Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-5dd2w Total loading time: 0.427 Render date: 2022-05-25T11:11:11.912Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

6 - LuxS in cellular metabolism and cell-to-cell signaling

Published online by Cambridge University Press:  08 August 2009

Kangmin Duan
Affiliation:
Molecular Microbiology Laboratory Northwest, University Xián China
Michael G. Surette
Affiliation:
Faculty of Medicine, University of Calgary Canada
Donald R. Demuth
Affiliation:
University of Louisville, Kentucky
Richard Lamont
Affiliation:
University of Florida
Get access

Summary

INTRODUCTION

Many bacteria regulate gene expression in a cell-density-dependent manner; this behaviour has been collectively referred to as quorum sensing or cell-to-cell communication. In its simplest form this process results from the production and accumulation of signaling molecules in the surrounding environment. At some threshold concentration, the signaling molecules (also referred to as autoinducers) bind to receptors on or in the bacterial cell that regulate gene expression. In recent years the significance of cell-to-cell signaling in bacteria has become widely appreciated and has been extensively reviewed (2, 21, 25, 64, 84, 106).

The concept that bacterial cells can communicate through small-molecule chemical signals first arose in the pioneering studies in the Hastings laboratory in the early 1970s. Vibrio fischeri produces light; the light production is induced as a culture reaches high cell density, i.e. in a cell-density-dependent manner. In the seminal paper by Nealson et al. (69) it was demonstrated that cell-free cultures of V. fischeri contained a substance (termed an autoinducer) which, when added back to cell cultures, induced light production in the cells at a much earlier stage in the culture. Since that time the field of cell-to-cell signaling (quorum sensing) has grown dramatically; in recent years there has been an explosion of research in this area. In general there remain two well-established paradigms of cell-to-cell signaling: the N-acyl homoserine lactones used by some Gram-negative bacteria (see Chapters 1 and 3) and the oligopeptide signals used by some Gram-positive bacteria (see Chapters 9 and 10).

Type
Chapter
Information
Bacterial Cell-to-Cell Communication
Role in Virulence and Pathogenesis
, pp. 117 - 150
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, J. F., Zhang, T., Wynn, D. P., Karschner, E. L. and Zhou, Z. S. 2004. Synthesis of LuxS inhibitors targeting bacterial cell-cell communication. Org. Lett. 6: 3043–6.CrossRefGoogle ScholarPubMed
Bassler, B. L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2: 582–7.CrossRefGoogle ScholarPubMed
Bassler, B. L. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109: 421–4.CrossRefGoogle ScholarPubMed
Bassler, B. L., Greenberg, E. P. and Stevens, A. M. 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179: 4043–5.CrossRefGoogle ScholarPubMed
Bassler, B. L., Wright, M., Showalter, R. E. and Silverman, M. R. 1993. Intercellular signaling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Molec. Microbiol. 9: 773–86.CrossRefGoogle ScholarPubMed
Bassler, B. L., Wright, M. and Silverman, M. R. 1994. Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Molec. Microbiol. 13: 273–86.CrossRefGoogle ScholarPubMed
Beeston, A. L. and Surette, M. G. 2002. pfs-Dependent regulation of autoinducer 2 production in Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 3450–6.CrossRefGoogle ScholarPubMed
Blehert, D. S., Palmer, R. J. Jr., Xavier, J. B., Almeida, J. S. and Kolenbrander, P. E. 2003. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185: 4851–60.CrossRefGoogle ScholarPubMed
Blevins, J. S., Revel, A. T., Caimano, M. J.et al. 2004. The luxS gene is not required for Borrelia burgdorferi tick colonization, transmission to a mammalian host, or induction of disease. Infect. Immun. 72: 4864–7.CrossRefGoogle Scholar
Cao, J. G. and Meighen, E. A. 1989. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J. Biol. Chem. 264: 21670–6.Google ScholarPubMed
