Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-rbzxz Total loading time: 1.099 Render date: 2022-05-17T00:58:24.648Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

6 - Listeria monocytogenes invasion and intracellular growth

Published online by Cambridge University Press:  21 August 2009

Kendy K.Y. Wong
Affiliation:
Seattle Biomedical Research Institute and the Department of Pathobiology, University of Washington, Seattle, Washington 98109, USA
Nancy E. Freitag
Affiliation:
Seattle Biomedical Research Institute and the Department of Pathobiology, University of Washington, Seattle, Washington 98109, USA
Richard J. Lamont
Affiliation:
University of Florida
Get access

Summary

Studies focused on the Gram-positive, facultative intracellular bacterial path-ogen Listeria monocytogenes have provided valuable insights into many facets of biology, including cell-mediated immunity, cell physiology, and bacterial pathogenesis. The bacterium invades and replicates within a wide variety of cell types, and is capable of infecting an astonishing diversity of hosts, including mammals, fish, and insects (Gray and Killinger, 1966). The well-established use of murine and tissue culture models of infection, the ease of growing L. monocytogenes within the laboratory, and the existence of numerous genetic tools for the generation and analysis of bacterial mutants have helped to make L. monocytogenes a powerful model system for the exploration of the molecular basis of host–pathogen interactions. Because of its ubiquity within the environment and robust survival skills, this important foodborne pathogen remains a constant concern for public health departments and the food industry.

Listeriae are noncapsulated, nonspore-forming, facultative anaerobic bacilli. They are 0.4 μm by 1 to 1.5 μm in size and are motile at 10°C to 25°C through the expression of polar flagellae (Farber and Peterkin, 1991; Lorber, 1997; Vazquez-Boland et al., 2001b). There are six species in the Listeria genus: L. monocytogenes, L. ivanovii, L. innocua, L. seeligeri, L. welshimeri, and L. grayi (Collins et al., 1991; Sheehan et al., 1994). Only L. monocytogenes and L. ivanovii are considered pathogenic and are responsible for the disease known as listeriosis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abachin, E., Poyart, C., Pellegrini, E., Milohanic, E., Fiedler, F., Berche, P. and Trieu-Cuot, P. (2002). Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol. Microbiol. 43, 1–14CrossRefGoogle ScholarPubMed
Adams, T. J., Vartivarian, S. and Cowart, R. E. (1990). Iron acquisition systems of Listeria monocytogenes. Infect. Immun. 58, 2715–2718Google ScholarPubMed
Alexander, A. V., Walker, R. L., Johnson, B. J., Charlton, B. R. and Woods, L. W. (1992). Bovine abortions attributable to Listeria ivanovii: four cases (1988–1990). J. Am. Vet. Med. Assoc. 200, 711–714Google Scholar
Alvarez-Dominguez, C., Carrasco-Marin, E. and Leyva-Cobian, F. (1993). Role of complement component C1q in phagocytosis of Listeria monocytogenes by murine macrophage-like cell lines. Infect. Immun. 61, 3664–3672Google ScholarPubMed
Alvarez-Dominguez, C., Roberts, R. and Stahl, P. D. (1997a). Internalized Listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome. J. Cell Sci. 110, 731–743Google Scholar
Alvarez-Dominguez, C., Vazquez-Boland, J. A., Carrasco-Marin, E., Lopez-Mato, P. and Leyva-Cobian, F. (1997b). Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65, 78–88Google Scholar
Antal, E. A., Loberg, E. M., Bracht, P., Melby, K. K. and Maehlen, J. (2001). Evidence for intraaxonal spread of Listeria monocytogenes from the periphery to the central nervous system. Brain Pathol. 11, 432–438CrossRefGoogle ScholarPubMed
Armstrong, R. W. and Fung, P. C. (1993). Brainstem encephalitis (rhombencephalitis) due to Listeria monocytogenes: case report and review. Clin. Infect. Dis. 16, 689–702CrossRefGoogle ScholarPubMed
Auerbuch, V., Lenz, L. L. and Portnoy, D. A. (2001). Development of a competitive index assay to evaluate the virulence of Listeria monocytogenes actA mutants during primary and secondary infection of mice. Infect. Immun. 69, 5953–5957CrossRefGoogle ScholarPubMed
Aureli, P., Fiorucci, G. C., Caroli, D., Marchiaro, G., Novara, O., Leone, L. and Salmaso, S. (2000). An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N. Engl. J. Med. 342, 1236–1241CrossRefGoogle ScholarPubMed
Autret, N., Dubail, I., Trieu-Cuot, P., Berche, P. and Charbit, A. (2001). Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69, 2054–2065CrossRefGoogle ScholarPubMed
Barchini, E. and Cowart, R. E. (1996). Extracellular iron reductase activity produced by Listeria monocytogenes. Arch. Microbiol. 166, 51–57CrossRefGoogle ScholarPubMed
Beauregard, K. E., Lee, K. D., Collier, R. J. and Swanson, J. A. (1997). pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J. Exp. Med. 186, 1159–1163CrossRefGoogle ScholarPubMed
Bergmann, B., Raffelsbauer, D., Kuhn, M., Goetz, M., Hom, S. and Goebel, W. (2002). InlA-but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins. Mol. Microbiol. 43, 557–570CrossRefGoogle Scholar
Bielecki, J., Youngman, P., Connelly, P. and Portnoy, D. A. (1990). Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345, 175–176CrossRefGoogle ScholarPubMed
Bierne, H., Mazmanian, S. K., Trost, M., Pucciarelli, M. G., Liu, G., Dehoux, P., Jansch, L., Garcia-del Portillo, F., Schneewind, O. and Cossart, P. (2002). Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol. Microbiol. 43, 869–881CrossRefGoogle ScholarPubMed
Bohne, J., Sokolovic, Z. and Goebel, W. (1994). Transcriptional regulation of prfA and PrfA-regulated virulence genes in Listeria monocytogenes. Mol. Microbiol. 11, 1141–1150CrossRefGoogle ScholarPubMed
