Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T15:10:20.584Z Has data issue: false hasContentIssue false

12 - Interaction of Helicobacter pylori with the gastric mucosa

from Part IV - Exploitation of host niches by pathogenic bacteria: mechanisms and consequences

Published online by Cambridge University Press:  12 August 2009

D. Scott Merrell
Affiliation:
Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda MD 20814-4799, USA
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

INTRODUCTION

Microbes populate virtually every square inch of the earth's surface. This success is due in large part to the numerous adaptation strategies they have developed to facilitate survival/persistence. The practical requirement for microbial resilience is particularly true of pathogenic microorganisms, as they must cope with host environments that are often actively adversarial. This is the case with Helicobacter pylori, which colonizes in the unlikely niche of the human stomach. Once in the stomach, H. pylori establishes a chronic infection in a manner that shows many similarities to what we typically think of as behavior of the host-adapted flora – “with an eye towards persistence rather than towards causing disease” (Merrell and Falkow, 2004). This is evidenced by the fact that severe disease typically takes decades to develop. This delayed development of overt pathology suggests that there is a balance shift that causes colonization to go awry and leads to disease. This shift is likely due to a combination of physiological and genetic factors for both participants of the host–pathogen interaction. On the bacterial front, H. pylori interacts with gastric mucosal cells and expresses a repertoire of factors that result in alterations in host cell signaling. These changes in host cell signaling are likely ultimately responsible for H. pylori-induced disease. Thus, H. pylori represents a model organism in terms of its ability to chronically exploit the gastric niche as well as to manipulate gastric epithelial cells (Figure 12.1).

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 327 - 355
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akopyants, N. S., Clifton, S. W., Kersulyte, D., et al. (1998). Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol. 28, 37–53.CrossRefGoogle ScholarPubMed
Allen, L. A., Schlesinger, L. S., and Kang, B. (2000). Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med. 191, 115–128.CrossRefGoogle ScholarPubMed
Alm, R. A., Bina, J., Andrews, B. M., et al. (2000). Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect. Immun. 68, 4155–4168.CrossRefGoogle ScholarPubMed
Amieva, M. R., Salama, N. R., Tompkins, L. S., and Falkow, S. (2002). Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4, 677–690.CrossRefGoogle ScholarPubMed
Amieva, M. R., Vogelmann, R., Covacci, A., et al. (2003). Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434.CrossRefGoogle ScholarPubMed
Andermann, T. M., Chen, Y. T., and Ottemann, K. M. (2002). Two predicted chemoreceptors of Helicobacter pylori promote stomach infection. Infect. Immun. 70, 5877–5881.CrossRefGoogle ScholarPubMed
Andrutis, K. A., Fox, J. G., Schauer, D. B., et al. (1995). Inability of an isogenic urease-negative mutant stain of Helicobacter mustelae to colonize the ferret stomach. Infect. Immun. 63, 3722–3725.Google ScholarPubMed
Aras, R. A., Lee, Y., Kim, S. K., et al. (2003). Natural variation in populations of persistently colonizing bacteria affect human host cell phenotype. J. Infect. Dis. 188, 486–496.CrossRefGoogle ScholarPubMed
Argent, R. H., Kidd, M., Owen, R. J., et al. (2004). Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology 127, 514–523.CrossRefGoogle ScholarPubMed
Asahi, M., Azuma, T., et al. (2000). Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J. Exp. Med. 191, 593–602.CrossRefGoogle ScholarPubMed
