar
Axelsson, P., and Gustafsson, F. 2015. Discrete-time solutions to the continuous-time differential Lyapunov equation with applications to Kalman filtering. IEEE Transactions on Automatic Control, 60(3), 632643. (Cited on page 52.)Google Scholar
Bar-Shalom, Y., and Li, X.-R. 1995. Multitarget-Multisensor Tracking: Principles and Techniques. YBS Publishing. (Cited on pages 3 and 353.)Google Scholar
Bar-Shalom, Y., Li, X.-R., and Kirubarajan, T. 2001. Estimation with Applications to Tracking and Navigation. Wiley. (Cited on pages 2, 4, 8, 44, 113, 201, 352, and 353.)Google Scholar
Barber, D. 2006. Expectation correction for smoothed inference in switching linear dynamical systems. The Journal of Machine Learning Research, 7, 25152540. (Cited on pages 317 and 352.)Google Scholar
Barber, D. 2011. Approximate inference in switching linear dynamical systems using Gaussian mixtures. Chap. 8, pages 166–181 of: Barber, D., Cemgil, A. T., and Chiappa, S. (eds), Bayesian Time Series Models. Cambridge University Press. (Cited on page 353.)CrossRefGoogle Scholar
Barfoot, T. D. 2017. State Estimation for Robotics. Cambridge University Press. (Cited on page 5.)Google Scholar
Barlas, G. 2015. Multicore and GPU Programming: An Integrated Approach. Morgan Kaufmann Publishers Inc. (Cited on page 353.)Google Scholar
Bell, B. M. 1994. The iterated Kalman smoother as a Gauss–Newton method. SIAM Journal on Optimization, 4(3), 626636. (Cited on pages 271 and 275.)Google Scholar
Bell, B. M., and Cathey, F. W. 1993. The iterated Kalman filter update as a Gauss–Newton method. IEEE Transactions on Automatic Control, 38(2), 294297. (Cited on page 121.)Google Scholar
Berger, J. O. 1985. Statistical Decision Theory and Bayesian Analysis. Springer. (Cited on pages 20, 21, and 247.)Google Scholar
Bernardo, J. M., and Smith, A. F. M. 1994. Bayesian Theory. Wiley. (Cited on pages 17 and 20.)Google Scholar
Bierman, G. J. 1977. Factorization Methods for Discrete Sequential Estimation. Academic Press. (Cited on page 353.)Google Scholar
Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer. (Cited on pages 7, 81, and 84.)Google Scholar
Blackman, S., and Popoli, R. 1999. Design and Analysis of Modern Tracking Systems.Google Scholar
Artech House Radar Library. (Cited on pages 3 and 353.)Google Scholar
Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. 2011. Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC. (Cited on pages 23, 324, 325, and 326.)Google Scholar
Cappé, O., Moulines, E., and Rydén, T. 2005. Inference in Hidden Markov Models. Springer. (Cited on pages 87, 241, 262, 323, 330, and 334.)Google Scholar
Challa, S., Morelande, M. R., Mušicki, D., and Evans, R. J. 2011. Fundamentals of Object Tracking. Cambridge University Press. (Cited on pages 2 and 353.)Google Scholar
Chen, R., and Liu, J. S. 2000. Mixture Kalman filters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(3), 493508. (Cited on page 247.)Google Scholar
Chopin, N., and Papaspiliopoulos, O. 2020. An Introduction to Sequential Monte Carlo. Springer. (Cited on pages 238, 239, 240, 312, and 314.)Google Scholar
Christianson, B. 1994. Reverse accumulation and attractive fixed points. Optimization Methods and Software, 3(4), 311326. (Cited on page 340.)Google Scholar
Corenflos, A., Chopin, N., and Särkkä, S. 2022. De-Sequentialized Monte Carlo: a parallel-in-time particle smoother. Journal of Machine Learning Research, 23(283), 139. (Cited on page 354.)Google Scholar
Cox, H. 1964. On the estimation of state variables and parameters for noisy dynamic systems. IEEE Transactions on Automatic Control, 9(1), 512. (Cited on page 267.)CrossRefGoogle Scholar
Crassidis, J. L., and Junkins, J. L. 2004. Optimal Estimation of Dynamic Systems. Chapman & Hall/CRC. (Cited on page 2.)Google Scholar
Creal, D. 2012. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews, 31(3), 245296. (Cited on page 341.)Google Scholar
Crisan, D., and Doucet, A. 2002. A survey of convergence results on particle filtering for practitioners. IEEE Transactions on Signal Processing, 50(3), 736746. (Cited on page 353.)CrossRefGoogle Scholar
Crisan, D., and Rozovskii, B. (eds). 2011. The Oxford Handbook of Nonlinear Filtering. Oxford University Press. (Cited on page 352.)Google Scholar
Daum, F., and Huang, J. 2003. Curse of dimensionality and particle filters. Pages 1979–1993 of: Proceedings of the IEEE Aerospace Conference, vol. 4. (Cited on page 230.)Google Scholar
Deisenroth, M. P., Huber, M. F., and Hanebeck, U. D. 2009. Analytic moment-based Gaussian process filtering. Pages 225–232 of: Proceedings of the 26th International Conference on Machine Learning. (Cited on pages 135 and 352.)Google Scholar
Deisenroth, M., Turner, R., Huber, M., Hanebeck, U., and Rasmussen, C. 2012. Robust filtering and smoothing with Gaussian processes. IEEE Transactions on Automatic Control, 57(7), 18651871. (Cited on page 352.)Google Scholar