Borezee, E., Pellegrini, E., Beretti, J. L. and Berche, P. (2001). SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes. Microbiology 147, 2913–2923CrossRefGoogle ScholarPubMed
Boujemaa-Paterski, R., Gouin, E., Hansen, G., Samarin, S., Clainche, C., Didry, D., Dehoux, P., Cossart, P., Kocks, C., Carlier, M. F., and Pantalovi, D. (2001). Listeria protein ActA mimics WASP family proteins: it activates filament barbed end branching by Arp2/3 complex. Biochemistry 40, 11,390–11,404CrossRefGoogle ScholarPubMed
Boulnois, G. J., Paton, J. C., Mitchell, T. J. and Andrew, P. W. (1991). Structure and function of pneumolysin, the multifunctional, thiol-activated toxin of Streptococcus pneumoniae. Mol. Microbiol. 5, 2611–2616CrossRefGoogle ScholarPubMed
Braun, L., Dramsi, S., Dehoux, P., Bierne, H., Lindahl, G. and Cossart, P. (1997). InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 25, 285–294CrossRefGoogle ScholarPubMed
Braun, L., Ohayon, H. and Cossart, P. (1998). The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol. Microbiol. 27, 1077–1087CrossRefGoogle ScholarPubMed
Braun, L., Ghebrehiwet, B. and Cossart, P. (2000). gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19, 1458–1466CrossRefGoogle ScholarPubMed
Bubert, A., Kuhn, M., Goebel, W. and Kohler, S. (1992). Structural and functional properties of the p60 proteins from different Listeria species. J. Bacteriol. 174, 8166–8171CrossRefGoogle ScholarPubMed
Bubert, A., Sokolovic, Z., Chun, S. K., Papatheodorou, L., Simm, A. and Goebel, W. (1999). Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol. Gen. Genet. 261, 323–336Google ScholarPubMed
Cai, S. and Wiedmann, M. (2001). Characterization of the prfA virulence gene cluster insertion site in non-hemolytic Listeria spp.: probing the evolution of the Listeria virulence gene island. Curr. Microbiol. 43, 271–277CrossRefGoogle ScholarPubMed
Cameron, L. A., Footer, M. J., Oudenaarden, A. and Theriot, J. A. (1999). Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl. Acad. Sci. USA 96, 4908–4913CrossRefGoogle ScholarPubMed
Camilli, A., Goldfine, H. and Portnoy, D. A. (1991). Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J. Exp. Med. 173, 751–754CrossRefGoogle ScholarPubMed
Carlier, M. F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G. X., Hong, Y., Chua, N. H. and Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322CrossRefGoogle ScholarPubMed
Chakraborty, T., Ebel, F., Domann, E., Niebuhr, K., Gerstel, B., Pistor, S., Temm-Grove, C. J., Jockusch, B. M., Reinhard, M. and Walter, U. (1995). A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J. 14, 1314–1321Google ScholarPubMed
Chand, P. and Sadana, J. R. (1999). Outbreak of Listeria ivanovii abortion in sheep in India. Vet. Rec. 145, 83–84CrossRefGoogle ScholarPubMed
Chico-Calero, I., Suarez, M., Gonzalez-Zorn, B., Scortti, M., Slaghuis, J., Goebel, W. and Vazquez-Boland, J. A. (2002). Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99, 431–436CrossRefGoogle ScholarPubMed
Collins, M. D., Wallbanks, S., Lane, D. J., Shah, J., Nietupski, R., Smida, J., Dorsch, M. and Stackebrandt, E. (1991). Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41, 240–246CrossRefGoogle ScholarPubMed
Conlan, J. W. and North, R. J. (1991). Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium. J. Exp. Med. 174, 741–744CrossRefGoogle ScholarPubMed
Conlan, J. W. and North, R. J. (1994). Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J. Exp. Med. 179, 259–268CrossRefGoogle ScholarPubMed
Conte, M. P., Longhi, C., Polidoro, M., Petrone, G., Buonfiglio, V., Di Santo, S., Papi, E., Seganti, L., Visca, P. and Valenti, P. (1996). Iron availability affects entry of Listeria monocytogenes into the enterocytelike cell line Caco-2. Infect. Immun. 64, 3925–3929Google ScholarPubMed
Cossart, P., Vicente, M. F., Mengaud, J., Baquero, F., Perez-Diaz, J. C. and Berche, P. (1989). Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57, 3629–3636Google ScholarPubMed
Cossart, P. and Lecuit, M. (1998). Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17, 3797–3806CrossRefGoogle ScholarPubMed
Cossart, P. and Bierne, H. (2001). The use of host cell machinery in the pathogenesis of Listeria monocytogenes. Curr. Opin. Immunol. 13, 96–103CrossRefGoogle ScholarPubMed
Cossart, P. (2002). Molecular and cellular basis of the infection by Listeria monocytogenes: an overview. Int. J. Med. Microbiol. 291, 401–409CrossRefGoogle ScholarPubMed
Cottin, J., Loiseau, O., Robert, R., Mahaza, C., Carbonnelle, B. and Senet, J. M. (1990). Surface Listeria monocytogenes carbohydrate-binding components revealed by agglutination with neoglycoproteins. FEMS Microbiol. Lett. 56, 301–305Google ScholarPubMed
Coulanges, V., Andre, P., Ziegler, O., Buchheit, L. and Vidon, D. J. (1997). Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect. Immun. 65, 2778–2785Google ScholarPubMed
Cousens, L. P. and Wing, E. J. (2000). Innate defenses in the liver during Listeria infection. Immunol. Rev. 174, 150–159CrossRefGoogle ScholarPubMed
Cowart, R. E., Lashmet, J., McIntosh, M. E. and Adams, T. J. (1990). Adherence of a virulent strain of Listeria monocytogenes to the surface of a hepatocarcinoma cell line via lectin-substrate interaction. Arch. Microbiol. 153, 282–286CrossRefGoogle ScholarPubMed
Croize, J., Arvieux, J., Berche, P. and Colomb, M. G. (1993). Activation of the human complement alternative pathway by Listeria monocytogenes: evidence for direct binding and proteolysis of the C3 component on bacteria. Infect. Immun. 61, 5134–5139Google ScholarPubMed
Cummins, A. J., Fielding, A. K. and McLauchlin, J. (1994). Listeria ivanovii infection in a patient with AIDS. J. Infect. 28, 89–91CrossRefGoogle Scholar