Aspholm-Hurtig, M., Dailide, G., Lahmann, M., et al. (2004). Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305, 519–522.CrossRefGoogle Scholar
Azuma, T., Yamazaki, S., Yamakawa, A., et al. (2004). Association between diversity in the Src homology 2 domain-containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. J. Infect. Dis. 189, 820–827.CrossRefGoogle ScholarPubMed
Backert, S., Moese, S., Selbach, M., Brinkmann, V., and Meyer, T. F. (2001). Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol. Microbiol. 42, 631–644.CrossRefGoogle ScholarPubMed
Backstrom, A., Lundberg, C., Kersulyte, D., et al. (2004). Metastability of Helicobacter pylori bab adhesin genes and dynamics in Lewis b antigen binding. Proc. Natl. Acad. Sci. U. S. A. 101, 16 923–16 928.CrossRefGoogle Scholar
Bagnoli, F., Buti, L., Tompkins, L., Covacci, A., and Amieva, M. R. (2005). Helicobacter pylori CagA induces transition from polarized to invasive phenotypes in MDCK cells. Proc. Natl. Acad. Sci. U. S. A. 102, 16 339–16 344.CrossRefGoogle ScholarPubMed
Blanke, S. R. (2005). Micro-managing the executioner: pathogen targeting of mitochondria. Trends Microbiol. 13, 64–71.CrossRefGoogle ScholarPubMed
Blaser, M. J. (1998). Helicobacter pylori and gastric diseases. Br. Med. J. 316, 1507–1510.CrossRefGoogle ScholarPubMed
Blaser, M. J. and Parsonnet, J. (1994). Parasitism by the “slow” bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J. Clin. Invest. 94, 4–8.CrossRefGoogle ScholarPubMed
Blaser, M. J., Chyou, P. H., and Nomura, A. (1995). Age at establishment of Helicobacter pylori infection and gastric carcinoma, gastric ulcer, and duodenal ulcer risk. Cancer Res. 55, 562–565.Google ScholarPubMed
Bode, G., Malfertheiner, P., and Ditschuneit, H. (1988). Pathogenetic implications of ultrastructural findings in Campylobacter pylori related gastroduodenal disease. Scand. J. Gastroenterol. Suppl. 142, 25–39.CrossRefGoogle ScholarPubMed
Boncristiano, M., Paccani, S. R., Barone, S., et al. (2003). The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J. Exp. Med. 198, 1887–1897.CrossRefGoogle ScholarPubMed
Borch, K., Sjostedt, C., Hannestad, U., et al. (1998). Asymptomatic Helicobacter pylori gastritis is associated with increased sucrose permeability. Dig. Dis. Sci. 43, 749–753.CrossRefGoogle ScholarPubMed
Brabletz, T., Jung, A., Dag, S., Hlubek, F., and Kirchner, T. (1999). Beta-Catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am. J. Pathol. 155, 1033–1038.CrossRefGoogle ScholarPubMed
Caselli, M., Figura, N., Trevisani, L., et al. (1989). Patterns of physical modes of contact between Campylobacter pylori and gastric epithelium: implications about the bacterial pathogenicity. Am. J. Gastroenterol. 84, 511–513.Google ScholarPubMed
Censini, S., Lange, C., Xiang, Z., et al. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. U. S. A. 93, 14 648–14 653.CrossRefGoogle ScholarPubMed
Covacci, A., Censini, S., Bugnoli, M., et al. (1993). Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl. Acad. Sci. U. S. A. 90, 5791–5795.CrossRefGoogle ScholarPubMed
Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J., and Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science 284, 1328–1333.CrossRefGoogle ScholarPubMed
Cover, T. L. (1996). The vacuolating cytotoxin of Helicobacter pylori. Mol. Microbiol. 20, 241–246.CrossRefGoogle ScholarPubMed
Cover, T. L. and Blaser, M. J. (1992). Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 267, 10 570–10 575.Google ScholarPubMed
Cover, T. L. and Blanke, S. R. (2005). Helicobacter pylori VacA: a paradigm for toxin multifunctionality. Nat. Rev. Microbiol. 3, 320–332.CrossRefGoogle ScholarPubMed
Curtis, G. H. and Gall, D. G. (1992). Macromolecular transport by rat gastric mucosa. Am. J. Physiol. 262, G1033–1040.Google ScholarPubMed