Dempster, A., Laird, N., and Rubin, D. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 138. (Cited on page 327.)Google Scholar
Djuric, P., and Miguez, J. 2002. Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters. Pages 1621–1624 of: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2. (Cited on page 347.)Google Scholar
Douc, R., Garivier, A., Moulines, E., and Olsson, J. 2011. Sequential Monte Carlo smoothing for general state space hidden Markov models. Annals of Applied Probability, 21(6), 21092145. (Cited on pages 312 and 314.)Google Scholar
Doucet, A., and Johansen, A. M. 2011. A tutorial on particle filtering and smoothing: Fifteen years later. Chap. 24, pages 656–704 of: Crisan, D., and Rozovskiĭ, B. (eds), Handbook of Nonlinear Filtering. Oxford University Press. (Cited on page 244.)Google Scholar
Doucet, A., Godsill, S. J., and Andrieu, C. 2000. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197208. (Cited on pages 241, 309, and 314.)Google Scholar
Doucet, A., De Freitas, N., and Gordon, N. 2001. Sequential Monte Carlo Methods in Practice. Springer. (Cited on pages 234, 239, 241, 247, and 248.)Google Scholar
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. 1987. Hybrid Monte Carlo. Physics Letters B, 195(2), 216222. (Cited on page 326.)Google Scholar
Fatemi, M., Svensson, L., Hammarstrand, L., and Morelande, M. 2012. A study of MAP estimation techniques for nonlinear filtering. Pages 1058–1065 of: 15th International Conference on Information Fusion (FUSION). (Cited on page 126.)Google Scholar
Fearnhead, P. 2002. Markov chain Monte Carlo, sufficient statistics, and particle filters. Journal of Computational and Graphical Statistics, 11(4), 848862. (Cited on page 347.)Google Scholar
Fearnhead, P., and Clifford, P. 2003. On-line inference for Hidden Markov models via particle filters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(4), 887899. (Cited on page 241.)Google Scholar
Fong, W., Godsill, S. J., Doucet, A., and West, M. 2002. Monte Carlo smoothing with application to audio signal enhancement. IEEE Transactions on Signal Processing, 50(2), 438449. (Cited on pages 6 and 317.)Google Scholar
Fraser, D., and Potter, J. 1969. The optimum linear smoother as a combination of two optimum linear filters. IEEE Transactions on Automatic Control, 14(4), 387390. (Cited on page 255.)Google Scholar
García-Fernández, Á. F., Svensson, L., Morelande, M., and Särkkä, S. 2015. Posterior linearization filter: Principles and implementation using sigma points. IEEE Transactions on Signal Processing, 63(20), 55615573. (Cited on pages 204, 208, and 226.)Google Scholar
García-Fernández, Á. F., Svensson, L., and Särkkä, S. 2017. Iterated posterior linearization smoother. IEEE Transactions on Automatic Control, 62(4), 20562063. (Cited on page 297.)Google Scholar
García-Fernández, Á. F., Tronarp, F., and Särkkä, S. 2019. Gaussian process classification using posterior linearisation. IEEE Signal Processing Letters, 26(5), 735739. (Cited on page 82.)Google Scholar
García-Fernández, Á. F., Svensson, L., and Morelande, M. R. 2020. Multiple target tracking based on sets of trajectories. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 16851707. (Cited on page 353.)Google Scholar
García-Fernández, Á. F., Williams, J. L., Svensson, L., and Xia, Y. 2021. A Poisson multi-Bernoulli mixture filter for coexisting point and extended targets. IEEE Transactions on Signal Processing, 69, 26002610. (Cited on page 353.)Google Scholar
Gelb, A. 1974. Applied Optimal Estimation. MIT Press. (Cited on pages 119, 121, 171, and 176.)Google Scholar
Gelb, A., and Vander Velde, W. 1968. Multiple-Input Describing Functions and Non-linear System Design. McGraw-Hill. (Cited on page 178.)Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. 2013. Bayesian Data Analysis. Third edn. Chapman & Hall/CRC. (Cited on pages 17, 19, 22, 40, 108, and 323.)Google Scholar
Gilks, W., Richardson, S., and Spiegelhalter, D. (eds). 1996. Markov Chain Monte Carlo in Practice. Chapman & Hall. (Cited on page 23.)Google Scholar
Godsill, S. J., and Rayner, P. J. 1998. Digital Audio Restoration: A Statistical Model Based Approach. Springer-Verlag. (Cited on page 6.)Google Scholar
Godsill, S. J., Doucet, A., and West, M. 2004. Monte Carlo smoothing for nonlinear time series. Journal of the American Statistical Association, 99(465), 156168. (Cited on page 310.)Google Scholar
Golub, G. H., and van Loan, C. F. 1996. Matrix Computations. Third edn. The Johns Hopkins University Press. (Cited on page 357.)Google Scholar
Golub, G. H., and Welsch, J. H. 1969. Calculation of Gauss quadrature rules. Mathematics of Computation, 23(106), 221230. (Cited on page 138.)CrossRefGoogle Scholar
Gonzalez, R. C., and Woods, R. E. 2008. Digital Image Processing. Third edn. Prentice Hall. (Cited on page 7.)Google Scholar
