We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
References
Braun, J., Van der Beek, P., and Batt, G. (2009). Quantitative Thermochronology. Cambridge: Cambridge University Press.Google Scholar
Carlson, W. D., Donelick, R. A., and Ketcham, R. A. (1999). Variability of apatite fission-track annealing kinetics: I. Experimental Results. American Mineralogist, 84, 1213–23Google Scholar
Cros, A., Gautheron, C., Pagel, M. et al. (2014). 4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and grainlographic studies. Geochimica et Cosmochimica Acta, 125, 414–32.Google Scholar
Denison, D. G. T., Holmes, C. C., Mallick, B. K., and Smith, A. F. M. (2002). Bayesian Methods for Non-linear Classification and Regression. Chichester: John Wiley and Sons.Google Scholar
Dodson, M. H. (1973). Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology, 40, 259–74.CrossRefGoogle Scholar
Donelick, R. A., Ketcham, R. A., and Carlson, W. D. (1999). Variability of apatite fission-track annealing kinetics II: Grainlographic orientation effects. American Mineralogist, 84, 1224–34.CrossRefGoogle Scholar
Ducassou, C. (2009). Age et origine des premiers reliefs de la chaîne hercynienne: le dévonocarbonifère du bassin d’Ancenis. Ph.D. thesis (in French), Université Rennes 1.Google Scholar
Duddy, I. R., Green, P. F., and Laslett, G. M. (1988). Thermal annealing of fission tracks in apatite 3. Variable temperature annealing. Chemical Geology: Isotope Geoscience Section, 73, 25–38.Google Scholar
Duddy, I. R., Green, P. F., Laslett, G. M. et al. (1989). Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology: Isotope Geoscience Section, 79, 155–82.Google Scholar
Everitt, B.S., and Hand, D.J. (1981). Finite Mixture Distributions. New York: Chapman and Hall.CrossRefGoogle Scholar
Farley, K. A. (2000). Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research, 105(B2), 2903.CrossRefGoogle Scholar
Farley, K. A., and McKeon, R. (2015). Radiometric dating and temperature history of banded iron formation–associated hematite, Gogebic iron range, Michigan, USA. Geology43(12), 1083–6. https://doi.org/10.1130/G37190.1.Google Scholar
Farley, K. A., Wolf, R. A., and Silver, L. T. (1996). The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60, 4223–9.Google Scholar
Flowers, R. M., Ketcham, R. A., Shuster, D. L., and Farley, K. A. (2009). Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73, 2347–65Google Scholar
Galbraith, R.F. (2005). Statistics for Fission-Track Analysis. New York: Chapman and Hall.CrossRefGoogle Scholar
Galbraith, R. F., and Green, P. F. (1990). Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements, 17(3), 197–206.Google Scholar
Gallagher, K. (1995). Evolving thermal histories from fission track data. Earth Planetary Science Letters, 136, 421–35.Google Scholar
Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117, B02408. https://doi.org/10.1029/2011JB00882.Google Scholar
Gallagher, K., Stephenson, J., Brown, R., Holmes, C., and Fitzgerald, P. (2005). Low temperature thermochronology and modelling strategies for multiple samples 1: Vertical profiles. Earth Planetary Science Letters, 237, 193–208.CrossRefGoogle Scholar
Gautheron, C., Tassan-Got, L., Barbarand, J., and Pagel, M. (2009). Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chemical Geology, 266, 157–70.CrossRefGoogle Scholar
Ginster, U., Reiners, P. W., Nasdala, L., and Chutimun Chanmuangg, N. (2019). Annealing kinetics of radiation damage in zircon. Geochimica et Cosmochimica Acta, 249, 235–46.Google Scholar
Goswami, J. N., Jha, R., and Lal, D. (1984). Quantitative treatment of annealing of charged particle tracks in common rock minerals. Earth Planetary Science Letters, 71, 120–8.Google Scholar
Green, P. F. (1988). The relationship between track shortening and fission track age reduction in apatite: Combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth Planetary Science Letters, 89, 335–52.CrossRefGoogle Scholar
Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R., and Laslett, G. M. (1986). Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59, 237–53CrossRefGoogle Scholar
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., and Giester, G. (2013). Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U- Th)/He thermochronology. American Journal of Science, 313, 145–98.Google Scholar
Higson, E., Hadnley, W., Hobson, M, and Lasenby, A. (2019). Dynamic nested sampling: An improved algorithm for parameter estimation and evidence calculation. Statistics and Computing, 29, 891–913Google Scholar
Jasra, A., Stephens, D. A., Gallagher, K., and Holmes, C. C. (2006). Analysis of geochronological data with measurement error using Bayesian mixtures, Mathematical Geology, 38(3), 269-300.Google Scholar
Ketcham, R. A. (2005). Forward and inverse modeling of low-temperature thermochronometry data. In Reiners, P. W. and Ehlers, T. A., eds., Reviews in Mineralogy and Geochemistry. Vol 58: Low-Temperature Thermochronology: Techniques, Interpretations and Applications. Chantilly, VA: Mineralogical Society of America, pp. 275–314.CrossRefGoogle Scholar
Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., and Hurford, A. J. (2007). Improved modeling of fission-track annealing in apatite. American Mineralogist, 92, 799–810.Google Scholar
Ketcham, R. A., Donelick, R. A., and Carlson, W. D. (1999). Variability of apatite fission-track annealing kinetics. III. Extrapolation to geological timescales. American Mineralogist, 84, 1235–55.Google Scholar
Ketcham, R. A., Guenthner, W. R., and Reiners, P. W. (2013). Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion. American Mineralogist, 98, 350–60CrossRefGoogle Scholar
Lartillot, N., and Philippe, H. (2006). Computing Bayes factors using thermodynamic integration. Systematic Biology, 55, 195–207.Google Scholar
Laslett, G. M., Green, P. F., Duddy, I. R., and Gleadow, A. J. W. (1987). Thermal annealing of fission tracks, 2. A quantitative analysis. Chemical Geology: Isotope Geoscience Section, 65, 1–13.Google Scholar
Li, W., Wang, L., Lang, M., Trautmann, C., and Ewing, R. C. (2011). Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 203, 227–35.Google Scholar
Licciardi, A., Gallagher, K., and Clark, S. A. (2020). A Bayesian approach for thermal history reconstruction in basin modelling, Journal of Geophysical Research: Solid Earth, 125(7), e2020JB019384. https://doi.org/10.1029/2020JB019384.Google Scholar
Liu, P., Elshall, A. S., Ye, M. et al. (2016). Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods. Water Resources Research, 52(2), 734–58. https://doi.org/10.1002/2014WR016718.Google Scholar
Lovera, O. M., Richter, F. M, and Harrison, T. M. (1989). 40Ar/39Ar geothermometry for slowly cooled samples having a distribution of domain sizes. Journal of Geophysical Research, 94, 17917–35.Google Scholar
Malusa, M., and Fitzgerald, P. F. (2019). Fission-Track Thermochronology and its Application to Geology, Springer Textbooks in Earth Sciences. Cham: Springer International Publishing.Google Scholar
McDannell, K. T., and Issler, D. R. (2021). Simulating sedimentary burial cycles. Part 1: Investigating the role of apatite fission track annealing kinetics using synthetic data. Geochronology, 3, 321–35. https://doi.org/10.5194/gchron-3-321-2021.CrossRefGoogle Scholar
McDougall, I., and Harrison, T. M. (1988). Geochronology and Thermochronology by the 40Ar/39Ar method, 2nd ed. New York: Oxford University Press.Google Scholar
Meesters, A. G., and Dunai, T. J (2002a). Solving the production-diffusion equation for finite diffusion domains of various shapes. Part I: Implications for low-temperature (U-Th)/He-thermochronology. Chemical Geology, 186, 333–44Google Scholar
Meesters, A. G., and Dunai, T. J. (2002b). Solving the production-diffusion equation for finite diffusion domains of various shapes. Part II: Application to cases with -ejection and non-homogenous distribution of the source. Chemical Geology, 186, 347–63Google Scholar
Pooley, C. M., and Marion, G. (2018). Bayesian model evidence as a practical alternative to deviance information criterion. Royal Society Open Science, 5(3), 171519. http://dx.doi.org/10.1098/rsos.171519.Google Scholar
Recanati, A., Gautheron, C., Barbarand, J. et al. (2017). Helium trapping in apatite damage: Insights from (U-Th-Sm)/He dating of different granitoid lithologies. Chemical Geology470, 116–31Google Scholar
Reiners, P. W., Carlson, R.W., Renne, P.R. et al. (2018). Geochronology and Thermochronology. Hoboken, NJ: Wiley.Google Scholar
Reiners, P. W., and Ehlers, T. A., eds. (2005). Reviews in Mineralogy and Geochemistry. Vol. 58: Low-Temperature Thermochronology: Techniques, Interpretations and Applications. Chantilly, VA: Mineralogical Society of America.Google Scholar
Richardson, S., and Green, P. J. (1997). On Bayesian analysis of mixture models with an unknown number of components. Journal of the Royal Statistical Society Series B, 59(4), 731–92.Google Scholar