Chen, X., Schauder, S., Potier, N.et al. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545–9.CrossRefGoogle ScholarPubMed
Coenye, T., Goris, J., Spilker, T., Vandamme, P. and LiPuma, J. J. 2002. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J. Clin. Microbiol. 40: 2062–9.CrossRefGoogle ScholarPubMed
Cole, S. P., Harwood, J., Lee, R., She, R. and Guiney, D. G. 2004. Characterization of monospecies biofilm formation by Heliobacter pylori. J. Bacteriol. 186: 3124–32.CrossRefGoogle Scholar
Coulthurst, S. J., Kurz, C. L. and Salmond, G. P. 2004. luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology 150: 1901–10.CrossRefGoogle ScholarPubMed
Day, W. A. Jr. and Maurelli, A. T. 2001. Shigella flexneri LuxS quorum-sensing system modulates virB expression but is not essential for virulence. Infect. Immun. 69: 15–23.CrossRefGoogle Scholar
DeLisa, M. P., Valdes, J. J. and Bentley, W. E. 2001. Quorum signaling via AI-2 communicates the ‘Metabolic Burden’ associated with heterologous protein production in Escherichia coli. Biotechnol. Bioeng. 75: 439–50.CrossRefGoogle Scholar
DeLisa, M. P., Wu, C. F., Wang, L., Valdes, J. J. and Bentley, W. E. 2001. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J. Bacteriol. 183: 5239–47.CrossRefGoogle ScholarPubMed
Della Ragione, F., Porcelli, M., Carteni-Farina, M., Zappia, V. and Pegg, A. E. 1985. Escherichia coli S-adenosylhomocysteine/5'-methylthioadenosine nucleosidase. Purification, substrate specificity and mechanism of action. Biochem. J. 232: 335–41.CrossRefGoogle ScholarPubMed
Derzelle, S., Duchaud, E., Kunst, F., Danchin, A. and Bertin, P. 2002. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl. Environ. Microbiol. 68: 3780–9.CrossRefGoogle ScholarPubMed
Donabedian, H. 2003. Quorum sensing and its relevance to infectious diseases. J. Infect. 46: 207–14.CrossRefGoogle ScholarPubMed
Dove, J. E., Yasukawa, K., Tinsley, C. R. and Nassif, X. 2003. Production of the signaling molecule, autoinducer-2, by Neisseria meningitidis: lack of evidence for a concerted transcriptional response. Microbiology 149: 1859–69.CrossRefGoogle ScholarPubMed
Duan, K., Dammel, C., Stein, J., Rabin, H. and Surette, M. G. 2003. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molec. Microbiol. 50: 1477–91.CrossRefGoogle ScholarPubMed
Duerre, J. A. and Miller, C. H. 1966. Cleavage of S-ribosyl-L-homocysteine by extracts from Escherichia coli. J. Bacteriol. 91: 1210–17.Google ScholarPubMed
Federle, M. J. and Bassler, B. L. 2003. Interspecies communication in bacteria. J. Clin. Invest. 112: 1291–9.CrossRefGoogle ScholarPubMed
Folcher, M., Gaillard, H., Nguyen, L. T.et al. 2001. Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J. Biol. Chem. 276: 44297–306.CrossRefGoogle ScholarPubMed
Fong, K. P., Gao, L. and Demuth, D. R. 2003. luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect. Immun. 71: 298–308.CrossRefGoogle ScholarPubMed
Forsyth, M. H. and Cover, T. L. 2000. Intercellular communication in Helicobacter pylori: luxS is essential for the production of an extracellular signaling molecule. Infect. Immun. 68: 3193–9.CrossRefGoogle ScholarPubMed
Fraser, C. M., Casjens, S., Huang, W. M.et al. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580–6.CrossRefGoogle ScholarPubMed
Fuqua, C., Parsek, M. R. and Greenberg, E. P. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. A. Rev. Genet. 35: 439–68.CrossRefGoogle ScholarPubMed
Giron, J. A., Torres, A. G., Freer, E. and Kaper, J. B. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Molec. Microbiol. 44: 361–79.CrossRefGoogle ScholarPubMed
Gray, K. M. and Greenberg, E. P. 1992. Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ. J. Bacteriol. 174: 4384–90.CrossRefGoogle Scholar
Greene, R. 1996. Biosynthesis of methionine. In Neidhardt, F. C. (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1, pp. 542–60. Washington, DC: ASM Press.Google Scholar
Hammer, B. K. and Bassler, B. L. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Molec. Microbiol. 50: 101–4.CrossRefGoogle ScholarPubMed
Havarstein, L. S., Coomaraswamy, G. and Morrison, D. A. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natn. Acad. Sci. USA 92: 11140–4.CrossRefGoogle ScholarPubMed