Gordon, N. J., Salmond, D. J., and Smith, A. F. M. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Pages 107–113 of: IEEE Proceedings on Radar and Signal Processing, vol. 140. (Cited on pages 239 and 242.)Google Scholar
Granström, K., Fatemi, M., and Svensson, L. 2020. Poisson multi-Bernoulli mixture conjugate prior for multiple extended target filtering. IEEE Transactions on Aerospace and Electronic Systems, 56(1), 208225. (Cited on page 353.)Google Scholar
Grewal, M. S., and Andrews, A. P. 2015. Kalman Filtering: Theory and Practice Using MATLAB. 4th edn. Wiley. (Cited on pages 98, 113, and 353.)Google Scholar
Grewal, M. S., Weill, L. R., and Andrews, A. P. 2001. Global Positioning Systems, Inertial Navigation and Integration. Wiley. (Cited on pages 3 and 4.)Google Scholar
Griewank, A., and Walther, A. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM. (Cited on pages 117 and 127.)Google Scholar
Gupta, N., and Mehra, R. 1974. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations. IEEE Transactions on Automatic Control, 19(6), 774783. (Cited on pages 334 and 372.)Google Scholar
Haario, H., Saksman, E., and Tamminen, J. 1999. Adaptive proposal distribution for random walk Metropolis algorithm. Computational Statistics, 14(3), 375395. (Cited on page 325.)Google Scholar
Haario, H., Saksman, E., and Tamminen, J. 2001. An adaptive Metropolis algorithm. Bernoulli, 7(2), 223242. (Cited on page 325.)Google Scholar
Hairer, E., Nørsett, S. P., and Wanner, G. 2008. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics, vol. 1. Springer Science & Business. (Cited on page 60.)Google Scholar
Hartikainen, J., and Särkkä, S. 2010. Kalman filtering and smoothing solutions to temporal Gaussian process regression models. Pages 379–384 of: Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP). (Cited on page 7.)Google Scholar
Hassan, S., Särkkä, S., and García-Fernández, A. F. 2021. Temporal parallelization of inference in hidden Markov models. IEEE Transactions on Signal Processing, 69, 48754887. (Cited on page 354.)Google Scholar
Hauk, O. 2004. Keep it simple: A case for using classical minimum norm estimation in the analysis of EEG and MEG data. NeuroImage, 21(4), 16121621. (Cited on page 5.)Google Scholar
Hayes, M. H. 1996. Statistical Digital Signal Processing and Modeling. Wiley. (Cited on pages 7 and 86.)Google Scholar
Haykin, S. 2001. Kalman Filtering and Neural Networks. Wiley. (Cited on pages 7 and 85.)Google Scholar
Hennig, P., Osborne, M. A., and Kersting, H. P. 2022. Probabilistic Numerics. Cambridge University Press. (Cited on page 352.)Google Scholar
Hiltunen, P., Särkkä, S., Nissilä, I., Lajunen, A., and Lampinen, J. 2011. State space regularization in the nonstationary inverse problem for diffuse optical tomography. Inverse Problems, 27, 025009. (Cited on page 5.)Google Scholar
Ho, Y. C., and Lee, R. C. K. 1964. A Bayesian approach to problems in stochastic estimation and control. IEEE Transactions on Automatic Control, 9(4), 333339. (Cited on page 8.)Google Scholar
Hostettler, R., Tronarp, F., García-Fernández, Á. F., and Särkkä, S. 2020. Importance densities for particle filtering using iterated conditional expectations. IEEE Signal Processing Letters, 27, 211215. (Cited on page 241.)Google Scholar
Hu, X., Schön, T., and Ljung, L. 2008. A basic convergence result for particle filtering. IEEE Transactions on Signal Processing, 56(4), 13371348. (Cited on page 353.)Google Scholar
Hu, X., Schön, T., and Ljung, L. 2011. A general convergence result for particle filtering. IEEE Transactions on Signal Processing, 59(7), 34243429. (Cited on page 353.)Google Scholar
Hürzeler, M., and Kunsch, H. R. 1998. Monte Carlo approximations for general state-space models. Journal of Computational and Graphical Statistics, 7(2), 175193. (Cited on page 314.)Google Scholar
Ito, K., and Xiong, K. 2000. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 45(5), 910927. (Cited on pages 131, 133, 135, 140, 165, 280, and 289.)Google Scholar
Jazwinski, A. H. 1966. Filtering for nonlinear dynamical systems. IEEE Transactions on Automatic Control, 11(4), 765766. (Cited on page 8.)Google Scholar
Jazwinski, A. H. 1970. Stochastic Processes and Filtering Theory. Academic Press. (Cited on pages xi, 8, 113, and 351.)Google Scholar
Johansen, A. M., and Doucet, A. 2008. A note on auxiliary particle filters. Statistics & Probability Letters, 78(12), 14981504. (Cited on pages 244, 246, and 247.)Google Scholar
Julier, S. J. 2002. The scaled unscented transformation. Pages 4555–4559 of: Proceedings of the 2002 American Control Conference, vol. 6. (Cited on pages 150 and 152.)Google Scholar
Julier, S. J., and Uhlmann, J. K. 1995. A General Method of Approximating Nonlinear Transformations of Probability Distributions. Tech. rept. Robotics Research Group, Department of Engineering Science, University of Oxford. (Cited on pages 131, 135, 150, and 152.)Google Scholar