Drumm, B., Sherman, P., Cutz, E., and Karmali, M. (1987). Association of Campylobacter pylori on the gastric mucosa with antral gastritis in children. N. Engl. J. Med. 316, 1557–1561.CrossRefGoogle ScholarPubMed
Dunn, B. E., Cohen, H., and Blaser, M. J. (1997). Helicobacter pylori. Clin. Microbiol. Rev. 10, 720–741.Google ScholarPubMed
Dykhuizen, R. S., Fraser, A., McKenzie, H., et al. (1998). Helicobacter pylori is killed by nitrite under acidic conditions. Gut 42, 334–337.CrossRefGoogle ScholarPubMed
Eaton, K. A. and Krakowka, S. (1994). Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect. Immun. 62, 3604–3607.Google ScholarPubMed
Eaton, K. A., Morgan, D. R., and Krakowka, S. (1992). Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori. J. Med. Microbiol. 37, 123–127.CrossRefGoogle ScholarPubMed
Eaton, K. A., Suerbaum, S., Josenhans, C., and Krakowka, S. (1996). Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 64, 2445–2448.Google ScholarPubMed
El-Etr, S. H., Mueller, A., Tompkins, L. S., Falkow, S., and Merrell, D. S. (2004). Phosphorylation-independent effects of CagA during interaction between Helicobacter pylori and T84 Polarized monolayers. J. Infect. Dis. 190, 1516–1523.CrossRefGoogle ScholarPubMed
El-Shoura, S. M. (1995). Helicobacter pylori: I. Ultrastructural sequences of adherence, attachment, and penetration into the gastric mucosa. Ultrastruct. Pathol. 19, 323–333.CrossRefGoogle ScholarPubMed
Ernst, P. B. and Gold, B. D. (2000). The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol. 54, 615–640.CrossRefGoogle ScholarPubMed
Ferrero, R. L., Cussac, V., Courcoux, P., and Labigne, A. (1992). Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J. Bacteriol. 174, 4212–4217.CrossRefGoogle ScholarPubMed
Fischer, W., Puls, J., Buhrdorf, R., et al. (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol. 42, 1337–1348.CrossRefGoogle ScholarPubMed
Foliguet, B., Vicari, F., Guedenet, J. C., Korwin, J. D., and Marchal, L. (1989). [Scanning electron microscopic study of Campylobacter pylori and associated gastroduodenal lesions.]Gastroenterol. Clin. Biol. 13, 65B–70B.Google Scholar
Fu, S., Ramanujam, K. S., Wong, A., et al. (1999). Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology 116, 1319–1329.CrossRefGoogle ScholarPubMed
Galmiche, A., Rassow, J., Doye, A., et al. (2000). The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 19, 6361–6370.CrossRefGoogle ScholarPubMed
Gebert, B., Fischer, W., Weiss, E., Hoffmann, R., and Haas, R. (2003). Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099–1102.CrossRefGoogle ScholarPubMed
Gobert, A. P., McGee, D. J., Akhtar, M., et al. (2001). Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl. Acad. Sci. U. S. A. 98, 13 844–13 849.CrossRefGoogle ScholarPubMed
Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer 4, 688–694.CrossRefGoogle ScholarPubMed
He, T. C., Sparks, A. B., Rago, C., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512.CrossRefGoogle ScholarPubMed
Higashi, H., Tsutsumi, R., Fujita, A., et al. (2002a). Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl. Acad. Sci. U. S. A. 99, 14 428–14 433.CrossRefGoogle Scholar
Higashi, H., Tsutsumi, R., Muto, S., et al. (2002b). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686.CrossRefGoogle Scholar
Higashi, H., Yokoyama, K., Fujii, Y., et al. (2005). EPIYA motif is a membrane targeting signal of Helicobacter pylori CagA in mammalian cells. J. Biol. Chem. 280, 231–307.CrossRefGoogle ScholarPubMed
Hirata, Y., Maeda, S., Mitsuno, Y., et al. (2002). Helicobacter pylori CagA protein activates serum response element-driven transcription independently of tyrosine phosphorylation. Gastroenterology 123, 1962–1971.CrossRefGoogle ScholarPubMed
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1994). Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr. Eval. Carcinog. Risks Hum. 61, 1–241.