Dabiri, G. A., Sanger, J. M., Portnoy, D. A. and Southwick, F. S. (1990). Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl. Acad. Sci. USA 87, 6068–6072CrossRefGoogle ScholarPubMed
Dalton, C. B., Austin, C. C., Sobel, J., Hayes, P. S., Bibb, W. F., Graves, L. M., Swaminathan, B., Proctor, M. E. and Griffin, P. M. (1997). An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N. Engl. J. Med. 336, 100–105CrossRefGoogle ScholarPubMed
Daniels, J. J., Autenrieth, I. B. and Goebel, W. (2000). Interaction of Listeria monocytogenes with the intestinal epithelium. FEMS Microbiol. Lett. 190, 323–328CrossRefGoogle ScholarPubMed
Davies, W. A. (1983). Kinetics of killing Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis. J. Reticuloendothel. Soc. 34, 131–141Google ScholarPubMed
Decatur, A. L. and Portnoy, D. A. (2000). A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290, 992–995CrossRefGoogle ScholarPubMed
Deneer, H. G., Healey, V. and Boychuk, I. (1995). Reduction of exogenous ferric iron by a surface-associated ferric reductase of Listeria spp. Microbiology 141, 1985–1992CrossRefGoogle ScholarPubMed
Domann, E., Wehland, J., Rohde, M., Pistor, S., Hartl, M., Goebel, W., Leimeister-Wachter, M., Wuenscher, M. and Chakraborty, T. (1992). A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11, 1981–1990Google ScholarPubMed
Domann, E., Zechel, S., Lingnau, A., Hain, T., Darji, A., Nichterlein, T., Wehland, J. and Chakraborty, T. (1997). Identification and characterization of a novel PrfA-regulated gene in Listeria monocytogenes whose product, IrpA, is highly homologous to internalin proteins, which contain leucine-rich repeats. Infect. Immun. 65, 101–109Google ScholarPubMed
Dramsi, S., Biswas, I., Maguin, E., Braun, L., Mastroeni, P. and Cossart, P. (1995). Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol. Microbiol. 16, 251–261CrossRefGoogle ScholarPubMed
Dramsi, S., Dehoux, P., Lebrun, M., Goossens, P. L. and Cossart, P. (1997). Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65, 1615–1625Google ScholarPubMed
Dramsi, S. and Cossart, P. (1998). Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 137–166CrossRefGoogle ScholarPubMed
Drevets, D. A. and Campbell, P. A. (1991). Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages. Infect. Immun. 59, 2645–2652Google ScholarPubMed
Drevets, D. A., Leenen, P. J. and Campbell, P. A. (1993). Complement receptor type 3 (CD11b/CD18) involvement is essential for killing of Listeria monocytogenes by mouse macrophages. J. Immunol. 151, 5431–5439Google ScholarPubMed
Drevets, D. A., Sawyer, R. T., Potter, T. A. and Campbell, P. A. (1995). Listeria monocytogenes infects human endothelial cells by two distinct mechanisms. Infect. Immun. 63, 4268–4276Google ScholarPubMed
Drevets, D. A. (1999). Dissemination of Listeria monocytogenes by infected phagocytes. Infect. Immun. 67, 3512–3517Google ScholarPubMed
Drevets, D. A., Jelinek, T. A. and Freitag, N. E. (2001). Listeria monocytogenes-infected phagocytes can initiate central nervous system infection in mice. Infect. Immun. 69, 1344–1350CrossRefGoogle ScholarPubMed
Dubail, I., Berche, P. and Charbit, A. (2000). Listeriolysin O as a reporter to identify constitutive and in vivo-inducible promoters in the pathogen Listeria monocytogenes. Infect. Immun. 68, 3242–3250CrossRefGoogle ScholarPubMed
Dubail, I., Autret, N., Beretti, J. L., Kayal, S., Berche, P. and Charbit, A. (2001). Functional assembly of two membrane-binding domains in listeriolysin O, the cytolysin of Listeria monocytogenes. Microbiology 147, 2679–2688CrossRefGoogle ScholarPubMed
Dunne, D. W., Resnick, D., Greenberg, J., Krieger, M. and Joiner, K. A. (1994). The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc. Natl. Acad. Sci. USA 91, 1863–1867CrossRefGoogle ScholarPubMed
Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P. and Cossart, P. (2002). Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45, 1095–1106CrossRefGoogle ScholarPubMed
Engelbrecht, F., Chun, S. K., Ochs, C., Hess, J., Lottspeich, F., Goebel, W. and Sokolovic, Z. (1996). A new PrfA-regulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of internalins. Mol. Microbiol. 21, 823–837CrossRefGoogle ScholarPubMed
Engelbrecht, F., Dickneite, C., Lampidis, R., Gotz, M., DasGupta, U. and Goebel, W. (1998a). Sequence comparison of the chromosomal regions encompassing the internalin C genes (inlC) of Listeria monocytogenes and L. ivanovii. Mol. Gen. Genet. 257, 186–197CrossRefGoogle Scholar
Engelbrecht, F., Dominguez-Bernal, G., Hess, J., Dickneite, C., Greiffenberg, L., Lampidis, R., Raffelsbauer, D., Daniels, J. J., Kreft, J. and et al. (1998b). A novel PrfA-regulated chromosomal locus, which is specific for Listeria ivanovii, encodes two small, secreted internalins and contributes to virulence in mice. Mol. Microbiol. 30, 405–417CrossRefGoogle Scholar
Facinelli, B., Giovanetti, E., Magi, G., Biavasco, F. and Varaldo, P. E. (1998). Lectin reactivity and virulence among strains of Listeria monocytogenes determined in vitro using the enterocyte-like cell line Caco-2. Microbiology 144, 109–118CrossRefGoogle ScholarPubMed
Farber, J. M. and Peterkin, P. I. (1991). Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55, 476–511Google ScholarPubMed
Fenlon, D. R. (1999). Listeria monocytogenes in the natural environment. In Listeria, Listeriosis, and Food Safety, ed. E. T. Ryser and E. H. Marth, pp. 21–37. New York: Marcel Dekker
Fischetti, V. A., Pancholi, V. and Schneewind, O. (1990). Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol. Microbiol. 4, 1603–1605CrossRefGoogle ScholarPubMed
Fleming, S. D. and Campbell, P. A. (1997). Some macrophages kill Listeria monocytogenes while others do not. Immunol. Rev. 158, 69–77CrossRefGoogle ScholarPubMed