Julier, S. J., and Uhlmann, J. K. 2004. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401422. (Cited on pages 150, 155, 157, and 159.)Google Scholar
Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. 1995. A new approach for filtering nonlinear systems. Pages 1628–1632 of: Proceedings of the 1995 American Control, Conference, Seattle, Washington. (Cited on pages 149, 155, and 159.)Google Scholar
Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. 2000. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3), 477482. (Cited on pages 131, 135, 150, 165, 187, and 289.)Google Scholar
Kailath, T., Sayed, A. H., and Hassibi, B. 2000. Linear Estimation. Prentice Hall. (Cited on pages 102 and 353.)Google Scholar
Kaipio, J., and Somersalo, E. 2005. Statistical and Computational Inverse Problems. Applied Mathematical Sciences, no. 160. Springer. (Cited on pages 5 and 7.)Google Scholar
Kalman, R. E. 1960a. Contributions to the theory of optimal control. Boletin de la Sociedad Matematica Mexicana, 5(1), 102119. (Cited on page 8.)Google Scholar
Kalman, R. E. 1960b. A new approach to linear filtering and prediction problems. Transactions of the ASME, Journal of Basic Engineering, 82(1), 3545. (Cited on pages 8, 16, 96, and 101.)Google Scholar
Kalman, R. E., and Bucy, R. S. 1961. New results in linear filtering and prediction theory. Transactions of the ASME, Journal of Basic Engineering, 83(3), 95108. (Cited on page 8.)Google Scholar
Kantas, N., Doucet, A., Singh, S., and Maciejowski, J. 2009. An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. In: Proceedings IFAC Symposium on System Identification (SYSID). (Cited on pages 343 and 344.)Google Scholar
Kaplan, E. D. 1996. Understanding GPS, Principles and Applications. Artech House. (Cited on page 2.)Google Scholar
Karvonen, T., and Särkkä, S. 2018. Fully symmetric kernel quadrature. SIAM Journal on Scientific Computing, 40(2), A697A720. (Cited on page 352.)Google Scholar
Karvonen, T., Särkkä, S., and Oates, C. J. 2019. Symmetry exploits for Bayesian cubature methods. Statistics and Computing, 29, 12311248. (Cited on pages 135, 165, 290, and 352.)Google Scholar
Keeling, M., and Rohani, P. 2007. Modeling Infectious Diseases in Humans and Animals. Princeton University Press. (Cited on page 5.)Google Scholar
Kim, C.-J. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics, 60, 122. (Cited on page 317.)Google Scholar
Kitagawa, G. 1987. Non-Gaussian state-space modeling of nonstationary time series. Journal of the American Statistical Association, 82(400), 10321041. (Cited on page 254.)Google Scholar
Kitagawa, G. 1994. The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother. Annals of the Institute of Statistical Mathematics, 46(4), 605623. (Cited on page 255.)Google Scholar
Kitagawa, G. 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1), 125. (Cited on pages 239, 308, 309, and 311.)Google Scholar
Kloeden, P. E., and Platen, E. 1999. Numerical Solution to Stochastic Differential Equations. Springer. (Cited on pages 57, 58, and 69.)Google Scholar
Kokkala, J., Solin, A., and Särkkä, S. 2016. Sigma-Point Filtering and Smoothing Based Parameter Estimation in Nonlinear Dynamic Systems. Journal of Advances in Information Fusion, 11(1), 1530. (Cited on page 327.)Google Scholar
Koller, D., and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques. MIT Press. (Cited on pages 255 and 264.)Google Scholar
Kotz, S., and Nadarajah, S. 2004. Multivariate T-Distributions and Their Applications. Cambridge University Press. (Cited on page 78.)Google Scholar
Larson, R. E., and Peschon, J. 1966. A dynamic programming approach to trajectory estimation. IEEE Transactions on Automatic Control, 11(3), 537540. (Cited on page 262.)Google Scholar
Lee, R. C. K. 1964. Optimal Estimation, Identification and Control. MIT Press. (Cited on page 8.)Google Scholar
Lefebvre, T., Bruyninckx, H., and Schutter, J. D. 2002. Comment on “A new method for the nonlinear transformation of means and covariances in filters and estimators” [and authors’ reply]. IEEE Transactions on Automatic Control, 47(8), 14061409. (Cited on pages 168, 187, and 352.)Google Scholar
Leondes, C. T., Peller, J. B., and Stear, E. B. 1970. Nonlinear smoothing theory. IEEE Transactions on Systems Science and Cybernetics, 6(1), 6371. (Cited on pages 8 and 352.)Google Scholar
Lin, F.-H., Wald, L. L., Ahlfors, S. P., Hämäläinen, M. S., Kwong, K. K., and Belliveau, J. W. 2006. Dynamic magnetic resonance inverse imaging of human brain function. Magnetic Resonance in Medicine, 56(4), 787802. (Cited on page 5.)Google Scholar
Lindsten, F. 2011. Rao–Blackwellised Particle Methods for Inference and Identification. Licentiate's thesis, Linköping University. (Cited on page 317.)Google Scholar
Lindsten, F., and Schön, T. B. 2013. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends in Machine Learning, 6(1), 1143. (Cited on page 310.)Google Scholar