Ilver, D., Arnqvist, A., Ogren, J., et al. (1998). Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377.CrossRefGoogle ScholarPubMed
Israel, D. A., Salama, N., Krishna, U., et al. (2001). Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. U. S. A. 98, 14 625–14 630.CrossRefGoogle ScholarPubMed
Iwamoto, H., Czajkowsky, D. M., Cover, T. L., Szabo, G., and Shao, Z. (1999). VacA from Helicobacter pylori: a hexameric chloride channel. FEBS Lett. 450, 101–104.CrossRefGoogle ScholarPubMed
Jawhari, A., Jordan, S., Poole, S., et al. (1997). Abnormal immunoreactivity of the E-cadherin-catenin complex in gastric carcinoma: relationship with patient survival. Gastroenterology 112, 46–54.CrossRefGoogle ScholarPubMed
Jones, N. L., Shannon, P. T., Cutz, E., Yeger, H., and Sherman, P. M. (1997). Increase in proliferation and apoptosis of gastric epithelial cells early in the natural history of Helicobacter pylori infection. Am. J. Pathol. 151, 1695–1703.Google ScholarPubMed
Kimura, M., Goto, S., Wada, A., et al. (1999). Vacuolating cytotoxin purified from Helicobacter pylori causes mitochondrial damage in human gastric cells. Microb. Pathog. 26, 45–52.CrossRefGoogle ScholarPubMed
Kodama, A., Matozaki, T., Fukuhara, A., et al. (2000). Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering. Mol. Biol. Cell 11, 2565–2575.CrossRefGoogle ScholarPubMed
Kuwahara, H., Miyamoto, Y., Akaike, T., et al. (2000). Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect. Immun. 68, 4378–4383.CrossRefGoogle ScholarPubMed
Le'Negrate, G., Ricci, V., Hofman, V., et al. (2001). Epithelial intestinal cell apoptosis induced by Helicobacter pylori depends on expression of the cag pathogenicity island phenotype. Infect. Immun. 69, 5001–5009.CrossRefGoogle ScholarPubMed
Lee, S. K., Stack, A., Katzowitsch, E., et al. (2003). Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect. 5, 1345–1356.CrossRefGoogle ScholarPubMed
Leunk, R. D., Johnson, P. T., David, B. C., Kraft, W. G., and Morgan, D. R. (1988). Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J. Med. Microbiol. 26, 93–99.CrossRefGoogle ScholarPubMed
Loughlin, M. F., Barnard, F. M., Jenkins, D., Sharples, G. J., and Jenks, P. J. (2003). Helicobacter pylori mutants defective in RuvC Holliday junction resolvase display reduced macrophage survival and spontaneous clearance from the murine gastric mucosa. Infect. Immun. 71, 2022–2031.CrossRefGoogle ScholarPubMed
Lupetti, P., Heuser, J. E., Manetti, R., et al. (1996). Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J. Cell. Biol. 133, 801–807.CrossRefGoogle ScholarPubMed
Madara, J. L., Stafford, J., Dharmsathaphorn, K., and Carlson, S. (1987). Structural analysis of a human intestinal epithelial cell line. Gastroenterology 92, 1133–1145.CrossRefGoogle ScholarPubMed
Mahdavi, J., Sonden, B., Hurtig, M., et al. (2002). Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573–578.CrossRefGoogle ScholarPubMed
Mann, B., Gelos, M., Siedow, A., et al. (1999). Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc. Natl. Acad. Sci. U. S. A. 96, 1603–1608.CrossRefGoogle ScholarPubMed
Marshall, B. J. and Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315.CrossRefGoogle ScholarPubMed
Matysiak-Budnik, T. and Megraud, F. (1997). Epidemiology of Helicobacter pylori infection with special reference to professional risk. J. Physiol. Pharmacol. 48 (Suppl 4), 3–17.Google ScholarPubMed