Freitag, N. E., Rong, L. and Portnoy, D. A. (1993). Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect. Immun. 61, 2537–2544Google ScholarPubMed
Freitag, N. E. and Jacobs, K. E. (1999). Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect. Immun. 67, 1844–1852Google ScholarPubMed
Gahan, C. G. and Hill, C. (2000). The use of listeriolysin to identify in vivo induced genes in the gram-positive intracellular pathogen Listeria monocytogenes. Mol. Microbiol. 36, 498–507CrossRefGoogle ScholarPubMed
Gaillard, J. L., Berche, P. and Sansonetti, P. (1986). Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect. Immun. 52, 50–55Google Scholar
Gaillard, J. L., Berche, P., Mounier, J., Richard, S. and Sansonetti, P. (1987). In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect. Immun. 55, 2822–2829Google ScholarPubMed
Gaillard, J. L., Berche, P., Frehel, C., Gouin, E. and Cossart, P. (1991). Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65, 1127–1141CrossRefGoogle ScholarPubMed
Gaillard, J. L. and Finlay, B. B. (1996). Effect of cell polarization and differentiation on entry of Listeria monocytogenes into the enterocyte-like Caco-2 cell line. Infect. Immun. 64, 1299–1308Google ScholarPubMed
Galan, J. E. (2000). Alternative strategies for becoming an insider: lessons from the bacterial world. Cell 103, 363–366CrossRefGoogle ScholarPubMed
Garandeau, C., Reglier-Poupet, H., Dubail, I., Beretti, J. L., Berche, P. and Charbit, A. (2002). The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect. Immun. 70, 1382–1390CrossRefGoogle ScholarPubMed
Garges, S. and Adhya, S. (1988). Cyclic AMP-induced conformational change of cyclic AMP receptor protein (CRP): intragenic suppressors of cyclic AMP-independent CRP mutations. J. Bacteriol. 170, 1417–1422CrossRefGoogle ScholarPubMed
Gedde, M. M., Higgins, D. E., Tilney, L. G. and Portnoy, D. A. (2000). Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect. Immun. 68, 999–1003CrossRefGoogle ScholarPubMed
Geoffroy, C., Gaillard, J. L., Alouf, J. E. and Berche, P. (1987). Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun. 55, 1641–1646Google ScholarPubMed
Geoffroy, C., Raveneau, J., Beretti, J. L., Lecroisey, A., Vazquez-Boland, J. A., Alouf, J. E. and Berche, P. (1991). Purification and characterization of an extracellular 29-kilodalton phospholipase C from Listeria monocytogenes. Infect. Immun. 59, 2382–2388Google ScholarPubMed
Gilot, P., Andre, P. and Content, J. (1999). Listeria monocytogenes possesses adhesins for fibronectin. Infect. Immun. 67, 6698–6701Google ScholarPubMed
Gilot, P., Jossin, Y. and Content, J. (2000). Cloning, sequencing and characterisation of a Listeria monocytogenes gene encoding a fibronectin-binding protein. J. Med. Microbiol. 49, 887–896CrossRefGoogle ScholarPubMed
Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., Berche, P., Bloecker, H., Brandt, P., Chakraborty, T., Charbit, A., Chetovani, F., Couvre, E., Daruvar, A., Dehoux, P., Domann, E., Domingvez-Bernal, G., Duchard, E., Durant, L., Dussurget, O., Entian, K. D., Fsihi, H., Portillo, F. G., Garrido, P., Gautier, L., Goebel, W., Gomez-Lopez, N., Hain, T., Hauf, J., Jackson, D., Jones, L. M., Kaerst, U., Kreft, J., Kuhn, M., Kunst, F., Kurapkat, G., Madveno, E., Maitdurnam, A., Vicente, J. M., Ng, E., Nedjari, H., Nordsiek, G., Novella, S., Pablos, B., Perez-Diaz, J. C., Purcell, R., Remmel, B., Rose, M., Schlueter, T., Simoes, N., Tierrez, A., Vazquez-Boland, J. A., Voss, H., Wehland, J., and Cossart, P., (2001). Comparative genomics of Listeria species. Science 294, 849–852Google ScholarPubMed
Glomski, I. J., Gedde, M. M., Tsang, A. W., Swanson, J. A. and Portnoy, D. A. (2002). The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J. Cell Biol. 156, 1029–1038CrossRefGoogle ScholarPubMed
Goebel, W., Kreft, J., and Bockmann, R. (2000). Regulation of virulence genes in pathogenic Listeria. In Gram-Positive Pathogens, ed. V. A. Fischetti R. P., Novick, J. J., Ferretti, D. A., Portnoy, and J. I., Rood, pp. 449–506. Washington, DC: American Society for Microbiology
Goldberg, M. B. (2001). Actin-based motility of intracellular microbial pathogens. Microbiol. Mol. Biol. Rev. 65, 595–626CrossRefGoogle ScholarPubMed
Goldfine, H. and Knob, C. (1992). Purification and characterization of Listeria monocytogenes phosphatidylinositol-specific phospholipase C. Infect. Immun. 60, 4059–4067Google ScholarPubMed
Goldfine, H., Johnston, N. C. and Knob, C. (1993). Nonspecific phospholipase C of Listeria monocytogenes: activity on phospholipids in Triton X-100-mixed micelles and in biological membranes. J. Bacteriol. 175, 4298–4306CrossRefGoogle ScholarPubMed
Goldfine, H., Knob, C., Alford, D. and Bentz, J. (1995). Membrane permeabilization by Listeria monocytogenes phosphatidylinositol-specific phospholipase C is independent of phospholipid hydrolysis and cooperative with listeriolysin O. Proc. Natl. Acad. Sci. USA 92, 2979–2983CrossRefGoogle ScholarPubMed
Gouin, E., Mengaud, J. and Cossart, P. (1994). The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect. Immun. 62, 3550–3553Google ScholarPubMed
Gray, M. L. and Killinger, A. H. (1966). Listeria monocytogenes and listeric infections. Bacteriol. Rev. 30, 309–382Google ScholarPubMed
Greenberg, J. W., Fischer, W. and Joiner, K. A. (1996). Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect. Immun. 64, 3318–3325Google ScholarPubMed
Greene, S. L. and Freitag, N. E. (2003). Negative regulation of PrfA, the key activator of Listeria monocytogenes virulence gene expression, is dispensable for bacterial pathogenesis. Microbiol. 149, 111–120CrossRefGoogle ScholarPubMed
