Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-gwkvl Total loading time: 0.359 Render date: 2022-01-23T11:42:15.035Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

7 - From étale P+-representations to G-equivariant sheaves on G/P

Published online by Cambridge University Press:  05 October 2014

Peter Schneider
Affiliation:
Wilhelms-Universität
Marie-France Vigneras
Affiliation:
Université Paris
Gergely Zabradi
Affiliation:
Eötvös Loránd University
Fred Diamond
Affiliation:
King's College London
Payman L. Kassaei
Affiliation:
King's College London
Minhyong Kim
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bourbaki, N., Algèbre commutative. Ch. 1 à 4. Masson 1985.
[2] Bourbaki, N., Topologie générale. Ch. 1 à 4. Hermann 1971.
[3] Bourbaki, N., Topologie générale. Ch. 5 à 10. Hermann 1974.
[4] Bosch, S., Güntzer, U., Remmert, R., Non-Archimedean analysis. Springer 1984.
[5] Colmez, P., (ϕ, Γ)-modules et représentations du mirabolique de GL2(ℚp). Astérisque 330, 2010, 61–153.Google Scholar
[6] Colmez, P., Représentations de GL2(ℚp) et (ϕ, Γ)-modules. Astérisque 330, 2010, 281–509.Google Scholar
[7] Dixon, J. D., du Sautoy, M. P. F., Mann, A., Segal, D., Analytic pro- p groups. Second edition. Cambridge Studies in Advanced Mathematics, 61. Cambridge University Press, 1999.
[8] Ellis, R., Locally compact transformation groups. Duke Math. J. 24, 1957 119–125.Google Scholar
[9] Gabriel, P., Des catégories abéliennes. Bull. Soc. Math. France 90, 1962, 323–448.Google Scholar
[10] Kedlaya, K., New methods for (ϕ, Γ)-modules, preprint (2011), http://math.mit.edu/kedlaya/papers/new-phigamma.pdf
[11] Schneider, P., p-Adic Lie groups. Springer Grundlehren, Vol. 344, Springer, 2011.
[12] Schneider, P., Vigneras, M.-F., A functor from smooth o-torsion representations to (ϕ, Γ)-modules. Volume in honour of F. Shahidi. Clay Mathematics Proceedings, Volume 13, 525–601, 2011.
[13] Springer, T. A., Linear Algebraic Groups. Second edition. Birkhäuser, 2009.
[14] Vigneras, M.-F., Représentations ℓ-modulaires d'un groupe réductif p-adique avec ℓ ≠ p. PM 137, Birkhäuser, 1996.
[15] Warner, S.: Topological rings. Elsevier, 1993.
[16] Zábrádi, G., Exactness of the reduction of étale modules. J. Algebra 331, 2011, 400–415.Google Scholar
1
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×