Lindsten, F., Bunch, P., Särkkä, S., Schön, T., and Godsill, S. 2016. Rao-Blackwellized particle smoothers for conditionally linear Gaussian models. IEEE Journal of Selected Topics in Signal Processing, 10(2), 353365. (Cited on page 317.)Google Scholar
Liu, J. S. 2001. Monte Carlo Strategies in Scientific Computing. Springer. (Cited on pages 23, 230, 231, 324, 325, and 326.)Google Scholar
Liu, J. S., and Chen, R. 1995. Blind deconvolution via sequential imputations. Journal of the American Statistical Association, 90(430), 567576. (Cited on pages 239 and 240.)Google Scholar
Luenberger, D. G., and Ye, Y. 2008. Linear and Nonlinear Programming. Third edn. Springer. (Cited on pages 323 and 329.)Google Scholar
Luengo, D., Martino, L., Bugallo, M., Elvira, V., and Särkkä, S. 2020. A survey of Monte Carlo methods for parameter estimation. EURASIP Journal on Advances in Signal Processing, 2020(25), 162. (Cited on page 313.)Google Scholar
Lütkepohl, H. 1996. Handbook of Matrices. Wiley. (Cited on page 356.)Google Scholar
Mahler, R. P. S. 2014. Advances in Statistical Multisource-Multitarget Information Fusion. Artech House. (Cited on pages 3 and 353.)Google Scholar
Maybeck, P. 1982a. Stochastic Models, Estimation and Control. Vol. 3. Academic Press. (Cited on pages 6 and 8.)Google Scholar
Maybeck, P. 1982b. Stochastic Models, Estimation and Control. Vol. 2. Academic Press. (Cited on pages 113 and 133.)Google Scholar
Mbalawata, I. S., Särkkä, S., and Haario, H. 2013. Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Computational Statistics, 28(3), 11951223. (Cited on pages 326 and 338.)Google Scholar
McNamee, J., and Stenger, F. 1967. Construction of fully symmetric numerical integration formulas. Numerische Mathematik, 10, 327344. (Cited on pages 135, 143, 162, 165, 280, 287, and 289.)Google Scholar
Milton, J. S., and Arnold, J. C. 1995. Introduction to Probability and Statistics, Principles and Applications for Engineering and the Computing Sciences. McGraw-Hill. (Cited on page 17.)Google Scholar
Morelande, M., and García-Fernández, Á. F. 2013. Analysis of Kalman filter approximations for nonlinear measurements. IEEE Transactions on Signal Processing, 61(22), 54775484. (Cited on page 124.)Google Scholar
Morf, M., Lévy, B., and Kailath, T. 1978. Square-root algorithms for the continuous-time linear least-square estimation problem. IEEE Transactions on Automatic Control, 23(5), 907911. (Cited on page 358.)Google Scholar
Murray, J. D. 1993. Mathematical Biology. Springer. (Cited on page 5.)Google Scholar
Murray, L., and Storkey, A. 2011. Particle smoothing in continuous time: A fast approach via density estimation. IEEE Transactions on Signal Processing, 59(3), 10171026. (Cited on page 352.)Google Scholar
Neal, R. M. 2011. MCMC using Hamiltonian dynamics. Chap. 5 of: Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (eds), Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC. (Cited on page 326.)Google Scholar
Neal, R., and Hinton, G. 1999. A view of the EM algorithm that justifies incremental, sparse, and other variants. Pages 355–370 of: Jordan, M. I. (ed), Learning in Graphical Models. MIT Press. (Cited on page 327.)Google Scholar
Ninness, B., and Henriksen, S. 2010. Bayesian system identification via Markov chain Monte Carlo techniques. Automatica, 46(1), 4051. (Cited on page 324.)Google Scholar
Ninness, B., Wills, A., and Schön, T. B. 2010. Estimation of general nonlinear state-space systems. Pages 6371–6376 of: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, USA. (Cited on page 344.)Google Scholar
Nørgaard, M., Poulsen, N. K., and Ravn, O. 2000. New developments in state estimation for nonlinear systems. Automatica, 36(11), 16271638. (Cited on page 352.)Google Scholar
Nocedal, J., and Wright, S. J. 2006. Numerical Optimization. 2nd edn. Springer. (Cited on pages 122 and 126.)Google Scholar
O’Hagan, A. 1991. Bayes-Hermite quadrature. Journal of Statistical Planning and Inference, 29(3), 245260. (Cited on pages 135 and 352.)Google Scholar
Øksendal, B. 2003. Stochastic Differential Equations: An Introduction with Applications. Sixth edn. Springer–Verlag. (Cited on page 351.)Google Scholar
Olsson, R., Petersen, K., and Lehn-Schiøler, T. 2007. State-space models: From the EM algorithm to a gradient approach. Neural Computation, 19(4), 10971111. (Cited on pages 330 and 337.)Google Scholar
Piché, R., Särkkä, S., and Hartikainen, J. 2012. Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate Student-t distribution. In: Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP). (Cited on page 353.)Google Scholar
Pitt, M. K., and Shephard, N. 1999. Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590599. (Cited on pages 244, 245, and 246.)Google Scholar
Poyiadjis, G., Doucet, A., and Singh, S. 2011. Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika, 98(1), 6580. (Cited on page 344.)Google Scholar