Richardson, S., Leblond, L., Jaussent, I., and Green, P. J. (2002). Mixture models in measurement error problems, with reference to epidemiological studies. Journal of the Royal Statistical Society Series A, 165(3), 549–66.Google Scholar
Sambridge, M. (2014). A parallel tempering algorithm for probabilistic sampling and multimodal optimization. Geophysical Journal International, 196, 357–74. https://doi.org/10.1093/gji/ggt342.Google Scholar
Sambridge, M. S., and Compston, W. (1994). Mixture modelling of multi-component data sets with application to ion-probe zircon ages. Earth Planetary Science Letters, 128, 373–90.CrossRefGoogle Scholar
Sambridge, M., Gallagher, K., Jackson, A., and Rickwood, P. (2006). Trans-dimensional inverse problems, Model Comparison and the Evidence. Geophysical Journal International, 167, 528–42.Google Scholar
Schildgen, T. F., van der Beek, P. A., Sinclair, H. D., and Thiede, R. C. (2018). Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology. Nature, 559(7712), 89–93. https://doi.org/10.1038/s41586-018-0260-6.Google Scholar
Schoene, B. (2014). U-Th-Pb Geochronology. In Holland, H. D. and Turekian, K. K., eds., Treatise on Geochemistry, 2nd ed. Amsterdam: Elsevier, pp. 341–78.Google Scholar
Stephenson, J., Gallagher, K., and Holmes, C. (2006). Low temperature thermochronology and modelling strategies for multiple samples 2: Partition modeling for 2D and 3D distributions with discontinuities. Earth and Planetary Science Letters, 241, 557–70.Google Scholar
Tagami, T., Galbraith, R., Yamada, R., and Laslett, G. (1998). Revised annealing kinetics of fission tracks in zircon and geological implications. In Van den Haute, P. and De Corte, F., eds., Advances in Fission-Track Geochronology. Dordrecht: Kluwer, pp. 99–112.Google Scholar
Titterington, D. M., Smith, A. F. M., and Makov, H. E. (1985). Statistical Analysis of Finite Mixture Distributions. Chichester: Wiley.Google Scholar
Trotta, R. (2008). Bayes in the sky: Bayesian inference and model selection in cosmology. Contemporary Physics, 49, 71–104Google Scholar
Willett, C. D., Fox, M., and Shuster, D.L. (2017). A helium-based model for the effects of radiation damage annealing on helium diffusion kinetics in apatite. Earth Planetary Science Letters, 477, 195–204Google Scholar
Willett, S. D., Herman, F., Fox, M. et al. (2021). Bias and error in modelling thermochronometric data: Resolving a potential increase in Plio-Pleistocene erosion rate. Earth Surface Dynamics, 9, 1153–221. https://doi.org/10.5194/esurf-9-1153-2021.Google Scholar
Yamada, R., Murakami, M., and Tagami, T. (2007). Statistical modelling of annealing kinetics of fission tracks in zircon; Reassessment of laboratory experiments. Chemical Geology236, 75–91.Google Scholar
References
Branca, S., De Beni, E., and Proietti, C. (2013). The large and destructive 1669 AD eruption at Etna volcano: Reconstruction of the lava flow field evolution and effusion rate trend. Bulletin of Volcanology, 75, 694. https://doi.org/10.1007/s00445-013-0694-5.CrossRefGoogle Scholar
Bryant, E. (2005). Natural Hazards. Cambridge: Cambridge University Press.Google Scholar
Buttner, R., Zimanowski, B., Blumm, J., and Hagemann, L. (1998). Thermal conductivity of a volcanic rock material (olivine-melilinite) in the temperature range between 288 and 1470 K. Journal of Volcanology and Geothermal Research, 80, 293–302.CrossRefGoogle Scholar
Calder, E. S., Lavallée, Y., Kendrick, J. E., and Bernstein, M. (2015). Lava dome eruptions. In Sigurdsson, H., Houghton, B, Rymer, H, Stix, J, and McNutt, S, eds., Encyclopedia of Volcanoes, 2nd ed. San Diego, CA: Academic Press, pp. 343–62.CrossRefGoogle Scholar
Calvari, S., Spampinato, L., Lodato, L. et al. (2005). Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. Journal of Geophysical Research, 110, B02201. https://doi.org/10.1029/2004JB003129.Google Scholar
Castruccio, A., and Contreras, M. A. (2016). The influence of effusion rate and rheology on lava flow dynamics and morphology: A case study from the 1971 and 1988–1990 eruptions at Villarrica and Lonquimay volcanoes, Southern Andes of Chile. Journal of Volcanology and Geothermal Research, 327, 469–83.Google Scholar
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. Oxford: Oxford University Press.Google Scholar
Chevrel, M. O., Platz, T., Hauber, E., Baratoux, D., Lavallée, Y., and Dingwell, D. B. (2013). Lava flow rheology: A comparison of morphological and petrological methods. Earth and Planetary Science Letters, 384, 109–20.Google Scholar
Christensen, U. R. (1992). An Eulerian technique for thermomechanical modeling of lithospheric extension. Journal of Geophysical Research, 97, 2015–36.Google Scholar
Cordonnier, B., Lev, E., and Garel, F. (2015). Benchmarking lava-flow models. In Harris, A. J. L., De Groeve, T., Garel, F., and Carn, S. A., eds., Detecting, Modelling and Responding to Effusive Eruptions, Special Publications, 426. London: Geological Society, pp. 425–45.Google Scholar
Costa, A., and Macedonio, G. (2005). Computational modeling of lava flows: A review. In Manga, M. and Ventura, G., eds., Kinematics and Dynamics of Lava Flows, Special Paper 396, Boulder, CO: Geological Society of America, pp. 209–18.Google Scholar
Costa, A., Caricchi, L., and Bagdassarov, N. (2009). A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochemistry, Geophysics, Geosystems, 10, Q03010. https://doi.org/10.1029/2008Gc002138.Google Scholar
Cutter, S., Ismail-Zadeh, A., Alcántara-Ayala, I. et al. (2015). Global risk: Pool knowledge to stem losses from disasters. Nature, 522, 277–9.Google Scholar
Daag, A. S., Dolan, M. T., Laguerta, E. et al. (1996). Growth of a postclimactic lava dome at Pinatubo Volcano, July‒October 1992. In Newhall, C. and Punongbayan, R., eds., Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines. Seattle: University of Washington Press, pp. 647–64.Google Scholar
Dragoni, M. A. (1989). A dynamical model of lava flows cooling by radiation. Bulletin of Volcanology, 51, 88–95.Google Scholar
Flynn, L. P., Harris, A. J. L., and Wright, R. (2001). Improved identification of volcanic features using Landsat 7 ETM+. Remote Sensing of Environment, 78, 180–93.Google Scholar
Giordano, D., and Dingwell, D. B. (2003). Viscosity of hydrous Etna basalt: Implications for Plinian-style basaltic eruptions. Bulletin of Volcanology, 65, 8–14.Google Scholar
Griffiths, R. W. (2000). The dynamics of lava flows. Annual Review of Fluid Mechanics, 32, 477–518.Google Scholar
Harris, A. J. L., Flynn, L. P., Keszthelyi, L. et al. (1998). Calculation of lava effusion rates from Landsat TM data. Bulletin of Volcanology, 60, 52–71.Google Scholar
Harris, A. J. L., Flynn, L. P., Matias, O., Rose, W. I., and Cornejo, J. (2004). The evolution of an active silicic lava flow field: An ETM+ perspective. Journal of Volcanology and Geothermal Research, 135, 147–68.Google Scholar
Harris, A. J. L., Rose, W. I., and Flynn, L. P. (2003). Temporal trends in lava dome extrusion at Santiaguito 1922–2000. Bulletin of Volcanology, 65, 77–89.Google Scholar
Heap, M. J., Troll, V., Kushnir, A. R. L. et al. (2019). Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nature Communications, 10, 5063. https://doi.org/10.1038/s41467-019-13102-8.Google Scholar
Hidaka, M., Goto, A., Umino, S., and Fujita, E. (2005). VTFS project: Development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification. Geochemistry, Geophysics, Geosystems, 6, Q07008. https://doi.org/10.1029/2004GC000869.Google Scholar
Ismail-Zadeh, A., and Tackley, P. (2010). Computational Methods for Geodynamics. Cambridge: Cambridge University Press.Google Scholar
Ismail-Zadeh, A., and Takeuchi, K. (2007). Preventive disaster management of extreme natural events. Natural Hazards, 42, 459–67.Google Scholar
Ismail-Zadeh, A., Korotkii, A., Schubert, G., and Tsepelev, I. (2007). Quasi-reversibility method for data assimilation in models of mantle dynamics. Geophysical Journal International, 170, 1381–98.Google Scholar
Ismail-Zadeh, A., Korotkii, A., and Tsepelev, I. (2016). Data-Driven Numerical Modeling in Geodynamics: Methods and Applications. Heidelberg: Springer.Google Scholar
Jeffrey, D., and Acrivos, A. (1976). The rheological properties of suspensions of rigid particles. AIChE Journal, 22, 417–32.Google Scholar
Kabanikhin, S. I. (2011). Inverse and Ill-Posed Problems: Theory and Applications. Berlin: De Gruyter.Google Scholar
Kelfoun, K., and Vargas, S. V. (2015). VolcFlow capabilities and potential development for the simulation of lava flows. In Harris, A. J. L., De Groeve, T., Farel, F., and Carn, S. A., eds., Detecting, Modelling and Responding to Effusive Eruptions, Special Publications 426. London: Geological Society, pp. 337–43.Google Scholar
Kilburn, C. R. J. (2000). Lava flow and flow fields. In Sigurdsson, H., ed., Encyclopedia of Volcanoes. San Diego, CA: Academic Press, pp.291–305.Google Scholar
Korotkii, A. I., and Kovtunov, D. A. (2006). Reconstruction of boundary regimes in an inverse problem of thermal convection of a high viscous fluid. Proceedings of the Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 12(2), 88–97.Google Scholar