Heidelberg, J. F., Eisen, J. A., Nelson, W. C.et al. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477–83.Google ScholarPubMed
Hilgers, M. T. and Ludwig, M. L. 2001. Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site. Proc. Natn. Acad. Sci. USA 98: 11169–74.CrossRefGoogle ScholarPubMed
Horinouchi, S. and Beppu, T. 1994. A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Molec. Microbiol. 12: 859–64.CrossRefGoogle ScholarPubMed
Huang, J. J., Han, J. I., Zhang, L. H. and Leadbetter, J. R. 2003. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69: 5941–9.CrossRefGoogle ScholarPubMed
Hubner, A., Revel, A. T., Nolen, D. M., Hagman, K. E. and Norgard, M. V. 2003. Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect. Immun. 71: 2892–6.CrossRefGoogle Scholar
Jelsbak, L. and Sogaard-Andersen, L. 2003. Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus. J. Microbiol. Methods 55: 829–39.CrossRefGoogle ScholarPubMed
Jeon, B., Itoh, K., Misawa, N. and Ryu, S. 2003. Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol. Immunol. 47: 833–9.CrossRefGoogle ScholarPubMed
Ji, G., Beavis, R. and Novick, R. P. 1997. Bacterial interference caused by autoinducing peptide variants. Science 276: 2027–30.CrossRefGoogle ScholarPubMed
Ji, G., Beavis, R. C. and Novick, R. P. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natn. Acad. Sci. USA 92: 12055–9.CrossRefGoogle ScholarPubMed
Joyce, E. A., Bassler, B. L. and Wright, A. 2000. Evidence for a signaling system in Helicobacter pylori: detection of a luxS-encoded autoinducer. J. Bacteriol. 182: 3638–43.CrossRefGoogle ScholarPubMed
Joyce, E. A., Kawale, A., Censini, S.et al. 2004. LuxS is required for persistent pneumococcal carriage and expression of virulence and biosynthesis genes. Infect. Immun. 72: 2964–75.CrossRefGoogle ScholarPubMed
Kaiser, D. 2003. Coupling cell movement to multicellular development in myxobacteria. Nat. Rev. Microbiol. 1: 45–54.CrossRefGoogle ScholarPubMed
Kaplan, H. B. 2003. Multicellular development and gliding motility in Myxococcus xanthus. Curr. Opin. Microbiol. 6: 572–7.CrossRefGoogle ScholarPubMed
Karp, P. D., Arnaud, M., Collado-Vides, J.et al. 2004. The E. coli EcoCyc database: no longer just a metabolic pathway database. ASM News 70: 25–30.Google Scholar
Karp, P. D., Riley, M., Paley, S. M. and Pellegrini-Toole, A. 2002. The MetaCyc Database. Nucleic Acids Res. 30: 59–61.CrossRefGoogle ScholarPubMed
Kim, S. Y., Lee, S. E., Kim, Y. R.et al. 2003. Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Molec. Microbiol. 48: 1647–64.CrossRefGoogle ScholarPubMed
Kleerebezem, M., Quadri, L. E., Kuipers, O. P. and Vos, W. M. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Molec. Microbiol. 24: 895–904.CrossRefGoogle ScholarPubMed
Lazdunski, A. M., Ventre, I. and Sturgis, J. N. 2004. Regulatory circuits and communication in Gram-negative bacteria. Nat. Rev. Microbiol. 2: 581–92.CrossRefGoogle ScholarPubMed
Lemos, J. A., Brown, T. A. Jr. and Burne, R. A. 2004. Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect. Immun. 72: 1431–40.CrossRefGoogle ScholarPubMed
Lenz, D. H., Mok, K. C., Lilley, B. N., Kulkarni, R. V., Wingreen, N. S. and Bassler, B. L. (2004). The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69–82.CrossRefGoogle ScholarPubMed
Lewis, H. A., Furlong, E. B., Laubert, B.et al. 2001. A structural genomics approach to the study of quorum sensing: crystal structures of three LuxS orthologs. Structure (Camb.) 9: 527–37.CrossRefGoogle Scholar
Loh, J. T., Forsyth, M. H. and Cover, T. L. 2004. Growth phase regulation of flaA expression in Helicobacter pylori is luxS dependent. Infect. Immun. 72: 5506–10.CrossRefGoogle ScholarPubMed
Lupp, C. and Ruby, E. G. 2004. Vibrio fischeri LuxS and AinS: comparative study of two signal synthases. J. Bacteriol. 186: 3873–81.CrossRefGoogle ScholarPubMed
Magnuson, R., Solomon, J. and Grossman, A. D. 1994. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77: 207–16.CrossRefGoogle ScholarPubMed
McNab, R., Ford, S. K., El-Sabaeny, A.et al. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185: 274–84.CrossRefGoogle ScholarPubMed