Proakis, J. G. 2001. Digital Communications. Fourth edn. McGraw-Hill. (Cited on pages 6 and 7.)Google Scholar
Prüher, J., Karvonen, T., Oates, C. J., Straka, O., and Särkkä, S. 2021. Improved calibration of numerical integration error in sigma-point filters. IEEE Transactions on Automatic Control, 66(3), 12861292. (Cited on pages 135 and 352.)Google Scholar
Punskaya, E., Doucet, A., and Fitzgerald, W. J. 2002. On the use and misuse of particle filtering in digital communications. In: Proceedings of EUSIPCO. (Cited on page 242.)Google Scholar
Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257286. (Cited on pages 87, 103, and 105.)Google Scholar
Raiffa, H., and Schlaifer, R. 2000. Applied Statistical Decision Theory. Wiley. (Cited on page 20.)Google Scholar
Rasmussen, C. E., and Williams, C. K. I. 2006. Gaussian Processes for Machine Learning. MIT Press. (Cited on pages 5, 7, and 81.)Google Scholar
Rauch, H. E. 1963. Solutions to the linear smoothing problem. IEEE Transactions on Automatic Control, 8(4), 371372. (Cited on page 8.)Google Scholar
Rauch, H. E., Tung, F., and Striebel, C. T. 1965. Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8), 14451450. (Cited on pages 8 and 255.)Google Scholar
Ristic, B., Arulampalam, S., and Gordon, N. 2004. Beyond the Kalman Filter. Artech House. (Cited on pages 239, 241, 242, 247, and 353.)Google Scholar
Roberts, G. O., and Rosenthal, J. S. 2001. Optimal scaling for various Metropolis– Hastings algorithms. Statistical Science, 16(4), 351367. (Cited on page 325.)Google Scholar
Roth, M. 2012. On the multivariate t distribution. Tech. rept. LiTH-ISY-R-3059. Linköping University Electronic Press. (Cited on pages 78 and 79.)Google Scholar
Roth, M., and Gustafsson, F. 2011. An efficient implementation of the second order extended Kalman filter. In: Proceedings of the 14th International Conference on Information Fusion. (Cited on page 201.)Google Scholar
Roth, M., Özkan, E., and Gustafsson, F. 2013. A Student's t filter for heavy tailed process and measurement noise. Pages 5770–5774 of: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. (Cited on page 78.)Google Scholar
Roweis, S., and Ghahramani, Z. 2001. Learning nonlinear dynamical systems using the expectation–maximization algorithm. Chap. 6, pages 175–220 of: Haykin, S. (ed), Kalman Filtering and Neural Networks. Wiley-Interscience. (Cited on page 327.)Google Scholar
Sage, A. P., and Melsa, J. L. 1971. Estimation Theory with Applications to Communications and Control. McGraw-Hill. (Cited on page 267.)Google Scholar
Saha, S., Ozkan, E., Gustafsson, F., and Smidl, V. 2010. Marginalized particle filters for Bayesian estimation of Gaussian noise parameters. Pages 1–8 of: 13th Conference on Information Fusion (FUSION). (Cited on page 347.)Google Scholar
Sandblom, F., and Svensson, L. 2012. Moment estimation using a marginalized transform. IEEE Transactions on Signal Processing, 60(12), 61386150. (Cited on page 352.)Google Scholar
Särkkä, S., and García-Fernández, A. F. 2021. Temporal parallelization of Bayesian smoothers. IEEE Transactions on Automatic Control, 66, 299306. (Cited on page 354.)Google Scholar
Särkkä, S. 2006. Recursive Bayesian Inference on Stochastic Differential Equations. Doctoral dissertation, Helsinki University of Technology. (Cited on pages 285, 345, 346, and 352.)Google Scholar
Särkkä, S. 2007. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 52(9), 16311641. (Cited on page 352.)Google Scholar
Särkkä, S. 2008. Unscented Rauch-Tung-Striebel smoother. IEEE Transactions on Automatic Control, 53(3), 845849. (Cited on pages 285 and 286.)Google Scholar
Särkkä, S. 2010. Continuous-time and continuous-discrete-time unscented Rauch-Tung-Striebel smoothers. Signal Processing, 90(1), 225235. (Cited on page 352.)Google Scholar
Särkkä, S. 2011. Linear operators and stochastic partial differential equations in Gaussian process regression. In: Proceedings of ICANN. (Cited on page 5.)Google Scholar
Särkkä, S., and Hartikainen, J. 2010a. On Gaussian optimal smoothing of non-linear state space models. IEEE Transactions on Automatic Control, 55(8), 19381941. (Cited on pages 278 and 280.)Google Scholar
Särkkä, S., and Hartikainen, J. 2010b. Sigma point methods in optimal smoothing of non-linear stochastic state space models. Pages 184–189 of: Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP). (Cited on page 352.)Google Scholar
Särkkä, S., and Nummenmaa, A. 2009. Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Transactions on Automatic Control, 54(3), 596600. (Cited on pages 79, 347, and 353.)Google Scholar
Särkkä, S., and Sarmavuori, J. 2013. Gaussian filtering and smoothing for continuous-discrete dynamic systems. Signal Processing, 93(2), 500510. (Cited on page 352.)Google Scholar
Särkkä, S., and Solin, A. 2012. On continuous-discrete cubature Kalman filtering. Pages 1210–1215 of: Proceedings of SYSID 2012. (Cited on page 352.)Google Scholar