Korotkii, A. I., and Starodubtseva, Y. V. (2014). Direct and inverse problems for models of stationary reactive-convective-diffusive flow. Proceedings of the Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 20(3), 98–113.Google Scholar
Korotkii, A., Kovtunov, D., Ismail-Zadeh, A., Tsepelev, I., and Melnik, O. (2016). Quantitative reconstruction of thermal and dynamic characteristics of lava from surface thermal measurements. Geophysical Journal International, 205, 1767–79.Google Scholar
Ladyzhenskaya, O. A. (1969). The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach.Google Scholar
Lavallée, Y., Varley, N. R., Alatorre-Ibarguengoitia, M. A. et al. (2012). Magmatic architecture of dome building eruptions at Volcán de Colima, Mexico. Bulletin of Volcanology, 74, 249–60.Google Scholar
Lejeune, A., and Richet, P. (1995). Rheology of crystal-bearing silicate melts: An experimental study at high viscosity. Journal of Geophysical Research, 100, 4215–29.Google Scholar
Lions, J. L. (1971). Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer.Google Scholar
Lombardo, V., Musacchio, M., and Buongiorno, M. F. (2012). Error analysis of subpixel lava temperature measurements using infrared remotely sensed data. Geophysical Journal International, 191, 112–25.Google Scholar
Loughlin, S. C., Sparks, S., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., eds. (2015). Global Volcanic Hazards and Risk. Cambridge: Cambridge University Press.Google Scholar
Marsh, B. D. (1981). On the crystallinity, probability of occurrence, and rheology of lava and magma. Contributions to Mineralogy and Petrology, 78, 85–98.Google Scholar
Melnik, O., and Sparks, R. S. J. (1999). Nonlinear dynamics of lava dome extrusion. Nature, 402, 37–41.Google Scholar
Naimark, B. M., and Ismail-Zadeh, A. T. (1995). Numerical models of subsidence mechanism in intracratonic basin: Application to North American basins. Geophysical Journal International, 123, 149–60.Google Scholar
Naimark, B. M., Ismail-Zadeh, A. T., and Jacoby, W. R. (1998). Numerical approach to problems of gravitational instability of geostructures with advected material boundaries. Geophysical Journal International, 134, 473–83.Google Scholar
Nakada, S., Shimizu, H., and Ohta, K. (1999). Overview of the 1990‒1995 eruption at Unzen Volcano. Journal of Volcanology and Geothermal Research, 89, 1–22.Google Scholar
Nakada, S., Zaennudin, A., Yoshimoto, M. et al. (2019). Growth process of the lava dome/flow complex at Sinabung volcano during 2013‒2016. Journal of Volcanology and Geothermal Research, 382, 120–36.Google Scholar
Navon, I. M., Zou, X., Derber, J. and Sela, J. (1992). Variational data assimilation with an adiabatic version of the NMC spectral model. Monthly Weather Review, 120, 1433–46.Google Scholar
Patankar, S. V., and Spalding, D. B. (1972). A calculation procedure for heat and mass transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787–806.Google Scholar
Poland, M. P., and Anderson, K. R. (2020). Partly cloudy with a chance of lava flows: Forecasting volcanic eruptions in the twenty‐first century. Journal of Geophysical Research, 125, e2018JB016974. https://doi.org/10.1029/2018JB016974.Google Scholar
Polak, E., and Ribière, G. (1969). Note on the convergence of methods of conjugate directions. Revue Francaise d’Informatique et de Recherche Operationnelle, 3(16), 35–43.Google Scholar
Salomon, D. (2007). Data Compression: The Complete Reference. London: Springer.Google Scholar
Sheldrake, T. E., Sparks, R. S. J., Cashman, K. V., Wadge, G., and Aspinall, W. P. (2016). Similarities and differences in the historical records of lava dome-building volcanoes: Implications for understanding magmatic processes and eruption forecasting. Earth-Science Reviews, 160, 240–63.Google Scholar
Short, N. M., and Stuart, L. M. (1983). The Heat Capacity Mapping Mission (HCMM) Anthology. Washington, DC: NASA Scientific and Technical Information Branch.Google Scholar
Starodubtseva, Y., Starodubtsev, I., Ismail-Zadeh, A. et al. (2021). A method for magma viscosity assessment by lava dome morphology. Journal of Volcanology and Seismology, 15, 159–68. https://doi.org/10.1134/S0742046321030064.Google Scholar
Swanson, D. A., Dzurisin, D., Holcomb, R. T. et al. (1987). Growth of the lava dome at Mount St Helens, Washington, (USA) 1981‒1983. In Fink, J. H., ed., The Emplacement of Silicic Domes and Lava Flows, Special Paper 212. Boulder, CO: Geological Society of America, pp. 1–16.Google Scholar
Temam, R. (1977). Navier–Stokes Equations: Theory and Numerical Analysis. Amsterdam: North-Holland.Google Scholar
Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularization method, Soviet Mathematics Doklady4, 1035–8.Google Scholar
Tikhonov, A. N., and Arsenin, V. Y. (1977). Solution of Ill-Posed Problems. Washington, DC: Winston.Google Scholar
Tikhonov, A. N., and Samarskii, A. A. (1990). Equations of Mathematical Physics. New York: Dover Publications.Google Scholar
Tsepelev, I., Ismail-Zadeh, A., Melnik, O., and Korotkii, A. (2016). Numerical modelling of fluid flow with rafts: An application to lava flows. Journal of Geodynamics, 97, 31–41.Google Scholar
Tsepelev, I., Ismail-Zadeh, A., Starodubtseva, Y., Korotkii, A., and Melnik, O. (2019). Crust development inferred from numerical models of lava flow and its surface thermal measurements. Annals of Geophysics, 62(2), VO226. https://doi.org/10.4401/ag-7745.Google Scholar
Tsepelev, I., Ismail-Zadeh, A., and Melnik, O. (2020). Lava dome morphology inferred from numerical modelling. Geophysical Journal International, 223(3), 1597–609.Google Scholar
Tsepelev, I., Ismail-Zadeh, A., and Melnik, O. (2021). Lava dome evolution at Volcán de Colima, México during 2013: Insights from numerical modeling. Journal of Volcanology and Seismology, 15, 491–501. https://doi.org/10.1134/S0742046321060117.Google Scholar
Turcotte, D. L., and Schubert, G. (2002). Geodynamics, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Voight, B., and Elsworth, D. (2000). Instability and collapse of hazardous gas-pressurized lava domes. Geophysical Research Letters, 27(1), 1–4.Google Scholar
Wadge, G., Robertson, R. E. A., and Voight, B., eds. (2014). The Eruption of Soufrière Hills Volcano, Montserrat, from 2000 to 2010. GSL Memoirs, vol. 39. London: Geological Society. https://doi.org/10.1144/M39.Google Scholar
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–12.Google Scholar
Walker, G. P. L. (1973). Lengths of lava flows. Philosophical Transactions of the Royal Society, 274, 107–18.Google Scholar
Watts, R. B., Herd, R. A., Sparks, R. S. J., and Young, S. R. (2002). Growth patterns and emplacement of the andesitic lava dome at Soufrière Hills Volcano, Montserrat. In Druitt, T. H., and Kokelaar, B. P., eds., The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. GLS Memoirs, vol. 21. London: Geological Society, pp. 115–52.Google Scholar
Wright, R., Garbeil, H., and Davies, A. G. (2010). Cooling rate of some active lavas determined using an orbital imaging spectrometer. Journal of Geophysical Research, 115, B06205. https://doi.org/10.1029/2009JB006536.Google Scholar
Wright, T. L., and Okamura, R. T. (1977). Cooling and crystallization of tholeiitic basalt, 1965 Makaopuhi lava lake, Hawaii. US Geological Survey Professional Paper 1004.Google Scholar
Zakšek, K., Hort, M., and Lorenz, E. (2015). Satellite and ground based thermal observation of the 2014 effusive eruption at Stromboli volcano. Remote Sensing, 7, 17190–211.Google Scholar
Zeinalova, N., Ismail-Zadeh, A., Melnik, O. E., Tsepelev, I., and Zobin, V. M. (2021). Lava dome morphology and viscosity inferred from data-driven numerical modeling of dome growth at Volcán de Colima, Mexico during 2007–2009. Frontiers in Earth Science, 9, 735914. https://doi.org/10.3389/feart.2021.735914.Google Scholar
Zobin, V. M., Arámbula, R., Bretón, M. et al. (2015). Dynamics of the January 2013–June 2014 explosive-effusive episode in the eruption of Volcán de Colima, México: Insights from seismic and video monitoring. Bulletin of Volcanology, 77, 31. https://doi.org/10.1007/s00445-015-0917-z.Google Scholar
References
Asano, K., and Iwata, T. (2012). Source model for strong ground motion generation in the frequency range 0.1–10 Hz during the 2011 Tohoku earthquake.Earth Planets Space, 64, 1111–23. https://doi.org/10.5047/eps.2012.05.003.Google Scholar
Awaji, T., Kamachi, M., Ikeda, M., and Ishikawa, Y. (2009). Data Assimilation: Innovation Combining Observation and Model (in Japanese). Kyoto: Kyoto University Press.Google Scholar
Böse, M., Smith, D. E., Felizardo, C. et al. (2018). FinDer v.2: Improved real-time ground-motion predictions forM2–M9 with seismic finite-source characterization. Geophysical Journal International, 212, 725–42. https://doi.org/10.1093/gji/ggx430.Google Scholar