Merritt, J., Qi, F., Goodman, S. D., Anderson, M. H. and Shi, W. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71: 1972–9.CrossRefGoogle ScholarPubMed
Michael, B., Smith, J. N., Swift, S., Heffron, F. and Ahmer, B. M. 2001. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183: 5733–42.CrossRefGoogle ScholarPubMed
Miller, C. H. and Duerre, J. A. 1968. S-ribosylhomocysteine cleavage enzyme from Escherichia coli. J. Biol. Chem. 243: 92–7.Google ScholarPubMed
Miller, J. C. and Stevenson, B. 2004. Increased expression of Borrelia burgdorferi factor H-binding surface proteins during transmission from ticks to mice. Int. J. Med. Microbiol. 293 (suppl. 37): 120–5.Google ScholarPubMed
Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria. A. Rev. Microbiol. 55: 165–99.CrossRefGoogle ScholarPubMed
Miller, M. B., Skorupski, K., Lenz, D. H., Taylor, R. K. and Bassler, B. L. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110: 303–14.CrossRefGoogle ScholarPubMed
Miller, S. T., Xavier, K. B., Campagna, S. R.et al. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molec. Cell 15: 677–87.CrossRefGoogle ScholarPubMed
Mok, K. C., Wingreen, N. S. and Bassler, B. L. 2003. Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J. 22: 870–81.CrossRefGoogle ScholarPubMed
Mori, M., Sakagami, Y., Ishii, Y.et al. 1988. Structure of cCF10, a peptide sex pheromone which induces conjugative transfer of the Streptococcus faecalis tetracycline resistance plasmid, pCF10. J. Biol. Chem. 263: 14574–8.Google ScholarPubMed
Nealson, K. H., Platt, T. and Hastings, J. W. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104: 313–22.Google ScholarPubMed
Ohtani, K., Hayashi, H. and Shimizu, T. 2002. The luxS gene is involved in cell-cell signaling for toxin production in Clostridium perfringens. Molec. Microbiol. 44: 171–9.CrossRefGoogle ScholarPubMed
Otto, M. 2001. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 22: 1603–8.CrossRefGoogle ScholarPubMed
Otto, M., Sussmuth, R., Vuong, C., Jung, G. and Gotz, F. 1999. Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett. 450: 257–62.CrossRefGoogle ScholarPubMed
Pappas, K. M., Weingart, C. L. and Winans, S. C. 2004. Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signaling. Molec. Microbiol. 53: 755–69.CrossRefGoogle Scholar
Parsek, M. R. and Greenberg, E. P. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natn. Acad. Sci. USA 97: 8789–93.CrossRefGoogle ScholarPubMed
Pei, D. and Zhu, J. 2004. Mechanism of action of S-ribosylhomocysteinase (LuxS). Curr. Opin. Chem. Biol. 8: 492–7.CrossRefGoogle Scholar
Riedel, K., Hentzer, M., Geisenberger, O.et al. 2001. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147: 3249–62.CrossRefGoogle ScholarPubMed
Roche, D. M., Byers, J. T., Smith, D. S.et al. 2004. Communications blackout? Do N-acylhomoserine-lactone-degrading enzymes have any role in quorum sensing?Microbiology 150: 2023–8.CrossRefGoogle ScholarPubMed
Ruzheinikov, S. N., Das, S. K., Sedelnikova, S. E.et al. 2001. The 1.2 A structure of a novel quorum-sensing protein, Bacillus subtilis LuxS. J. Molec. Biol. 313: 111–22.CrossRefGoogle ScholarPubMed
Schauder, S. and Bassler, B. L. 2001. The languages of bacteria. Genes Dev. 15: 1468–80.CrossRefGoogle Scholar
Schauder, S., Shokat, K., Surette, M. G. and Bassler, B. L. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Molec. Microbiol. 41: 463–76.CrossRefGoogle ScholarPubMed
Shin, N. R., Lee, D. Y., Shin, S. J., Kim, K. S. and Yoo, H. S. 2004. Regulation of proinflammatory mediator production in RAW264.7 macrophage by Vibrio vulnificus luxS and smcR. FEMS Immunol. Med. Microbiol. 41: 169–76.CrossRefGoogle ScholarPubMed
Sircili, M. P., Walters, M., Trabulsi, L. R. and Sperandio, V.. 2004. Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infect. Immun. 72: 2329–37.CrossRefGoogle ScholarPubMed
Smith, J. N. and Ahmer, B. M. 2003. Detection of other microbial species by Salmonella: expression of the SdiA regulon. J. Bacteriol. 185: 1357–66.CrossRefGoogle ScholarPubMed