Greiffenberg, L., Goebel, W., Kim, K. S., Weiglein, I., Bubert, A., Engelbrecht, F., Stins, M. and Kuhn, M. (1998). Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect. Immun. 66, 5260–5267Google ScholarPubMed
Guzman, C. A., Rohde, M., Chakraborty, T., Domann, E., Hudel, M., Wehland, J. and Timmis, K. N. (1995). Interaction of Listeria monocytogenes with mouse dendritic cells. Infect. Immun. 63, 3665–3673Google ScholarPubMed
Hanawa, T., Yamamoto, T. and Kamiya, S. (1995). Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect. Immun. 63, 4595–4599Google ScholarPubMed
Hartford, T., O'Brien, S., Andrew, P. W., Jones, D. and Roberts, I. S. (1993). Utilization of transferrin-bound iron by Listeria monocytogenes. FEMS Microbiol. Lett. 108, 311–318CrossRefGoogle ScholarPubMed
Hauf, N., Goebel, W., Serfling, E. and Kuhn, M. (1994). Listeria monocytogenes infection enhances transcription factor NF-kappa B in P388D1 macrophage-like cells. Infect. Immun. 62, 2740–2747Google ScholarPubMed
Havell, E. A., Beretich, G. R. Jr. and Carter, P. B. (1999). The mucosal phase of Listeria infection. Immunobiology 201, 164–177CrossRefGoogle ScholarPubMed
Hof, H. (2001). Listeria monocytogenes: a causative agent of gastroenteritis? Eur. J. Clin. Microbiol. Infect. Dis. 20, 369–373Google ScholarPubMed
Ireton, K., Payrastre, B., Chap, H., Ogawa, W., Sakaue, H., Kasuga, M. and Cossart, P. (1996). A role for phosphoinositide 3-kinase in bacterial invasion. Science 274, 780–782CrossRefGoogle ScholarPubMed
Ishiguro, T., Naito, M., Yamamoto, T., Hasegawa, G., Gejyo, F., Mitsuyama, M., Suzuki, H. and Kodama, T. (2001). Role of macrophage scavenger receptors in response to Listeria monocytogenes infection in mice. Am. J. Pathol. 158, 179–188CrossRefGoogle ScholarPubMed
Iwamoto, M., Ohno-Iwashita, Y. and Ando, S. (1990). Effect of isolated C-terminal fragment of theta-toxin (perfringolysin O) on toxin assembly and membrane lysis. Eur. J. Biochem. 194, 25–31CrossRefGoogle ScholarPubMed
Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M. and Cossart, P. (2002). An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561CrossRefGoogle ScholarPubMed
Jones, S. and Portnoy, D. A. (1994). Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect. Immun. 62, 5608–5613Google Scholar
Jones, S., Preiter, K. and Portnoy, D. A. (1996). Conversion of an extracellular cytolysin into a phagosome-specific lysin which supports the growth of an intracellular pathogen. Mol. Microbiol. 21, 1219–1225CrossRefGoogle ScholarPubMed
Jonquieres, R., Bierne, H., Fiedler, F., Gounon, P. and Cossart, P. (1999). Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol. Microbiol. 34, 902–914CrossRefGoogle ScholarPubMed
Jonquieres, R., Pizarro-Cerda, J. and Cossart, P. (2001). Synergy between the N-and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol. Microbiol. 42, 955–965CrossRefGoogle ScholarPubMed
Kathariou, S., Metz, P., Hof, H. and Goebel, W. (1987). Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J. Bacteriol. 169, 1291–1297CrossRefGoogle ScholarPubMed
Kirk, J. (1993). Diagnostic ultrastructure of Listeria monocytogenes in human central nervous tissue. Ultrastruct. Pathol. 17, 583–592CrossRefGoogle ScholarPubMed
Klarsfeld, A. D., Goossens, P. L. and Cossart, P. (1994). Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene, arpJ. Mol. Microbiol. 13, 585–597CrossRefGoogle ScholarPubMed
Klatt, E. C., Pavlova, Z., Teberg, A. J. and Yonekura, M. L. (1986). Epidemic perinatal listeriosis at autopsy. Hum. Pathol. 17, 1278–1281CrossRefGoogle ScholarPubMed
Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H. and Cossart, P. (1992). L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531CrossRefGoogle ScholarPubMed
Kocks, C., Marchand, J. B., Gouin, E., d'Hauteville, H., Sansonetti, P. J., Carlier, M. F. and Cossart, P. (1995). The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol. Microbiol. 18, 413–423CrossRefGoogle ScholarPubMed
Kohda, C., Kawamura, I., Baba, H., Nomura, T., Ito, Y., Kimoto, T., Watanabe, I. and Mitsuyama, M. (2002). Dissociated linkage of cytokine-inducing activity and cytotoxicity to different domains of listeriolysin O from Listeria mono-cytogenes. Infect. Immun. 70, 1334–1341CrossRefGoogle Scholar
Kolb, A., Busby, S., Buc, H., Garges, S. and Adhya, S. (1993). Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62, 749–795CrossRefGoogle ScholarPubMed
Kolb-Maurer, A., Gentschev, I., Fries, H. W., Fiedler, F., Brocker, E. B., Kampgen, E. and Goebel, W. (2000). Listeria monocytogenes-infected human dendritic cells: uptake and host cell response. Infect. Immun. 68, 3680–3688CrossRefGoogle ScholarPubMed
Kreft, J. and Vazquez-Boland, J. A. (2001). Regulation of virulence genes in Listeria. Int. J. Med. Microbiol. 291, 145–157CrossRefGoogle ScholarPubMed
Kuhn, M. and Goebel, W. (1989). Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect. Immun. 57, 55–61Google ScholarPubMed
Kuhn, M. and Goebel, W. (1998). Host cell signaling during Listeria monocytogenes infection. Trends Microbiol. 6, 11–15CrossRefGoogle ScholarPubMed
Kuhn, M. and Goebel, W. (2000). Internalization of Listeria monocytogenes by nonprofessional and professional phagocytes. Subcell Biochem. 33, 411–436CrossRefGoogle ScholarPubMed
Lammerding, A. M. and Doyle, M. P. (1990). Stability of Listeria monocytogenes by non-thermal processing conditions. In Foodborne Listeriosis, ed. A. J. Miller, J. L. Smith, and G. A. Somkuti, pp. 195–202. New York: Elsevier
Lampidis, R., Gross, R., Sokolovic, Z., Goebel, W. and Kreft, J. (1994). The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Mol. Microbiol. 13, 141–151CrossRefGoogle ScholarPubMed
Lasa, I., David, V., Gouin, E., Marchand, J. B. and Cossart, P. (1995). The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol. 18, 425–436CrossRefGoogle ScholarPubMed