Chen, D. Y., Hsiao, N. C., and Wu, Y. M. (2015). The earthworm-based earthquake alarm reporting system in Taiwan. Bulletin of the Seismological Society of America, 105, 568–79. https://doi.org/10.1785/0120140147.Google Scholar
Cochran, E. S., Bunn, J., Minson, S. E. et al. (2019). Event detection performance of the PLUM earthquake early warning algorithm in southern California. Bulletin of the Seismological Society of America, 109, 1524–41. https://doi.org/10.1785/0120180326.Google Scholar
Cuellar, A., Espinosa-Aranda, J. M., Suárez, G. (2014). The Mexican Seismic Alert System (SASMEX): Its alert signals, broadcast results and performance during the M 7.4 Punta Maldonado earthquake of March 20th, 2012. In Wenzel, F. and Zschau, J., eds., Early Warning for Geological Disasters. Berlin: Springer, pp. 71–87.Google Scholar
Erdik, M., Fahjan, Y., Ozel, O. et al. (2003). Istanbul earthquake rapid response and the early warning system, Bulletin of Earthquake Engineering, 1, 157–63. https://doi.org/10.1023/A:1024813612271.Google Scholar
Furumura, T., and Maeda, T. (2021). High-resolution source imaging based on time-reversal wave propagation simulations using assimilated dense seismic records. Geophysical Journal International, 225, 140–57. https://doi.org/10.1093/gji/ggaa586.Google Scholar
Furumura, T., Maeda, T., and Oba, A. (2019). Early forecast of long‐period ground motions via data assimilation of observed ground motions and wave propagation simulations. Geophysical Research Letters, 46(1), 139–47. https://doi.org/10.1029/2018GL081163.Google Scholar
Gasparini, P., and Manfredi, G. (2014). Development of earthquake early warning systems in the European Union. In Zschau, J. and Wenzel, F., eds., Early Warning for Geological Disasters: Scientific Methods and Current Practice, Berlin: Springer, pp. 89–101. https://doi.org/10.1007/978-3-642-12233-0_5.Google Scholar
Gusev, A. A., and Abubakirov, I. R. (1987). Monte-Carlo simulation of record envelope of a near earthquake. Physics of the Earth and Planetary Interiors, 49, 30–6.Google Scholar
Hoshiba, M. (1991). Simulation of multiple scattered coda wave excitation based on the energy conservation law.Physics of the Earth and Planetary Interiors, 67, 123–6.Google Scholar
Hoshiba, M. (2013a). Real-time prediction of ground motion by Kirchhoff–Fresnel boundary integral equation method: Extended front detection method for earthquake early warning. Journal of Geophysical Research: Solid Earth, 118, 1038–50. https://doi.org/10.1002/jgrb.50119.Google Scholar
Hoshiba, M. (2013b). Real-time correction of frequency-dependent site amplification factors for application to earthquake early warning. Bulletin of the Seismological Society of America, 103, 3179–88. https://doi.org/10.1785/0120130060.Google Scholar
Hoshiba, M. (2020). Too-late warnings by estimating Mw: earthquake early warning in the near-fault region. Bulletin of the Seismological Society of America, 110, 1276–88. https://doi.org/10.1785/0120190306.Google Scholar
Hoshiba, M. (2021), Real-time prediction of impending ground shaking: Review of wavefield-based (ground-motion-based) method for earthquake early warning. Frontier in Earth Sciences, 22. https://doi.org/10.3389/feart.2021.722784.Google Scholar
Hoshiba, M., and Aoki, S. (2015). Numerical shake prediction for earthquake early warning: Data assimilation, real‐time shake mapping, and simulation of wave propagation. Bulletin of the Seismological Society of America, 105, 1324–38. https://doi.org/10.1785/0120140280.Google Scholar
Hoshiba, M., and Ozaki, T. (2014). Earthquake early warning and tsunami warning of the Japan Meteorological Agency, and their performance in the 2011 off the Pacific Coast of Tohoku Earthquake (Mw9.0). In Wenzel, F. and Zschau, J., eds., Early Warning for Geological Disasters: Scientific Methods and Current Practice. Berlin: Springer, pp. 1–28. https://doi.org/10.1007/978-3-642-12233-0_1.Google Scholar
Hoshiba, M., Iwakiri, K., Hayashimoto, N. et al. (2011). Outline of the 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0): Earthquake Early Warning and observed seismic intensity. Earth Planets Space, 63, 547–51. https://doi.org/10.5047/eps.2011.05.031.Google Scholar
Hoshiba, M., Kamigaichi, O., Saito, M., Tsukada, S. Y., and Hamada, N. (2008). Earthquake early warning starts nationwide in Japan. Eos, Transactions, American Geophysical Union, 89, 73–4. https://doi.org/10.1029/2008EO080001.Google Scholar
Japan Meteorological Agency. (2012). Report of the 2011 off the Pacific Coast of Tohoku earthquake by Japan Meteorological Agency (in Japanese), Japan Meteorological Agency.Google Scholar
Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation and Predictability. Cambridge: Cambridge University Press.Google Scholar
Kurahashi, S. and Irikura, K. (2013). Short-period source model of the 2011 Mw 9.0 Off the Pacific Coast of Tohoku earthquake. Bulletin of the Seismological Society of America, 103, 1373–93. https://doi.org/10.1785/0120120157.Google Scholar
Kurzon, I., Nof, R. N., Laporte, M. et al. (2020). The ‘TRUAA’ seismic network: Upgrading the Israel seismic network – Toward national earthquake early warning system. Seismological Research Letters, 91, 3236–3255. https://doi.org/10.1785/0220200169.Google Scholar
Oba, A., Furumura, T., and Maeda, T. (2020). Data assimilation‐based early forecasting of long‐period ground motions for large earthquakes along the Nankai Trough. Journal of Geophysical Research: Solid Earth, 125(6), e2019JB019047. https://doi.org/10.1029/2019JB019047.Google Scholar
Ogiso, M., Aoki, S., and Hoshiba, M. (2016). Real-time seismic intensity prediction using frequency-dependent site amplification factors. Earth Planets Space68, 83. https://doi.org/10.1186/s40623-016-0467-4.Google Scholar
Ogiso, M., Hoshiba, M., Shito, A., and Matsumoto, S.(2018). Numerical shake prediction for earthquake early warning incorporating heterogeneous attenuation structure: The case of the 2016 Kumamoto earthquake. Bulletin of the Seismological Society of America, 108, 3457–68. https://doi.org/10.1785/0120180063.Google Scholar
Peng, H., Wu, Z., Wu, Y. M. et al. (2011). Developing a prototype earthquake early warning system in the Beijing Capital Region. Seismological Research Letters, 82, 394–403. https://doi.org/10.1785/gssrl.82.3.394.Google Scholar
Sheen, D. H., Park, J. H., Chi, H. C. et al. (2017). The first stage of an earthquake early warning system in South Korea. Seismological Research Letters, 88, 1491–98. https://doi.org/10.1785/0220170062Google Scholar
Suzuki, W., Aoi, S., Kunugi, T. et al. (2017). Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence. Earth Planets Space, 69, 19. https://doi.org/10.1186/s40623-017-0604-8.Google Scholar
Tamaribuchi, K., Yamada, M., and Wu, S. (2014). A new approach to identify multiple concurrent events for improvements of earthquake early warning. Zisin, 67(2), 41–55. https://doi.org/10.4294/zisin67.41 (in Japanese with English abstract).Google Scholar
Wald, D. J., Worden, B. C., Quitoriano, V., and Pankow, K. L. (2005). ShakeMap manual: Technical manual, user’s guide, and software guide, Techniques and Methods 12-A1. https://doi.org/10.3133/tm12A1.Google Scholar
Wang, T., Jin, X., Huang, Y. and Wei, Y. (2017b). Real-time three-dimensional space numerical shake prediction for earthquake early warning. Earthquake Science, 30, 269–81. https://doi.org/10.1007/s11589-017-0196-1.Google Scholar
Wessel, P., and Smith, W. H. F. (1995). New version of the generic mapping tool released. Eos, Transactions, American Geophysical Union, 76, 329.Google Scholar
Yoshimoto, K. (2000). Monte Carlo simulation of seismogram envelopes in scattering medium. Journal of Geophysical Research: Solid Earth, 105, 6153–61. https://doi.org/10.1029/1999JB900437.Google Scholar
Specific Terms
EEW: Earthquake early warning. Warning of strong shaking before its arrival.Google Scholar
GMPE: Ground-motion prediction equation. Strength of ground motion is empirically estimated from the equation, in which earthquake magnitude and distance (hypocentral distance, epicentral distance, or fault distance) are usually used.Google Scholar
JMA: Japan Meteorological Agency. A national governmental organization in Japan.Google Scholar
K-NET, KiK-net: Observation networks of strong ground motion operated by National Research Institute for Earth Science and Disaster Resilience (NIED) in Japan.Google Scholar
RTT: Radiative transfer theory. A model of wave propagation based on ray theoretical approach, in which scattering and attenuation are included.Google Scholar
References
Adourian, S., Lyu, C., Masson, Y., Munch, F., and Romanowicz, B. (2023). Combining different 3-D global and regional seismic wave propagation solvers towards box tomography in the deep Earth. Geophysical Journal International, 232(2), 1340–56.Google Scholar
Aki, K., Christofferson, A., and Husebye, E. S. (1977). Determination of the three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research, 82, 277–96.Google Scholar