Smith, R. S. and Iglewski, B. H. 2003. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6: 56–60.CrossRefGoogle ScholarPubMed
Socransky, S. S. and Haffajee, A. D. 1992. The bacterial etiology of destructive periodontal disease: current concepts. J. Periodontol. 63: 322–31.CrossRefGoogle ScholarPubMed
Sperandio, V., Mellies, J. L., Nguyen, W., Shin, S. and Kaper, J. B. 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natn. Acad. Sci. USA 96: 15196–201.CrossRefGoogle ScholarPubMed
Sperandio, V., Torres, A. G., Giron, J. A. and Kaper, J. B. 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 183: 5187–97.CrossRefGoogle ScholarPubMed
Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. and Kaper, J. B. 2003. Bacteria-host communication: the language of hormones. Proc. Natn. Acad. Sci. USA 100: 8951–6.CrossRefGoogle ScholarPubMed
Sperandio, V., Torres, A. G. and Kaper, J. B. 2002. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E.coli. Molec. Microbiol. 43: 809–21.CrossRefGoogle Scholar
Stevenson, B. and Babb, K. 2002. LuxS-mediated quorum sensing in Borrelia burgdorferi, the lyme disease spirochete. Infect. Immun. 70: 4099–105.CrossRefGoogle ScholarPubMed
Stevenson, B., Lackum, K., Wattier, R. L.et al. 2003. Quorum sensing by the Lyme disease spirochete. Microbes Infect. 5: 991–7.CrossRefGoogle ScholarPubMed
Stover, C. K., Pham, X. Q., Erwin, A. L.et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959–64.CrossRefGoogle Scholar
Sturme, M. H., Kleerebezem, M., Nakayama, J.et al. 2002. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81: 233–43.CrossRefGoogle ScholarPubMed
Surette, M. G. and Bassler, B. L. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natn. Acad. Sci. USA 95: 7046–50.CrossRefGoogle ScholarPubMed
Surette, M. G. and Bassler, B. L. 1999. Regulation of autoinducer production in Salmonella typhimurium. Molec. Microbiol. 31: 585–95.CrossRefGoogle ScholarPubMed
Surette, M. G., Miller, M. B. and Bassler, B. L. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natn. Acad. Sci. USA 96: 1639–44.CrossRefGoogle ScholarPubMed
Taga, M. E., Miller, S. T. and Bassler, B. L. 2003. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Molec. Microbiol. 50: 1411–27.CrossRefGoogle ScholarPubMed
Tummler, B. and Kiewitz, C. 1999. Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Molec. Med. Today 5: 351–8.CrossRefGoogle ScholarPubMed
Wen, Z. T. and Burne, R. A. 2002. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl. Environ. Microbiol. 68: 1196–203.CrossRefGoogle ScholarPubMed
Wen, Z. T. and Burne, R. A. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol. 186: 2682–91.CrossRefGoogle ScholarPubMed
Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J. and Salmond, G. P. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25: 365–404.CrossRefGoogle ScholarPubMed
Winzer, K., Hardie, K. R., Burgess, N.et al. 2002. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148: 909–22.CrossRefGoogle ScholarPubMed
Winzer, K., Sun, Y. H., Green, A.et al. 2002. Role of Neisseria meningitidis luxS in cell-to-cell signaling and bacteremic infection. Infect. Immun. 70: 2245–8.CrossRefGoogle ScholarPubMed
Xavier, K. B. and Bassler, B. L. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6: 191–7.CrossRefGoogle ScholarPubMed
Yarwood, J. M. and Schlievert, P. M. 2003. Quorum sensing in Staphylococcus infections. J. Clin. Invest. 112: 1620–5.CrossRefGoogle ScholarPubMed
Zhang, H. B., Wang, L. H. and Zhang, L. H. 2002. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc. Natn. Acad. Sci. USA 99: 4638–43.CrossRefGoogle ScholarPubMed
Zhu, J., Dizin, E., Hu, X.et al. 2003. S-Ribosylhomocysteinase (LuxS) is a mononuclear iron protein. Biochemistry 42: 4717–26.CrossRefGoogle Scholar
Zhu, J., Hu, X., Dizin, E. and Pei, D. 2003. Catalytic mechanism of S-ribosylhomocysteinase (LuxS): direct observation of ketone intermediates by 13C NMR spectroscopy. J. Am. Chem. Soc. 125: 13379–81.CrossRefGoogle ScholarPubMed
Zhu, J., Miller, M. B., Vance, R. E.et al. 2002. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natn. Acad. Sci. USA 99: 3129–34.CrossRefGoogle ScholarPubMed
1
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×