Lasa, I., Gouin, E., Goethals, M., Vancompernolle, K., David, V., Vandekerckhove, J. and Cossart, P. (1997). Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 16, 1531–1540CrossRefGoogle ScholarPubMed
Lauer, P., Theriot, J. A., Skoble, J., Welch, M. D. and Portnoy, D. A. (2001). Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility. Mol. Microbiol. 42, 1163–1177CrossRefGoogle ScholarPubMed
Lauer, P., Chow, M. Y., Loessner, M. J., Portnoy, D. A. and Calendar, R. (2002). Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184, 4177–4186CrossRefGoogle ScholarPubMed
Lecuit, M., Ohayon, H., Braun, L., Mengaud, J. and Cossart, P. (1997). Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun. 65, 5309–5319Google ScholarPubMed
Lecuit, M., Dramsi, S., Gottardi, C., Fedor-Chaiken, M., Gumbiner, B. and Cossart, P. (1999). A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18, 3956–3963CrossRefGoogle ScholarPubMed
Leimeister-Wachter, M., Goebel, W. and Chakraborty, T. (1989). Mutations affecting hemolysin production in Listeria monocytogenes located outside the listeriolysin gene. FEMS Microbiol. Lett. 53, 23–29CrossRefGoogle ScholarPubMed
Leimeister-Wachter, M., Haffner, C., Domann, E., Goebel, W. and Chakraborty, T. (1990). Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 87, 8336–8340CrossRefGoogle ScholarPubMed
Leimeister-Wachter, M., Domann, E. and Chakraborty, T. (1991). Detection of a gene encoding a phosphatidylinositol-specific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol. Microbiol. 5, 361–366CrossRefGoogle ScholarPubMed
Leimeister-Wachter, M., Domann, E. and Chakraborty, T. (1992). The expression of virulence genes in Listeria monocytogenes is thermoregulated. J. Bacteriol. 174, 947–952CrossRefGoogle ScholarPubMed
Lessing, M. P., Curtis, G. D. and Bowler, I. C. (1994). Listeria ivanovii infection. J. Infect. 29, 230–231CrossRefGoogle ScholarPubMed
Lety, M. A., Frehel, C., Dubail, I., Beretti, J. L., Kayal, S., Berche, P. and Charbit, A. (2001). Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes. Mol. Microbiol. 39, 1124–1139CrossRefGoogle ScholarPubMed
Lingnau, A., Domann, E., Hudel, M., Bock, M., Nichterlein, T., Wehland, J. and Chakraborty, T. (1995). Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect. Immun. 63, 3896–3903Google ScholarPubMed
Lingnau, A., Chakraborty, T., Niebuhr, K., Domann, E. and Wehland, J. (1996). Identification and purification of novel internalin-related proteins in Listeria monocytogenes and Listeria ivanovii. Infect. Immun. 64, 1002–1006Google ScholarPubMed
Loisel, T. P., Boujemaa, R., Pantaloni, D. and Carlier, M. F. (1999). Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616CrossRefGoogle ScholarPubMed
Lorber, B. (1997). Listeriosis. Clin. Infect. Dis. 24, 1–9CrossRefGoogle ScholarPubMed
Lou, Y. and Yousef, A. E. (1999). Characteristics of Listeria monocytogenes important to food processors. In Listeria, Listeriosis, and Food safety, ed. E. T. Ryser and E. H. Marth, pp. 131–224. New York: Marcel Dekker
MacDonald, T. T. and Carter, P. B. (1980). Cell-mediated immunity to intestinal infection. Infect. Immun. 28, 516–523Google ScholarPubMed
Machesky, L. M. and Insall, R. H. (1998). Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356CrossRefGoogle ScholarPubMed
Maganti, S., Pierce, M. M., Hoffmaster, A. and Rodgers, F. G. (1998). The role of sialic acid in opsonin-dependent and opsonin-independent adhesion of Listeria monocytogenes to murine peritoneal macrophages. Infect. Immun. 66, 620–626Google ScholarPubMed
Manohar, M., Baumann, D. O., Bos, N. A. and Cebra, J. J. (2001). Gut colonization of mice with actA-negative mutant of Listeria monocytogenes can stimulate a humoral mucosal immune response. Infect. Immun. 69, 3542–3549CrossRefGoogle ScholarPubMed
Mansfield, B., Dionne, M., Schneider, D., and Freitag, N. E. (2003). Drosophila as a model host for Listeria monocytogenes infections. Cell. Microbiol., in pressCrossRefGoogle Scholar
Marchand, J. B., Moreau, P., Paoletti, A., Cossart, P., Carlier, M. F. and Pantaloni, D. (1995). Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J. Cell Biol. 130, 331–343CrossRefGoogle ScholarPubMed
Marco, A. J., Prats, N., Ramos, J. A., Briones, V., Blanco, M., Dominguez, L. and Domingo, M. (1992). A microbiological, histopathological and immunohistological study of the intragastric inoculation of Listeria monocytogenes in mice. J. Comp. Pathol. 107, 1–9CrossRefGoogle ScholarPubMed
Marquis, H., Bouwer, H. G., Hinrichs, D. J. and Portnoy, D. A. (1993). Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect. Immun. 61, 3756–3760Google ScholarPubMed
Marquis, H., Doshi, V. and Portnoy, D. A. (1995). The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect. Immun. 63, 4531–4534Google Scholar
Marquis, H. and Hager, E. J. (2000). pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes. Mol. Microbiol. 35, 289–298CrossRefGoogle ScholarPubMed
McLauchlin, J. (1987). Listeria monocytogenes, recent advances in the taxonomy and epidemiology of listeriosis in humans. J. Appl. Bacteriol. 63, 1–11CrossRefGoogle ScholarPubMed
Mengaud, J., Vicente, M. F., Chenevert, J., Pereira, J. M., Geoffroy, C., Gicquel-Sanzey, B., Baquero, F., Perez-Diaz, J. C. and Cossart, P. (1988). Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infect. Immun. 56, 766–772Google ScholarPubMed
Mengaud, J., Braun-Breton, C. and Cossart, P. (1991). Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol. Microbiol. 5, 367–372CrossRefGoogle ScholarPubMed
Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M. and Cossart, P. (1996). E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932CrossRefGoogle ScholarPubMed