Al-Attar, D., Woodhouse, J. H., and Deuss, A. (2012). Calculation of normal mode spectra in laterally heterogeneous earth models using an iterative direct solution method. Geophysical Journal International, 189, 1038–46.Google Scholar
Backus, G. (1962). Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67(11), 4427–40.Google Scholar
Bassin, C., Laske, G., and Masters, G. (2000). The current limits of resolution for surface wave tomography in North America. EOS Transactions American Geophysical Union, 81, 1351–75.Google Scholar
Borgeaud, A. F. E., Kawai, K., and Geller, R. J. (2019). Three-dimensional S velocity structure of the mantle transition zone beneath Central America and the Gulf of Mexico inferred using waveform inversion. Journal of Geophysical Research: Solid Earth, 124, 9664–81.Google Scholar
Boschi, L., Becker, T. W., Soldati, G., and Dziewonski, A. M. (2006). On the relevance of Born theory in global seismic tomography. Geophysical Research Letters, 33, L06302.Google Scholar
Bozdag, E., and Trampert, J. (2008). On crustal corrections in surface wave tomography. Geophysical Journal International, 172, 1066–82.Google Scholar
Bozdag, E., Trampert, J., and Tromp, J. (2011). Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophysical Journal International, 185, 845–70.Google Scholar
Bozdag, E., Peter, D., Lefebvre, M., et al. (2016). Global adjoint tomography: First generation model. Geophysical Journal International, 207(3), 1739–66.Google Scholar
Bozdag, E., Orsvuran, R., Ciardelli, C., Peter, D., and Wang, Y. (2021). Upper mantle anisotropy from global adjoint tomography. AGU Fall Meeting 2021, New Orleans, LA, 13–17 December 2021, abstract DI42A-08.Google Scholar
Capdeville, Y., and Marigo, J. J. (2007). Second order homogenization of the elastic wave equation for non-periodic layered media. Geophysical Journal International, 170, 823–38.Google Scholar
Capdeville, Y., Chaljub, E., Vilotte, J. P., and Montagner, J. P. (2003a). Coupling the spectral element method with a modal solution for elastic wave propagation in global Earth models. Geophysical Journal International, 152, 34–66.Google Scholar
Capdeville, Y., Gung, Y., and Romanowicz, B. (2005). Towards global Earth tomography using the spectral element method: A technique based on source stacking. Geophysical Journal International, 162, 541–54.Google Scholar
Capdeville, Y., To, A., and Romanowicz, B. A. (2003b). Coupling spectral elements and modes in a spherical Earth: An extension to the ‘sandwich’ case. Geophysical Journal International, 154, 44–57.Google Scholar
Chaljub, E., and Valette, B., B. (2004). Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core, Geophysical Journal International, 158, 131–41.Google Scholar
Chang, S.-J., Ferreira, A. M., Ritsema, J., van Heijst, H. J., and Woodhouse, J. H. (2014). Global radially anisotropic mantle structure from multiple datasets: a review, current challenges, and outlook. Tectonophysics, 617, 1–19.Google Scholar
Chen, P., Zhao, L., and Jordan, T. H. (2007). Full three-dimensional tomography: A comparison between the scattering-integral and adjoint-wavefield methods. Bulletin of the Seismological Society of America, 97, 1094–120.Google Scholar
Clévédé, E., and Lognonné, P. (1996). Fréchet derivatives of coupled seismograms with respect to an anelastic rotating Earth. Geophysical Journal International, 124, 456–82.Google Scholar
Clouzet, P., Masson, Y., and Romanowicz, B. (2018). Box tomography: First application to the imaging of upper mantle shear velocity and radial anisotropy structure beneath the North American continent. Geophysical Journal International, 213, 1849–75. doi: 10.1093/gji/ggy078Google Scholar
Cupillard, P., Delavaud, E., Burgos, G. et al. (2012). RegSEM: a versatile code based on the spectral element method to compute seismic wave propagation at the regional scale. Geophysical Journal International, 188, 1203–20.Google Scholar
Dahlen, F. A., Hung, S.-H., and Nolet, G. (2000). Fréchet kernels for finite-frequency traveltimes – I. Theory. Geophysical Journal International, 141, 157–74.Google Scholar
Davaille, A., and Romanowicz, B. (2020). Deflating the LLSVPs: Bundles of mantle thermochemical plumes, rather than thick ‘stagnant’ piles. Tectonics, 39, e2020TC006265. https://doi.org/10.1029/2020TC006265.Google Scholar
Durek, J. J., and Ekström, G. (1996). A radial model of anelasticity consistent with long-period surface-wave attenuation. Bulletin of the Seismological Society of America, 86, 144–58.Google Scholar
Dziewonski, A., and Anderson, D. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.Google Scholar
Dziewonski, A., Hager, B., and O’Connell, R. (1977). Large-scale heterogeneities in the lower mantle. Journal of Geophysical Research, 82, 239–55.Google Scholar
Efron, B., and Stein, C. (1981). The jackknife estimate of variance. Annals of Statistics, 9(3), 586–96.Google Scholar
Efron, B., and Tibishirani, R. J. (1991). An Introduction to the Bootstrap. Boca Raton, FL: Chapman and Hall.Google Scholar
Ferreira, A. M., Woodhouse, J. H., Visser, K., and Trampert, J. (2010). On the robustness of global radially anisotropic surface wave tomography. Journal of Geophysical Research, 115, B04313. https://doi.org/:10.1029/2009JB006716.Google Scholar
Fichtner, A. (2011). Full Seismic Waveform Modelling and Inversion. Cham: Springer.Google Scholar
Fichtner, A., and Igel, H. (2008). Efficient numerical surface wave propagation through the optimization of discrete crustal models: A technique based on non-linear dispersion curve matching (DCM). Geophysical Journal International, 173, 519–33.Google Scholar
Fichtner, A., and Trampert, J. (2011a). Hessian kernels of seismic data functionals based upon adjoint techniques. Geophysical Journal International, 185, 775–98.Google Scholar
Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P. (2008). Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophysical Journal International, 175, 665–85.Google Scholar
Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H. P. (2009). Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophysical Journal International, 179, 1703–25.Google Scholar
Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P. (2010). Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle. Earth and Planetary Science Letters, 290, 270–80.Google Scholar
French, S., Lekic, V., and Romanowicz, B. (2013). Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science, 342, 227–30.Google Scholar
French, S. W. & Romanowicz, B. (2014). Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophysical Journal International, 199(3), 1303–27.Google Scholar
French, S. W., Zheng, Y., Romanowicz, B., and Yelick, K. (2015). Parallel Hessian assembly for Seismic Waveform inversion using Global updates, Proceedings of the 29th IEEE International Parallel and Distributed Processing Symposium (2015). https://doi.org/10.1109/IPDPS.2015.58.Google Scholar
Fukao, Y., and Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research, 118(11), 5920–38.Google Scholar
Gharti, H. N., Tromp, J., and Zampini, S. (2018). Spectral-infinite-element simulations of gravity anomalies, Geophysical Journal International, 215, 1098–117. https://doi.org/10.1093/gji/ggy324.Google Scholar
Geller, R. J., and Ohminato, T (1994). Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the direct solution method. Geophysical Journal International, 116, 421–46.Google Scholar
Gung, Y., and Romanowicz, B. (2004). Q tomography of the upper mantle using three-component long-period waveforms. Geophysical Journal International, 157(2), 813–30.Google Scholar
Gung, Y., Panning, M., and Romanowicz, B. (2003). Global anisotropy and the thickness of continents. Nature, 422(6933), 707–11.Google Scholar
Hello, Y., Ogé, A.Sukhovich, , A., and Nolet, G. (2011). Modern mermaids: New floats image the Deep Earth. EOS Transactions American Geophysical Union, 92, 337–48.Google Scholar
Houser, C., Masters, G., Shearer, P., and Laske, G. (2008). Shear and compressional velocity models of the mantle from cluster analysis of long period waveforms. Geophysical Journal International, 174, 195–212.Google Scholar
Karaoglu, H., and Romanowicz, B. (2017). Global seismic attenuation imaging using full-waveform inversion: a comparative assessment of different choices of misfit functionals. Geophysical Journal International, 212, 807–26.Google Scholar
Karaoglu, H., and Romanowicz, B. (2018). Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method. Geophysical Journal International, 213, 1536–58.Google Scholar
Kawai, K., Konishi, K., Geller, R. J., and Fuji, N. (2014). Methods for inversion of body‐wave waveforms for localized three‐dimensional seismic structure and an application to D″ structure beneath Central America. Geophysical Journal International, 197(1), 495–524. https://doi.org/10.1093/gji/ggt520.Google Scholar
Komatitsch, D., and Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation – I. Validation. Geophysical Journal International, 149, 390–412.Google Scholar