McClain, M. S., Schraw, W., Ricci, V., Boquet, P., and Cover, T. L. (2000). Acid activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. Mol. Microbiol. 37, 433–442.CrossRefGoogle ScholarPubMed
McGee, D. J., Radcliff, F. J., Mendz, G. L., Ferrero, R. L., and Mobley, H. L. (1999). Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. J. Bacteriol. 181, 7314–7322.Google ScholarPubMed
McGee, D. J., Coker, C., Testerman, T. L., et al. (2002). The Helicobacter pylori flbA flagellar biosynthesis and regulatory gene is required for motility and virulence and modulates urease of H. pylori and Proteus mirabilis. J. Med. Microbiol. 51, 958–970.CrossRefGoogle ScholarPubMed
McGee, D. J., Langford, M. L., Watson, E. L., et al. (2005). Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. Infect. Immun. 73, 1820–1827.CrossRefGoogle ScholarPubMed
Merrell, D. S. and Falkow, S. (2003). Expression profiling in Helicobacter pylori infection. In Perspectives in Gene Expression, ed. Appasani, K.. Westborough: Eaton Publishing, pp. 273–303.Google Scholar
Merrell, D. S. and Falkow, S. (2004). Frontal and stealth attack strategies in microbial pathogenesis. Nature 430, 250–256.CrossRefGoogle ScholarPubMed
Merrell, D. S., Goodrich, M. L., Otto, G., Tompkins, L. S., and Falkow, S. (2003). pH regulated gene expression of the gastric pathogen Helicobacter pylori. Infect. Immun. 71, 3529–3539.CrossRefGoogle ScholarPubMed
Meyer-Rosberg, K., Scott, D. R., Rex, D., Melchers, K., and Sachs, G. (1996). The effect of environmental pH on the proton motive force of Helicobacter pylori. Gastroenterology 111, 886–900.CrossRefGoogle ScholarPubMed
Mimuro, H., Suzuki, T., Tanaka, J., et al. (2002). Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol. Cell 10, 745–755.CrossRefGoogle ScholarPubMed
Mobley, H. L., Island, M. D., and Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiol. Rev 59, 451–480.Google ScholarPubMed
Molinari, M., Galli, C., Norais, N., et al. (1997). Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. J. Biol. Chem. 272, 25 339–25 344.CrossRefGoogle ScholarPubMed
Molinari, M., Salio, M., Galli, C., et al. (1998). Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J. Exp. Med. 187, 135–140.CrossRefGoogle ScholarPubMed
Neu, B., Rad, R., Reindl, W., et al. (2005). Expression of tumor necrosis factor-alpha-related apoptosis-inducing ligand and its proapoptotic receptors is down-regulated during gastric infection with virulent cagA+/vacAs1+ Helicobacter pylori strains. J. Infect. Dis. 191, 571–578.CrossRefGoogle ScholarPubMed
Neugut, A. I., Hayek, M., and Howe, G. (1996). Epidemiology of gastric cancer. Semin. Oncol. 23, 281–291.Google ScholarPubMed
Odenbreit, S., Puls, J., Sedlmaier, B., et al. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500.CrossRefGoogle ScholarPubMed
Oh, J. D., Karam, S. M., and Gordon, J. I. (2005). Intracellular Helicobacter pylori in gastric epithelial progenitors. Proc. Natl. Acad. Sci. U. S. A. 102, 5186–5191.CrossRefGoogle ScholarPubMed
Ottemann, K. M. and Lowenthal, A. C. (2002). Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70, 1984–1990.CrossRefGoogle ScholarPubMed
Papini, E., Bernard, M., Milia, E., et al. (1994). Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc. Natl. Acad. Sci. U. S. A. 91, 9720–9724.CrossRefGoogle ScholarPubMed
Parsonnet, J., Friedman, G. D., Vandersteen, D. P., et al. (1991). Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127–1131.CrossRefGoogle ScholarPubMed