Miettinen, M. K., Siitonen, A., Heiskanen, P., Haajanen, H., Bjorkroth, K. J. and Korkeala, H. J. (1999). Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout. J. Clin. Microbiol. 37, 2358–2360Google ScholarPubMed
Moors, M. A., Auerbuch, V. and Portnoy, D. A. (1999). Stability of the Listeria monocytogenes ActA protein in mammalian cells is regulated by the N-end rule pathway. Cell. Microbiol. 1, 249–257CrossRefGoogle ScholarPubMed
Murray, E. G. D., Webb, R. E. and Swann, M. B. R. (1926). A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n. sp.). J. Pathol. Bacteriol. 29, 407–439CrossRefGoogle Scholar
Nadon, C. A., Bowen, B. M., Wiedmann, M. and Boor, K. J. (2002). Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect. Immun. 70, 3948–3952CrossRefGoogle ScholarPubMed
Niebuhr, K., Ebel, F., Frank, R., Reinhard, M., Domann, E., Carl, U. D., Walter, U., Gertler, F. B., Wehland, J. and Chakraborty, T. (1997). A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 16, 5433–5444CrossRefGoogle ScholarPubMed
O'Riordan, M. and Portnoy, D. (2002). The host cytosol: front-line or home front? Trends Microbiol. 10, 361CrossRefGoogle ScholarPubMed
Otter, A. and Blakemore, W. F. (1989). Observation on the presence of Listeria monocytogenes in axons. Acta Microbiol. Hung. 36, 125–131Google ScholarPubMed
Palmer, M. (2001). The family of thiol-activated, cholesterol-binding cytolysins. Toxicon 39, 1681–1689CrossRefGoogle ScholarPubMed
Pandiripally, V. K., Westbrook, D. G., Sunki, G. R. and Bhunia, A. K. (1999). Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. J. Med. Microbiol. 48, 117–124CrossRefGoogle ScholarPubMed
Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. and Carlier, M. F. (2000). The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nat. Cell Biol. 2, 385–391CrossRefGoogle ScholarPubMed
Parida, S. K., Domann, E., Rohde, M., Muller, S., Darji, A., Hain, T., Wehland, J. and Chakraborty, T. (1998). Internalin B is essential for adhesion and mediates the invasion of Listeria monocytogenes into human endothelial cells. Mol. Microbiol. 28, 81–93CrossRefGoogle ScholarPubMed
Parkassh, V., Morotti, R. A., Joshi, V., Cartun, R., Rauch, C. A. and West, A. B. (1998). Immunohistochemical detection of Listeria antigen in the placenta in perinatal listeriosis. Int. J. Gynecol. Pathol. 17, 343–350CrossRefGoogle Scholar
Payne, S. M. (1993). Iron acquisition in microbial pathogenesis. Trends Microbiol. 1, 66–69CrossRefGoogle ScholarPubMed
Pierce, M. M., Gibson, R. E. and Rodgers, F. G. (1996). Opsonin-independent adherence and phagocytosis of Listeria monocytogenes by murine peritoneal macrophages. J. Med. Microbiol. 45, 258–262CrossRefGoogle ScholarPubMed
Portnoy, D. A., Jacks, P. S. and Hinrichs, D. J. (1988). Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med. 167, 1459–1471CrossRefGoogle ScholarPubMed
Portnoy, D. A., Chakraborty, T., Goebel, W. and Cossart, P. (1992). Molecular determinants of Listeria monocytogenes pathogenesis. Infect. Immun. 60, 1263–1267Google ScholarPubMed
Poyart, C., Abachin, E., Razafimanantsoa, I. and Berche, P. (1993). The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect. Immun. 61, 1576–1580Google ScholarPubMed
Pron, B., Boumaila, C., Jaubert, F., Sarnacki, S., Monnet, J. P., Berche, P. and Gaillard, J. L. (1998). Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal loop system. Infect. Immun. 66, 747–755Google Scholar
Pron, B., Boumaila, C., Jaubert, F., Berche, P., Milon, G., Geissmann, F. and Gaillard, J. L. (2001). Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell. Microbiol. 3, 331–340CrossRefGoogle Scholar
Raffelsbauer, D., Bubert, A., Engelbrecht, F., Scheinpflug, J., Simm, A., Hess, J., Kaufmann, S. H. and Goebel, W. (1998). The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. Mol. Gen. Genet. 260, 144–158CrossRefGoogle ScholarPubMed
Ramage, C. P., Low, J. C., McLauchlin, J. and Donachie, W. (1999). Characterisation of Listeria ivanovii isolates from the UK using pulsed-field gel electrophoresis. FEMS Microbiol. Lett. 170, 349–353CrossRefGoogle ScholarPubMed
Raybourne, R. B. and Bunning, V. K. (1994). Bacterium-host cell interactions at the cellular level: fluorescent labeling of bacteria and analysis of short-term bacterium-phagocyte interaction by flow cytometry. Infect. Immun. 62, 665–672Google ScholarPubMed
Reinhard, M., Jouvenal, K., Tripier, D. and Walter, U. (1995). Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein). Proc. Natl. Acad. Sci. USA 92, 7956–7960CrossRefGoogle Scholar
Ripio, M. T., Dominguez-Bernal, G., Lara, M., Suarez, M. and Vazquez-Boland, J. A. (1997). A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J. Bacteriol. 179, 1533–1540CrossRefGoogle ScholarPubMed
Ripio, M. T., Vazquez-Boland, J. A., Vega, Y., Nair, S. and Berche, P. (1998). Evidence for expressional crosstalk between the central virulence regulator PrfA and the stress response mediator ClpC in Listeria monocytogenes. FEMS Microbiol. Lett. 158, 45–50CrossRefGoogle ScholarPubMed
Rocourt, J., Hof, H., Schrettenbrunner, A., Malinverni, R. and Bille, J. (1986). Acute purulent Listeria seeligeri meningitis in an immunocompetent adult. Schweiz. Med. Wochenschr. 116, 248–251Google Scholar
Rocourt, J. (1996). Risk factors for listeriosis. Food Control 7, 195–202CrossRefGoogle Scholar
Rogers, H. W., Callery, M. P., Deck, B. and Unanue, E. R. (1996). Listeria monocytogenes induces apoptosis of infected hepatocytes. J. Immunol. 156, 679–684Google ScholarPubMed
Rossjohn, J., Feil, S. C., McKinstry, W. J., Tweten, R. K. and Parker, M. W. (1997). Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89, 685–692CrossRefGoogle Scholar
Ryser, E. T. (1999). Foodborne listeriosis. In Listeria, Listeriosis, and Food Safety, ed. E. T. Ryser and E. H. Marth, pp. 299–358. New York: Marcel Dekker.