Komatitsch, D., and Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation – II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150, 303–18.Google Scholar
Komatitsch, D., and Vilotte, J. P. (1998).The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88, 368–92.Google Scholar
Koroni, M., and Trampert, J. (2021). Imaging global mantle discontinuities: a test using full-waveforms and adjoint kernels. Geophysical Journal International, 226, 1498–15.Google Scholar
Krebs, J., Anderson, J., Hinkley, D. et al. (2009). Fast full-wavefield seismic inversion using encoded sources. Geophysics, 74, WCC177–WCC188.Google Scholar
Kustowski, B., Ekström, G., and Dziewonski, A.M. (2008). Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. Journal of Geophysical Research: Solid Earth, 113(B6), 2156–202.Google Scholar
Laske, G., Collins, J. A., Wolfe, C. J. et al. (2009). Probing the Hawaiian hotspot with new broadband ocean bottom instruments, Eos, Transactions, American Geophysical. Union, 90(41), 362–636.Google Scholar
Lee, E.-J., Chen, P., Jordan, T. H. et al. (2014). Full‐3‐D tomography for crustal structure in southern California based on the scattering‐integral and the adjoint‐wavefield methods. Journal of Geophysical Research, 119, 6421–51.Google Scholar
Lei, W., Ruan, Y., Bozdag, E. et al. (2020). Global adjoint tomography: model GLAD-M25. Geophysical Journal International223, 1–21.Google Scholar
Lekic, V., and Romanowicz, B. (2011). Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophysical Journal International, 185, 799–831.Google Scholar
Lekic, V., Panning, M., and Romanowicz, B. (2010). A simple method for improving crustal corrections in waveform tomography. Geophysical Journal International, 182, 265–78.Google Scholar
Lerner-Lam, A.L., and, Jordan, T. H. (1983). Earth structure from fundamental and higher mode waveform analysis. Geophysical Journal of the Royal Astronomical Society, 75(3), 759–97.Google Scholar
Lévêque, J. J., Rivera, L., and Wittlinger, G. (1993). On the use o the checker-board test to assess the resolution of tomographic inversions. Geophysical Journal International, 115, 313–18Google Scholar
Li, X.-D., and Romanowicz, B. (1995). Comparison of global waveform inversions with and without considering cross-branch modal coupling. Geophysical Journal International, 121(3), 695–709.Google Scholar
Li, X.-D., and Romanowicz, B. (1996). Global mantle shear velocity model developed using non-linear asymptotic coupling theory. Journal of Geophysical Research, 101, 22245–72.Google Scholar
Li, X.-D., and Tanimoto, T. (1993). Waveforms of long-period body waves in a slightly aspherical Earth model. Geophysical Journal International, 112, 92–102.Google Scholar
Lin, C., Monteiller, V., Wang, K., Liu, T., Tong, P., and Liu, Q. (2019). High-frequency seismic wave modelling of the Deep Earth based on hybrid methods and spectral-element simulations: a conceptual study. Geophysical Journal International, 219, 1948–69.Google Scholar
Liu, Q., Beller, S., Lei, W., Peter, D., and Tromp, J. (2022). Pre-conditioned BFGS-based uncertainty quantification in elastic full-waveform inversion. Geophysical Journal International, 228(2), 796–815.Google Scholar
Maggi, A., Tape, C., Chen, M., Chao, D., and Tromp, J. (2009). An automated time-window selection algorithm for seismic tomography. Geophysical Journal International, 178, 257–81.Google Scholar
Marquering, H., Nolet, G., and Dahlen, F. A. (1998). Three-dimensional waveform sensitivity kernels. Geophysical Journal International, 132, 521–34.Google Scholar
Marone, F., and Romanowicz, B. (2007). Non-linear crustal corrections in high-resolution regional waveform seismic tomography. Geophysical Journal International, 170, 460–67.Google Scholar
Masson, Y. (2023). Distributed finited difference modelling of seismic waves, Geophysical Journal International , 233, 264–96.Google Scholar
Masson, Y., Cupillard, P., Capdeville, Y., and Romanowicz, B. (2014). On the numerical implementation of time reversal mirrors for tomographic imaging. Geophysical Journal International, 196, 1580–99. https://doi.org/10.1093/gji/ggt459.Google Scholar
Masson, Y., and Romanowicz, B. (2017a). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem. Geophysical Journal International, 208(2), 674–92.Google Scholar
Masson, Y., and Romanowicz, B. (2017b). Box tomography: localized imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, 211(1), 141–63.Google Scholar
Mégnin, C., and Romanowicz, B. (2000). The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and highermode waveforms. Geophysical Journal International, 143, 709–28.Google Scholar
Meier, U., Curtis, A., and Trampert, J. (2007). Fully nonlinear inversion of fundamental mode surface waves for a global crustal model. Geophysical Research Letters, 34, L16304. https://doi.org/10.1029/2007GL030989.Google Scholar
Mochizuki, E. (1986). Free oscillations and surface waves of an aspherical Earth. Geophysical Research Letters, 13, 1478–81.Google Scholar
Moczo, P., Kristek, J., and Halada, L. (2004). The Finite-Difference Method for Seismologists. Bratislava: Comenius University. www.spice-rtn.org.Google Scholar
Modrak, R., and Tromp, J. (2016). Seismic waveform inversion best practices: Regional, global and exploration test cases. Geophysical Journal International, 206, 1864–89.Google Scholar
Montagner, J., and Anderson, D. (1989). Petrological constraints on seismic anisotropy. Physics of the Earth and Planetary Interiors, 54, 82–105.Google Scholar
Monteiller, V., Chevrot, S., Komatitsch, D., and Wang, Y. (2015). Three-dimensional full waveform inversion of short period teleseismic wavefields based upon the SEM-DSM hybrid method. Geophysical Journal International, 202, 811–27.Google Scholar
Montelli, R., Nolet, G., Dahlen, F.A. et al. (2004a). Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656), 338–43.Google Scholar
Nocedal, J., and Wright, S. J. (2017). Numerical Optimization, 2nd ed. New York: Springer.Google Scholar
Nolet, G. (1990). Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismograph. Journal of Geophysical Research, 95, 8499–8512.Google Scholar
Nolet, G., and Dahlen, F. A. (2000). Wave front healing and the evolution of seismic delay times. Journal of Geophysical Research, 105, 19043–54.Google Scholar
Nolet, G., Hello, Y., van der Lee, S. et al. (2019). Imaging the Galapagos mantle plume with an unconventional application of floating seismometers. Scientific Reports, 9, 1326.Google Scholar
Panning, M., and Romanowicz, B. (2006). A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal International, 167, 361–79.Google Scholar
Park, J. (1987). Asymptotic coupled-mode expressions for multiplet amplitude anomalies and frequency shifts on an aspherical earth. Geophysical Journal of the Royal Astronomical Society, 90(1), 129–69.Google Scholar
Pasyanos, M., and Nyblade, A. (2007). A top to bottom lithospheric study of Africa and Arabia. Tectonophysics, 444(1–4), 27–44.Google Scholar
Pienkowska, M., Monteiller, V., and Nissen-Meyer, T. (2020). High-frequency global wavefields for local 3-D structures by wavefield injection and extrapolation. Geophysical Journal International, 225, 1782–98.Google Scholar
Pipatprathanporn, P., and Simons, F. J. (2022). One year of sound recorded by a MERMAID float in the Pacific: hydroacoustic earthquake signals and infrasonic ambient noise. Geophysical Journal International, 228(1), 193–212.Google Scholar
Obayashi, M., Yoshimitsu, J., Sugioka, H. et al. (2016). Mantle plumes beneath the South Pacific Superswell revealed by finite frequency P tomography using regional seafloor and island data. Geophysical Research Letters, 43(11), 628–11634.Google Scholar
Rawlinson, N., Fichtner, A., Sambridge, M., and Young, M. K. (2014). Seismic tomography and the assessment of uncertainty. Advances in Geophysics, 55, 1–76.Google Scholar
Replumaz, A., Karason, H., van der Hilst, R. D., Besse, J., and Tapponnier, P. (2004). 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth and Planetary Science Letters, 221, 103–15.Google Scholar
Richards, M. A., and Engebretson, D. C. (1992). Large scale mantle convection and the history of subduction. Nature, 355, 437–40.Google Scholar
Rickers, F., Fichtner, A., and Trampert, J. (2013). The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full-waveform inversion. Earth and Planetary Science Letters, 367, 39–51.Google Scholar
Ritsema, J., and Lekic, V. (2020). Heterogeneity of seismic wave velocity in Earth’s mantle. Annual Review of Earth and Planetary Sciences, 48, 377–401Google Scholar
Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H. (2011). S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184(3), 1223–36.Google Scholar
Ritsema, J., van Heijst, H. J., and Woodhouse, J. H. (1999). Complex shear velocity structure imaged beneath Africa and Iceland. Science, 286, 1925–8.Google Scholar
Romanowicz, B. (1987). Multiplet-multiplet coupling due to lateral heterogeneity: Asymptotic effects on the amplitude and frequency of the Earth’s normal modes. Geophysical Journal of the Royal Astronomical Society, 90(1), 75–100.Google Scholar
