Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-22T03:24:35.642Z Has data issue: false hasContentIssue false

16 - Three-dimensional spin foam Quantum Gravity

from Part III - Loop quantum gravity and spin foam models

Published online by Cambridge University Press:  26 October 2009

Daniele Oriti
Affiliation:
Universiteit Utrecht, The Netherlands
Get access

Summary

Introduction

Loop quantum gravity provides a background independent approach to Quantum Gravity. In this context the kinematical Hilbert space is spanned by spin networks (graph labeled by Lorentz group representations) which are eigenstates of geometrical operators. The dynamics of such theories is encoded in a set of transitions amplitudes between initial and final spin network states which carry the information about the physical inner product of the theory. Generically, these amplitudes are constructed in terms of spin foam models which are local state sum models associated with a sum of colored 2-complexes interpolating between initial and final spin network states.

There are many important questions that need to be addressed in this framework such as the proper choice of the dynamics, the construction and interpretation of the spin foam amplitude, the coupling to matter and the description of the semi-classical regime of such a theory. The contributions of D. Oriti and A. Perez in this volume address some of these issues.

In this contribution we will focus on the simple case of three-dimensional gravity and its quantization via spin foam models. The advantage of using the spin foam framework is twofold. First, this framework is not specifically tailored to three dimensions, unlike Chern–Simons quantization for instance, and some of the lessons and techniques used there can be useful for the more realistic four-dimensional case.

Type
Chapter
Information
Approaches to Quantum Gravity
Toward a New Understanding of Space, Time and Matter
, pp. 290 - 309
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×