Särkkä, S., and Solin, A. 2019. Applied Stochastic Differential Equations. Cambridge University Press. (Cited on pages 7, 44, 46, 52, 53, 57, 58, 59, 61, 69, 351, 359, and 362.)Google Scholar
Särkkä, S., and Sottinen, T. 2008. Application of Girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems. Bayesian Analysis, 3(3), 555584. (Cited on pages 5, 345, 346, and 352.)Google Scholar
Särkkä, S., and Svensson, L. 2020. Levenberg–Marquardt and line-search extended Kalman smoothers. In: Proceedings of 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020). (Cited on pages 127, 276, and 277.)Google Scholar
Särkkä, S., Vehtari, A., and Lampinen, J. 2007a. CATS benchmark time series prediction by Kalman smoother with cross-validated noise density. Neurocomputing, 70(13–15), 23312341. (Cited on page 7.)Google Scholar
Särkkä, S., Vehtari, A., and Lampinen, J. 2007b. Rao-Blackwellized particle filter for multiple target tracking. Information Fusion Journal, 8(1), 215. (Cited on pages 250 and 353.)Google Scholar
Särkkä, S., Bunch, P., and Godsill, S. J. 2012a. A backward-simulation based Rao-Blackwellized particle smoother for conditionally linear Gaussian models. Pages 506–511 of: Proceedings of SYSID 2012. (Cited on page 317.)Google Scholar
Särkkä, S., Solin, A., Nummenmaa, A., Vehtari, A., Auranen, T., Vanni, S., and Lin, F.-H. 2012b. Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER. NeuroImage, 60(2), 15171527. (Cited on page 5.)Google Scholar
Särkkä, S., Solin, A., and Hartikainen, J. 2013. Spatiotemporal learning via infinite-dimensional Bayesian filtering and smoothing. IEEE Signal Processing Magazine, 30(4), 5161. (Cited on page 7.)Google Scholar
Särkkä, S., Hartikainen, J., Svensson, L., and Sandblom, F. 2016. On the relation between Gaussian process quadratures and sigma-point methods. Journal of Advances in Information Fusion, 11(1), 3146. (Cited on pages 135, 165, 201, 290, and 352.)Google Scholar
Sarmavuori, J., and Särkkä, S. 2012. Fourier-Hermite Kalman filter. IEEE Transactions on Automatic Control, 57(6), 15111515. (Cited on pages 176 and 201.)Google Scholar
Schön, T., and Gustafsson, F. 2003. Particle filters for system identification of state-space models linear in either parameters or states. Pages 1287–1292 of: Proceedings of the 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands. (Cited on page 347.)Google Scholar
Schön, T., Gustafsson, F., and Nordlund, P.-J. 2005. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 53(7), 22792289. (Cited on page 250.)Google Scholar
Schön, T., Wills, A., and Ninness, B. 2011. System identification of nonlinear state-space models. Automatica, 47(1), 3949. (Cited on pages 327, 328, and 344.)Google Scholar
Segal, M., and Weinstein, E. 1989. A new method for evaluating the log-likelihood gradient, the Hessian, and the Fisher information matrix for linear dynamic systems. IEEE Transactions on Information Theory, 35(3), 682687. (Cited on page 330.)Google Scholar
Shiryaev, A. N. 1996. Probability. Springer. (Cited on page 17.)Google Scholar
Shumway, R., and Stoffer, D. 1982. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4), 253264. (Cited on pages 327 and 334.)Google Scholar
Šimandl, M., and Duník, J. 2006. Design of derivative-free smoothers and predictors. Pages 991–996 of: Preprints of the 14th IFAC Symposium on System Identification. (Cited on page 285.)Google Scholar
Singer, H. 2008. Nonlinear continuous time modeling approaches in panel research. Statistica Neerlandica, 62(1), 2957. (Cited on page 352.)Google Scholar
Singer, H. 2011. Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms. AStA Advances in Statistical Analysis, 95(4), 375413. (Cited on page 352.)Google Scholar
Skoglund, M., Hendeby, G., and Axehill, D. 2015. Extended Kalman filter modifications based on an optimization view point. Pages 1856–1861 of: 18th International Conference on Information Fusion (FUSION). (Cited on pages 126 and 127.)Google Scholar
Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J. 2008. Obstacles to high-dimensional particle filtering. Monthly Weather Review, 136(12), 46294640. (Cited on page 230.)Google Scholar
Stengel, R. F. 1994. Optimal Control and Estimation. Dover. (Cited on pages 6, 8, and 176.)Google Scholar
Stone, L. D., Barlow, C. A., and Corwin, T. L. 2014. Bayesian Multiple Target Tracking. 2nd edn. Artech House. (Cited on page 3.)Google Scholar
Storvik, G. 2002. Particle filters in state space models with the presence of unknown static parameters. IEEE Transactions on Signal Processing, 50(2), 281289. (Cited on page 347.)Google Scholar
Stratonovich, R. L. 1968. Conditional Markov Processes and Their Application to the Theory of Optimal Control. Elsevier. (Cited on page 8.)Google Scholar