Romanowicz, B. (2003). Global mantle tomography: Progress status in the last 10 years. Annual Review of Earth and Planetary Sciences, 31(1), 303–28.Google Scholar
Romanowicz, B. (2020). Seismic tomography of the Earth’s mantle. In Alderton, D. and Elias, S. A., eds., Encyclopedia of Geology, vol. 1, 2nd ed. Cambridge, MA: Academic Press, pp. 587–609.Google Scholar
Romanowicz, B., Chen, L.-W., and French, S. W. (2019). Accelerating full waveform inversion via source stacking and cross-correlations. Geophysical Journal International, 220(1), 308–22.Google Scholar
Romanowicz, B., Panning, M., Gung, Y., and Capdeville, Y. (2008). On the computation of long period seismograms in a 3-D Earth using normal mode based approximations. Geophysical Journal International, 175, 520–36.Google Scholar
Romanowicz, B. A., French, S. W., Rickers, F., and Yuan, H. (2013). Source stacking for numerical wavefield computations: Application to continental and global scale seismic mantle tomography, in American Geophysical Union, Fall Meeting 2013, abstract S21E-05.Google Scholar
Ruan, Y., Lei, W., Modrak, R. et al. (2019). Balancing unevenly distributed data in seismic tomography: a global adjoint tomography example. Geophysical Journal International, 219(2), 1225–36Google Scholar
Schaeffer, A. J., and Lebedev, S. (2013). Global shear speed structure of the upper mantle and transition zone. Geophysical Journal International, 194(1), 417–49.Google Scholar
Schaeffer, A. J., and Lebedev, S. (2014). Imaging the North American continent using waveform inversion of global and USArray data. Earth and Planetary Science Letters, 402, 26–41.Google Scholar
Shapiro, N., and Ritzwoller, M. (2002). Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 151, 88–105.Google Scholar
Sigloch, K., McQuarrie, N., and Nolet, G. (2008). Two-stage subduction history under North America inferred from multiple-frequency tomography. Nature Geoscience, 1, 458–63.Google Scholar
Su, W.-J., Woodward, R. L., and Dziewonski, A. M. (1994). Degree-12 model of shear velocity heterogeneity in the mantle. Journal of Geophysical Research, 99(4), 4945–80.Google Scholar
Suetsugu, D., Isse, T., Tanaka, S. et al. (2009). South Pacific mantle plumes imaged by seismic observation on islands and seafloor. G-Cubed, 10, Q11014.Google Scholar
Sukhovich, A., Bonnieux, S., Hello, Y. et al. (2015). Seismic monitoring in the oceans by autonomous floats. Nature Communications, 6, 8027–33.Google Scholar
Suzuki, Y., Kawai, K., Geller, R. J., Borgeaud, A. F. E., and Konishi, K. (2016). Waveform inversion for 3‐D S‐velocity structure of D″ beneath the Northern Pacific: Possible evidence for a remnant slab and a passive plume. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623‐016‐0576‐0.Google Scholar
Suzuki, Y., Kawai, K., Geller, R. J. et al. (2020). High-resolution 3-D S-velocity structure in the D’ region at the western margin of the Pacific LLSVP: Evidence for small-scale plumes and paleoslabs. Physics of the Earth and Planetary Interiors, 307, 106544.Google Scholar
Tanimoto, T. (1987). The three-dimensional shear wave structure in the mantle by overtone waveform inversion – I. Radial seismogram inversion. Geophysical Journal of the Royal Astronomical Society, 89(2), 713–40.Google Scholar
Tape, C., Liu, Q., Maggi, A., and Tromp, J. (2010). Seismic tomography of the southern California crust based upon spectral-element and adjoint methods. Geophysical Journal International, 180, 433–62.Google Scholar
Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49, 1259–66.Google Scholar
Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia, PA: Society for Industrial and Applied Mathematics.Google Scholar
Tarantola, A., and Valette, B. (1982). Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics, 20(2), 219–232.Google Scholar
Thrastarson, S., van Driel, M., Krischer, L. et al. (2020). Accelerating numerical wave propagation by wavefield adapted meshes. Part II: Full-waveform inversion. Geophysical Journal International, 221, 1591–604.Google Scholar
Thurber, C., and Ritsema, J. (2015). Theory and Observations- Seismic Tomography and Inverse Methods. In Schubert, G., ed., Treatise on Geophysics, vol. 1. Amsterdam: Elsevier, pp. 307–37.Google Scholar
Tromp, J. (2015). 1.07 – Theory and Observations: Forward Modeling and Synthetic Seismograms, 3D Numerical Methods. In Schubert, G., ed., Treatise on Geophysics. Amsterdam: Elsevier, pp. 231–51.Google Scholar
Tromp, J. (2020). Seismic wavefield imaging of earth’s interior across scales. Nature Reviews Earth and Environment, 1, 40–53.Google Scholar
Tromp, J., and Bachmann, E. (2019). Source encoding for adjoint tomography. Geophysical Journal International, 218, 2019–44.Google Scholar
Tromp, J., Tape, C. & Liu, Q. Y. (2005). Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160, 195–216.Google Scholar
Tromp, J., Komatitsch, D., Hjörleifsdóttir, V. et al. (2010). Near real-time simulations of global CMT earthquakes. Geophysical Journal International, 183(1), 381–9.Google Scholar
Valentine, A. P., and Trampert, J. (2016). The impact of approximations and arbitrary choices on geophysical images. Geophysical Journal International, 204, 59–73.Google Scholar
van der Hilst, R., and de Hoop, M. V. (2005). Banana-doughnut kernels and mantle tomography. Geophysical Journal International, 163, 956–61.Google Scholar
van der Lee, S., and Nolet, G. (1997). Upper mantle S velocity structure of North America. Journal of Geophysical Research: Solid Earth, 102, 22815–38.Google Scholar
van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J, Amaru, M. L., and Torsvik, T. H. (2010). Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geoscience, 3, 36–40.Google Scholar
van Driel, M., Krischer, L., Stähler, S. C., Hosseini, K., and Nissen-Meyer, T. (2015). Instaseis: instant global seismograms based on a broadband waveform database. Solid Earth, 6(2), 701–17.Google Scholar
van Driel, M., Kemper, J., and Boehm, C. (2021). On the modelling of self-gravitation for full 3-D global seismic wave propagation. Geophysical Journal International, 227, 632–43.Google Scholar
van Herwaarden, D. P., Boehm, C., Afanasiev, M. et al. (2020). Accelerated full-waveform inversion using dynamic mini-batches. Geophysical Journal International, 221, 1427–38.Google Scholar
Virieux, J., and Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. Geophysics, 74, WCC127–WCC152.Google Scholar
Virieux, J., Asnaashari, A., Brossier, R. et al. (2014). 6. An introduction to full waveform inversion. In Encyclopedia of Exploration Geophysics, Geophysical References Series: R1-1-R1-40. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Wang, Z., and Dahlen, F.A. (1995). Spherical-spline parameterization of three-dimensional Earth models. Geophysical Research Letters, 22, 3099–102.Google Scholar
Wen, L., and Helmberger, D.V. (1998). A two-dimensional P-SV hybrid method and its application to modeling localized structures near the core-mantle boundary. Journal of Geophysical Research, 103, 17901–18.Google Scholar
Woodhouse, J. H., and Dziewonski, A. M. (1984). Mapping the upper mantle: Three dimensional modeling of Earth structure by inversion of seismic waveforms. Journal of Geophysical Research, 89, 5953–86.Google Scholar
Woodhouse, J. H., and Deuss, A. (2015). 1.03 – Theory and Observations: Earth’s Free Oscillations. In Schubert, G., ed., Treatise on Geophysics. Amsterdam: Elsevier, pp. 31–65.Google Scholar
Yang, H., and Tromp, J. (2015). Synthetic free-oscillation spectra: an appraisal of various mode-coupling methods. Geophysical Journal International, 203, 1179–92.Google Scholar
Zhang, Q., Mao, W., Zhou, H., Zhang, H., and Chen, Y. (2018). Hybrid-domain simultaneous-source full waveform inversion without crosstalk noise. Geophysical Journal International, 215(3), 1659–81.Google Scholar
Zhu, H., Bozdag, E., and Tromp, J. (2015). Seismic structure of the European upper mantle based on adjoint tomography. Geophysical Journal International, 201(1), 18–52.Google Scholar
References
Afanasiev, M., Boehm, C., van Driel, M. et al. (2019). Modular and flexible spectral-element waveform modelling in two and three dimensions. Geophysical Journal International, 216, 1675–92.Google Scholar
Afanasiev, M. V., Pratt, R. G., Kamei, R., and McDowell, G. (2014). Waveform-based simulated annealing of crosshole transmission data: A semi-global method for estimating seismic anisotropy. Geophysical Journal International, 199, 1586–607.Google Scholar
Ajo-Franklin, J. B. (2009). Optimal experiment design for time-lapse traveltime tomography. Geophysics, 74, Q27–Q40.Google Scholar
Backus, G. E., and Gilbert, F. (1968). The resolving power of gross Earth data. Geophysical Journal of the Royal Astronomical Society, 16, 169–205.Google Scholar
Backus, G. E., and Gilbert, F. (1970). Uniqueness in the inversion of inaccurate gross Earth data. Philosophical Transactions of the Royal Society A, 266(1173), 123–92.Google Scholar