Phadnis, S. H., Parlow, M. H., Levy, M., et al. (1996). Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64, 905–912.Google Scholar
Pierceall, W. E., Woodard, A. S., Morrow, J. S., Rimm, D., and Fearon, E. R. (1995). Frequent alterations in E-cadherin and alpha- and beta-catenin expression in human breast cancer cell lines. Oncogene 11, 1319–1326.Google ScholarPubMed
Rabassa, A. A., Goodgame, R., Sutton, F. M., et al. (1996). Effects of aspirin and Helicobacter pylori on the gastroduodenal mucosal permeability to sucrose. Gut 39, 159–163.CrossRefGoogle Scholar
Rhen, M., Eriksson, S., Clements, M., Bergstrom, S., and Normark, S. J. (2003). The basis of persistent bacterial infections. Trends Microbiol. 11, 80–86.CrossRefGoogle ScholarPubMed
Rimm, D. L., Sinard, J. H., and Morrow, J. S. (1995). Reduced alpha-catenin and E-cadherin expression in breast cancer. Lab. Invest. 72, 506–512.Google ScholarPubMed
Salama, N. R., Otto, G., Tompkins, L., and Falkow, S. (2001). Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun. 69, 730–736.CrossRefGoogle Scholar
Salama, N. R., Ottemann, K. M., and Falkow, S. (2002). Toxins, tropisms and travels: H. pylori and host cells. In Helicobacter Infections and Immunity, ed. Yamamoto, Y., Friedman, H., and Hoffman, P.. New York: Kluwer Academic/Plenum Publishers, pp. 173–201.CrossRefGoogle Scholar
Schreiber, S., Konradt, M., Groll, C., et al. (2004). The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl. Acad. Sci. U. S. A. 101, 5024–5029.CrossRefGoogle ScholarPubMed
Scott, D. R., Weeks, D., Hong, C., et al. (1998). The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114, 58–70.CrossRefGoogle ScholarPubMed
Segal, E. D. (1997). Consequences of attachment of Helicobacter pylori to gastric cells. Biomed. Pharmacother. 51, 5–12.CrossRefGoogle ScholarPubMed
Segal, E. D., Lange, C., Covacci, A., Tompkins, L. S., and Falkow, S. (1997). Induction of host signal transduction pathways by Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A. 94, 7595–7599.CrossRefGoogle ScholarPubMed
Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999). Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A. 96, 14 559–14 564.CrossRefGoogle ScholarPubMed
Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F., and Backert, S. (2002). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Biol. Chem. 277, 6775–6778.CrossRefGoogle ScholarPubMed
Semino-Mora, C., Doi, S. Q., Marty, A., et al. (2003). Intracellular and interstitial expression of Helicobacter pylori virulence genes in gastric precancerous intestinal metaplasia and adenocarcinoma. J. Infect. Dis. 187, 1165–1177.CrossRefGoogle ScholarPubMed
Smith, M. F. Jr, Mitchell, A., Li, G., et al. (2003). Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J. Biol. Chem. 278, 32 552–32 560.CrossRefGoogle Scholar
Solnick, J. V., Hansen, L. M., Salama, N. R., Boonjakuakul, J. K., and Syvanen, M. (2004). Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc. Natl. Acad. Sci. U. S. A. 101, 2106–2111.CrossRefGoogle ScholarPubMed
Stein, M., Rappuoli, R., and Covacci, A. (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. U. S. A. 97, 1263–1268.CrossRefGoogle ScholarPubMed
Stein, M., Bagnoli, F., Halenbeck, R., et al. (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol. 43, 971–980.CrossRefGoogle ScholarPubMed
Sundrud, M. S., Torres, V. J., Unutmaz, D., and Cover, T. L. (2004). Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc. Natl. Acad. Sci. U. S. A. 101, 7727–7732.CrossRefGoogle Scholar