Salamina, G., Dalle Donne, E., Niccolini, A., Poda, G., Cesaroni, D., Bucci, M., Fini, R., Maldini, M., Schuchat, A., Swaminathan, B., Bibb, W., Rocourt, J., Binkin, N., and Salmaso, S. (1996). A foodborne outbreak of gastroenteritis involving Listeria monocytogenes. Epidemiol. Infect. 117, 429–436CrossRefGoogle ScholarPubMed
Sawyer, R. T., Drevets, D. A., Campbell, P. A. and Potter, T. A. (1996). Internalin A can mediate phagocytosis of Listeria monocytogenes by mouse macrophage cell lines. J. Leukoc. Biol. 60, 603–610CrossRefGoogle ScholarPubMed
Schlech, W. F., Lavigne, P. M., Bortolussi, R. A., Allen, A. C., Haldane, E. V., Wort, A. J., Hightower, A. W., Johnson, S. E., King, S. H., Nicholls, E. S., and Broome, C. V. (1983). Epidemic listeriosis – evidence for transmission by food. N. Engl. J. Med. 308, 203–206CrossRefGoogle ScholarPubMed
Schluter, D., Buck, C., Reiter, S., Meyer, T., Hof, H. and Deckert-Schluter, M. (1999). Immune reactions to Listeria monocytogenes in the brain. Immunobiology 201, 188–195CrossRefGoogle Scholar
Schuchat, A., Swaminathan, B. and Broome, C. V. (1991). Epidemiology of human listeriosis. Clin. Microbiol. Rev. 4, 169–183CrossRefGoogle ScholarPubMed
Sechi, A. S., Wehland, J. and Small, J. V. (1997). The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random. J. Cell Biol. 137, 155–167CrossRefGoogle Scholar
Sekino-Suzuki, N., Nakamura, M., Mitsui, K. I. and Ohno-Iwashita, Y. (1996). Contribution of individual tryptophan residues to the structure and activity of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin. Eur. J. Biochem. 241, 941–947CrossRefGoogle Scholar
Sheehan, B., Kocks, C., Dramsi, S., Gouin, E., Klarsfeld, A. D., Mengaud, J. and Cossart, P. (1994). Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curr. Topics Microbiol. 192, 187–216Google ScholarPubMed
Shen, Y., Naujokas, M., Park, M. and Ireton, K. (2000). InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510CrossRefGoogle ScholarPubMed
Shetron-Rama, L. M., Marquis, H., Bouwer, H. G. and Freitag, N. E. (2002). Intracellular induction of Listeria monocytogenes actA expression. Infect. Immun. 70, 1087–1096CrossRefGoogle ScholarPubMed
Shetron-Rama, L. M., Mueller, K., Bravo, J. M., Bouwer, H. G., and Freitag, N. E. (2003). Isolation of Listeria monocytogenes mutants with high level in vitro expression of host cytosol-induced gene products. Mol. Microbiol., 48, 1537–1551CrossRefGoogle ScholarPubMed
Sibelius, U., Chakraborty, T., Krogel, B., Wolf, J., Rose, F., Schmidt, R., Wehland, J., Seeger, W. and Grimminger, F. (1996). The listerial exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C synergize to elicit endothelial cell phosphoinositide metabolism. J. Immunol. 157, 4055–4060Google ScholarPubMed
Skoble, J., Portnoy, D. A. and Welch, M. D. (2000). Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J. Cell Biol. 150, 527–538CrossRefGoogle ScholarPubMed
Smith, G. A., Portnoy, D. A. and Theriot, J. A. (1995). Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility. Mol. Microbiol. 17, 945–951CrossRefGoogle ScholarPubMed
Smith, G. A., Theriot, J. A. and Portnoy, D. A. (1996). The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol. 135, 647–660CrossRefGoogle ScholarPubMed
Spiro, S. and Guest, J. R. (1990). FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol. Rev. 6, 399–428Google ScholarPubMed
Stachowiak, R. and Bielecki, J. (2001). Contribution of hemolysin and phospholipase activity to cytolytic properties and viability of Listeria monocytogenes. Acta Microbiol. Pol. 50, 243–250Google ScholarPubMed
Stelma, G. N. Jr., Reyes, A. L., Peeler, J. T., Francis, D. W., Hunt, J. M., Spaulding, P. L., Johnson, C. H. and Lovett, J. (1987). Pathogenicity test for Listeria monocytogenes using immunocompromised mice. J. Clin. Microbiol. 25, 2085–2089Google ScholarPubMed
Suarez, M., Gonzalez-Zorn, B., Vega, Y., Chico-Calero, I. and Vazquez-Boland, J. A. (2001). A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell. Microbiol. 3, 853–864CrossRefGoogle ScholarPubMed
Sun, A. N., Camilli, A. and Portnoy, D. A. (1990). Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect. Immun. 58, 3770–3778Google ScholarPubMed
Swanson, J. A. and Baer, S. C. (1995). Phagocytosis by zippers and triggers. Trends Cell Biol. 5, 89–93CrossRefGoogle ScholarPubMed
Sword, C. P. (1966). Mechanisms of pathogenesis in Listeria monocytogenes infection. I. Influence of iron. J. Bacteriol. 92, 536–542Google Scholar
Tang, P., Sutherland, C. L., Gold, M. R. and Finlay, B. B. (1998). Listeria monocytogenes invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase pathway. Infect. Immun. 66, 1106–1112Google ScholarPubMed
Theriot, J. A., Mitchison, T. J., Tilney, L. G. and Portnoy, D. A. (1992). The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257–260CrossRefGoogle ScholarPubMed
Theriot, J. A., Rosenblatt, J., Portnoy, D. A., Goldschmidt-Clermont, P. J. and Mitchison, T. J. (1994). Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell 76, 505–517CrossRefGoogle ScholarPubMed
Tilney, L. G. and Portnoy, D. A. (1989). Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608CrossRefGoogle ScholarPubMed
Valenti, P., Greco, R., Pitari, G., Rossi, P., Ajello, M., Melino, G. and Antonini, G. (1999). Apoptosis of Caco-2 intestinal cells invaded by Listeria monocytogenes: protective effect of lactoferrin. Exp. Cell Res. 250, 197–202CrossRefGoogle ScholarPubMed
Vazquez-Boland, J. A., Kocks, C., Dramsi, S., Ohayon, H., Geoffroy, C., Mengaud, J. and Cossart, P. (1992). Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect. Immun. 60, 219–230Google ScholarPubMed
Vazquez-Boland, J. A., Dominguez-Bernal, G., Gonzalez-Zorn, B., Kreft, J. and Goebel, W. (2001a). Pathogenicity islands and virulence evolution in Listeria. Microbes Infect. 3, 571–584CrossRefGoogle Scholar
Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J. and Kreft, J. (2001b). Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640CrossRefGoogle Scholar
Wadsworth, S. J. and Goldfine, H. (2002). Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect. Immun. 70, 4650–4660CrossRefGoogle ScholarPubMed
Welch, M. D., Iwamatsu, A. and Mitchison, T. J. (1997). Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269CrossRefGoogle ScholarPubMed
Wesley, I. V. (1999). Listeriosis in animals. In Listeria, Listeriosis, and Food safety, ed. E. T. Ryser and E. H. Marth, pp. 39–73. New York: Marcel Dekker
Williams, J. R., Thayyullathil, C. and Freitag, N. E. (2000). Sequence variations within PrfA DNA binding sites and effects on Listeria monocytogenes virulence gene expression. J. Bacteriol. 182, 837–841CrossRefGoogle ScholarPubMed
Wilson, R. L., Tvinnereim, A. R., Jones, B. D. and Harty, J. T. (2001). Identification of Listeria monocytogenes in vivo-induced genes by fluorescence-activated cell sorting. Infect. Immun. 69, 5016–5024CrossRefGoogle ScholarPubMed
Wuenscher, M. D., Kohler, S., Bubert, A., Gerike, U. and Goebel, W. (1993). The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J. Bacteriol. 175, 3491–3501CrossRefGoogle ScholarPubMed
Zalevsky, J., Grigorova, I. and Mullins, R. D. (2001). Activation of the Arp2/3 complex by the Listeria ActA protein. ActA binds two actin monomers and three subunits of the Arp2/3 complex. J. Biol. Chem. 276, 3468–3475CrossRefGoogle ScholarPubMed
2
Cited by