Striebel, C. T. 1965. Partial differential equations for the conditional distribution of a Markov process given noisy observations. Journal of Mathematical Analysis and Applications, 11, 151159. (Cited on page 351.)Google Scholar
Svensson, L., Svensson, D., Guerriero, M., and Willett, P. 2011. Set JPDA filter for multitarget tracking. IEEE Transactions on Signal Processing, 59(10), 46774691. (Cited on page 353.)Google Scholar
Taghavi, E., Lindsten, F., Svensson, L., and Schön, T. B. 2013. Adaptive stopping for fast particle smoothing. Pages 6293–6297 of: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (Cited on page 314.)Google Scholar
Tarantola, A. 2004. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM. (Cited on pages 5 and 7.)Google Scholar
Thrun, S., Burgard, W., and Fox, D. 2005. Probabilistic Robotics. MIT Press. (Cited on page 5.)Google Scholar
Titterton, D. H., and Weston, J. L. 1997. Strapdown Inertial Navigation Technology. Peter Pregrinus Ltd. (Cited on page 3.)Google Scholar
Tronarp, F., García-Fernández, A. F., and Särkkä, S. 2018. Iterative filtering and smoothing in nonlinear and non-Gaussian systems using conditional moments. IEEE Signal Processing Letters, 25(3), 408412. (Cited on pages 168, 182, 187, 204, and 297.)Google Scholar
Väänänen, V. 2012. Gaussian Filtering and Smoothing Based Parameter Estimation in Nonlinear Models for Sequential Data. Master's Thesis, Aalto University. (Cited on page 327.)Google Scholar
Van der Merwe, R., and Wan, E. A. 2001. The square-root unscented Kalman filter for state and parameter estimation. Pages 3461–3464 of: International Conference on Acoustics, Speech, and Signal Processing. (Cited on page 353.)Google Scholar
Van der Merwe, R., De Freitas, N., Doucet, A., and Wan, E. 2001. The unscented particle filter. Pages 584–590 of: Advances in Neural Information Processing Systems 13. (Cited on page 241.)Google Scholar
Van Trees, H. L. 1968. Detection, Estimation, and Modulation Theory Part I. Wiley. (Cited on page 6.)Google Scholar
Van Trees, H. L. 1971. Detection, Estimation, and Modulation Theory Part II. Wiley. (Cited on page 6.)Google Scholar
Vihola, M. 2012. Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics and Computing, 22(5), 9971008. (Cited on pages 325 and 326.)Google Scholar
Viterbi, A. J. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2). (Cited on pages 6 and 262.)Google Scholar
Wan, E. A., and Van der Merwe, R. 2001. The unscented Kalman filter. Chap. 7 of: Haykin, S. (ed), Kalman Filtering and Neural Networks. Wiley. (Cited on pages 150 and 155.)Google Scholar
West, M., and Harrison, J. 1997. Bayesian Forecasting and Dynamic Models. Springer-Verlag. (Cited on page 8.)Google Scholar
Wiener, N. 1950. Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications. Wiley. (Cited on page 7.)Google Scholar
Wills, A., Schön, T. B., Ljung, L., and Ninness, B. 2013. Identification of Hammerstein–Wiener models. Automatica, 49(1), 7081. (Cited on page 343.)Google Scholar
Wu, Y., Hu, D., Wu, M., and Hu, X. 2005. Unscented Kalman filtering for additive noise case: Augmented versus nonaugmented. IEEE Signal Processing Letters, 12(5), 357360. (Cited on page 157.)Google Scholar
Wu, Y., Hu, D., Wu, M., and Hu, X. 2006. A numerical-integration perspective on Gaussian filters. IEEE Transactions on Signal Processing, 54(8), 29102921. (Cited on pages 131, 133, 135, 142, 143, 145, 162, 165, 280, 287, 289, and 352.)Google Scholar
Yaghoobi, F., Corenflos, A., Hassan, S., and Särkkä, S. 2021. Parallel iterated extended and sigma-point Kalman smoothers. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (Cited on page 354.)Google Scholar
Ypma, A., and Heskes, T. 2005. Novel approximations for inference in nonlinear dynamical systems using expectation propagation. Neurocomputing, 69(1), 8599. (Cited on page 353.)Google Scholar
Zoeter, O., and Heskes, T. 2011. Expectation propagation and generalized EP methods for inference in switching linear dynamical systems. Chap. 7, pages 141–165 of: Bayesian Time Series Models. Cambridge University Press. (Cited on page 352.)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Simo Särkkä, Aalto University, Finland, Lennart Svensson, Chalmers University of Technology, Gothenberg
  • Book: Bayesian Filtering and Smoothing
  • Online publication: 01 June 2023
  • Chapter DOI: https://doi.org/10.1017/9781108917407.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Simo Särkkä, Aalto University, Finland, Lennart Svensson, Chalmers University of Technology, Gothenberg
  • Book: Bayesian Filtering and Smoothing
  • Online publication: 01 June 2023
  • Chapter DOI: https://doi.org/10.1017/9781108917407.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Simo Särkkä, Aalto University, Finland, Lennart Svensson, Chalmers University of Technology, Gothenberg
  • Book: Bayesian Filtering and Smoothing
  • Online publication: 01 June 2023
  • Chapter DOI: https://doi.org/10.1017/9781108917407.020
Available formats
×