Taipale, J. and Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354.CrossRefGoogle Scholar
Telford, J. L., Ghiara, P., Dell'Orco, M., et al. (1994). Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J. Exp. Med. 179, 1653–1658.CrossRefGoogle ScholarPubMed
Terry, K., Williams, S. M., Connolly, L., and Ottemann, K. M. (2005). Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect. Immun. 73, 803–811.CrossRefGoogle ScholarPubMed
Tombola, F., Carlesso, C., Szabo, I., et al. (1999). Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: possible implications for the mechanism of cellular vacuolation. Biophys. J. 76, 1401–1409.CrossRefGoogle ScholarPubMed
Tombola, F., Morbiato, L., Del Giudice, G., et al. (2001). The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J. Clin. Invest. 108, 929–937.CrossRefGoogle ScholarPubMed
Tsuda, M., Karita, M., Morshed, M. G., Okita, K., and Nakazawa, T. (1994). A urease-negative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach. Infect. Immun. 62, 3586–3589.Google ScholarPubMed
Umehara, S., Higashi, H., Ohnishi, N., Asaka, M., and Hatakeyama, M. (2003). Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 22, 8337–8342.CrossRefGoogle ScholarPubMed
Valle, J., Seppala, K., Sipponen, P., and Kosunen, T. (1991). Disappearance of gastritis after eradication of Helicobacter pylori. A morphometric study. Scand. J. Gastroenterol. 26, 1057–1065.CrossRefGoogle ScholarPubMed
Vera, J. F., Gotteland, M., Chavez, E., et al. (1997). Sucrose permeability in children with gastric damage and Helicobacter pylori infection. J. Pediatr. Gastroenterol. Nutr. 24, 506–511.CrossRefGoogle ScholarPubMed
Weeks, D. L., Eskandari, S., Scott, D. R., and Sachs, G. (2000). A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287, 482–485.CrossRefGoogle ScholarPubMed
Willhite, D. C. and Blanke, S. R. (2004). Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell. Microbiol. 6, 143–154.CrossRefGoogle ScholarPubMed
Willhite, D. C., Cover, T. L., and Blanke, S. R. (2003). Cellular vacuolation and mitochondrial cytochrome c release are independent outcomes of Helicobacter pylori vacuolating cytotoxin activity that are each dependent on membrane channel formation. J. Biol. Chem. 278, 48 204–48 209.CrossRefGoogle ScholarPubMed
Wilson, K. T., Ramanujam, K. S., Mobley, H. L., et al. (1996). Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in a murine macrophage cell line. Gastroenterology 111, 1524–1533.CrossRefGoogle Scholar
Xiang, Z., Censini, S., Bayeli, P. F., et al. (1995). Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect. Immun. 63, 94–98.Google Scholar
Yahiro, K., Niidome, T., Hatakeyama, T., et al. (1997). Helicobacter pylori vacuolating cytotoxin binds to the 140-kDa protein in human gastric cancer cell lines, AZ-521 and AGS. Biochem. Biophys. Res. Commun. 238, 629–632.CrossRefGoogle ScholarPubMed
Yamaoka, Y., El-Zimaity, H. M., Gutierrez, O., et al. (1999). Relationship between the cagA 3′ repeat region of Helicobacter pylori, gastric histology, and susceptibility to low pH. Gastroenterology 117, 342–349.CrossRefGoogle ScholarPubMed
Yeung, C. K., Fu, K. H., Yuen, K. Y., et al. (1990). Helicobacter pylori and associated duodenal ulcer. Arch. Dis. Child. 65, 1212–1216.CrossRefGoogle ScholarPubMed
Zheng, P. Y. and Jones, N. L. (2003). Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cell. Microbiol. 5, 25–40.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×