Bamberger, A., Chavent, G., and Lailly, P. (1977). Une application de la théorie du contrôle à un problème inverse sismique. Annales Geophysicae, 33, 183–200.Google Scholar
Bamberger, A., Chavent, G., Hemons, C., and Lailly, P. (1982). Inversion of normal incidence seismograms. Geophysics, 47, 757–70.Google Scholar
Bayes, T. (1764). An essay toward solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370-418.Google Scholar
Bernauer, M., Fichtner, A., and Igel, H. (2014). Optimal observables for multi-parameter seismic tomography. Geophysical Journal International, 198, 1241–54.Google Scholar
Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434 [stat.ME].Google Scholar
Blom, N., Boehm, C., and Fichtner, A. (2017). Synthetic inversion for density using seismic and gravity data. Geophysical Journal International, 209, 1204–20.Google Scholar
Bodin, T., Sambridge, M., Rawlinson, N., and Arroucau, P. (2012). Transdimensional tomography with unknown data noise. Geophysical Journal International, 189, 1536–56.Google Scholar
Bozdag, E., Peter, D., Lefebvre, M. et al. (2016). Global adjoint tomography: First-generation model. Geophysical Journal International, 207, 1739–66.Google Scholar
Bui-Thanh, T., Ghattas, O., Martin, J., and Stadler, G. (2013). A computational framework for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with application to global seismic inversion. SIAM Journal on Scientific Computing, 35, A2494–A2523.Google Scholar
Capdeville, Y., Guillot, L., and Marigo, J. J. (2010). 2-D non-periodic homogenization to upscale elastic media for P–SV waves. Geophysical Journal International, 182, 903–22.Google Scholar
Capdeville, Y., Gung, Y., and Romanowicz, B. (2005). Towards global Earth tomography using the spectral element method: A technique based on source stacking. Geophysical Journal International, 162, 541–54.Google Scholar
Chen, P., Jordan, T. H., and Zhao, L. (2007a). Full 3D waveform tomography: A comparison between the scattering-integral and adjoint-wavefield methods. Geophysical Journal International, 170, 175–81.Google Scholar
Chen, P., Zhao, L., and Jordan, T. H. (2007b). Full 3D tomography for the crustal structure of the Los Angeles region. Bulletin of the Seismological Society of America, 97, 1094–120.Google Scholar
Chib, S., and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. American Statistician, 49, 327–35.Google Scholar
Choi, Y., and Alkhalifah, T. (2011). Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion. Geophysics, 76, R125–R134.Google Scholar
Clouzet, P., Masson, Y., and Romanowicz, B. (2018). Box tomography: First application to the imaging of upper mantle shear velocity and radial anisotropy structure beneath the north American continent. Geophysical Journal International, 213, 1849–75.Google Scholar
de la Puente, J., Dumbser, M., Käser, M., and Igel, H. (2007). An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured methods. IV. Anisotropy. Geophysical Journal International, 169, 1210–28.Google Scholar
Djikpesse, H. A., Khodja, M. R., Prange, M. D., Duchenne, S., and Menkiti, H. (2012). Bayesian survey design to optimize resolution in waveform inversion. Geophysics, 77, R81–R93.Google Scholar
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195, 216–22.Google Scholar
Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.Google Scholar
Fichtner, A., Bunge, H.-P., and Igel, H. (2006). The adjoint method in seismology – I. Theory. Physics of the Earth and Planetary Interiors, 157, 105–23.Google Scholar
Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P. (2009). Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophysical Journal International, 179, 1703–25.Google Scholar
Fichtner, A. (2010). Full seismic waveform modeling and inversion. Heidelberg: Springer.Google Scholar
Fichtner, A., and Trampert, J. (2011). Resolution analysis in full waveform inversion. Geophysical Journal International, 187, 1604–24.Google Scholar
Fichtner, A., van Herwaarden, D.-P., Afanasiev, M. et al. (2018). The Collaborative Seismic Earth Model: Generation I. Geophysical Research Letters, 45, 4007–16.Google Scholar
Fichtner, A., and van Leeuwen, T. (2015). Resolution analysis by random probing. Journal of Geophysical Research: Solid Earth, 120, 5549–73.Google Scholar
Gebraad, L., Boehm, C., and Fichtner, A. (2020). Bayesian elastic full‐waveform inversion using Hamiltonian Monte Carlo. Journal of Geophysical Research: Solid Earth, 125, e2019JB018428.Google Scholar
Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–32.Google Scholar
Hardt, M., and Scherbaum, F. (1994). The design of optimum networks for aftershock recordings. Geophysical Journal International, 117, 716–26.Google Scholar
Huang, Y., and Schuster, G. T. (2018). Full‐waveform inversion with multisource frequency selection of marine streamer data. Geophysical Prospecting, 66, 1243–57.Google Scholar
Hunziker, J., Laloy, E., and Linde, N. (2019). Bayesian full-waveform tomography with application to crosshole ground penetrating radar data. Geophysical Journal International, 218, 913–31.Google Scholar
Igel, H. (2016). Computational Seismology: A Practical Introduction. Cambridge: Cambridge University Press.Google Scholar
Kijko, A. (1977). An algorithm for the optimum distribution of a regional seismic network – I. Pure and Applied Geophysics, 115, 999–1009.Google Scholar
Komatitsch, D., and Vilotte, J.-P. (1998). The spectral element method: An effective tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88, 368–92.Google Scholar
Käufl, P., Fichtner, A., and Igel, H. (2013). Probabilistic full waveform inversion based on tectonic regionalisation: Development and application to the Australian upper mantle. Geophysical Journal International, 193, 437–51.Google Scholar
Kotsi, P., Malcolm, A., and Ely, G. (2020). Time-lapse full-waveform inversion using Hamiltonian Monte Carlo: A proof of concept. SEG Technical Program Expanded Abstracts, 845–49.Google Scholar
Krampe, V., Edme, P., and Maurer, H. (2021). Optimized experimental design for seismic full waveform inversion: A computationally efficient method including a flexible implementation of acquisition costs. Geophysical Prospecting, 69, 152–66.Google Scholar
Krebs, J. R., Anderson, J. E., Hinkley, D. et al. (2009). Fast full-wavefield seismic inversion using encoded sources. Geophysics, 74, WCC177–WCC188.Google Scholar
Krebs, J. R., Cha, Y. H., Lee, S. et al. ExxonMobil Upstream Research Co (2018). Orthogonal Source and Receiver Encoding. U.S. Patent 10,012,745.Google Scholar
Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86.Google Scholar
Kuo, C., and Romanowicz, B. (2002). On the resolution of density anomalies in the Earth’s mantle using spectral fitting of normal mode data. Geophysical Journal International, 150, 162–79.Google Scholar
Leng, K., Nissen-Meyer, T., and van Driel, M. (2016). Efficient global wave propagation adapted to 3-D structural complexity: A pseudospectral/spectral-element approach. Geophysical Journal International, 207, 1700–21.Google Scholar
Liu, Q., and Gu, Y. (2012). Seismic imaging: From classical to adjoint tomography. Tectonophysics, 566–567, 31–66.Google Scholar
Liu, Q., and Peter, D. (2019). Square-root variable metric based elastic full-waveform inversion. Part 2: Uncertainty estimation. Geophysical Journal International, 218(2), 1100–20.Google Scholar
Liu, Q., and Wang, D. (2016). Stein variational gradient descent: A general purpose Bayesian inference algorithm. Advances in Neural Information Processing Systems, 2378–86. arXiv:1608.04471.Google Scholar
Liu, Q., Peter, D., and Tape, C. (2019). Square-root variable metric based elastic full-waveform inversion. Part 1: Theory and validation. Geophysical Journal International, 218(2), 1121–35.Google Scholar
Masson, Y., and Romanowicz, B. (2017). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: A numerical solution to the scattering problem. Geophysical Journal International, 218, 674–92.Google Scholar
Maurer, H., Nuber, A., Martiartu, N. K. et al. (2017). Optimized experimental design in the context of seismic full waveform inversion and seismic waveform imaging. In Nielsen, L., ed., Advances in Geophysics, vol. 58. Cambridge, MA: Academic Press, pp. 1–45.Google Scholar
Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International, 151, 675–88.Google Scholar
Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R., and Halada, L. (2002). 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli. Bulletin of the Seismological Society of America, 92, 3042–66.Google Scholar
Mosegaard, K. (2012). Limits to nonlinear inversion. In Jónasson, K., ed., Applied Parallel and Scientific Computing, Berlin: Springer, pp. 11–21.Google Scholar
Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In Brooks, S., Gelman, A., Jones, G., and Meng, X.-L., eds., Handbook of Markov chain Monte Carlo. New York: Chapman and Hall, pp. 113–62.Google Scholar
Plessix, R.-E. (2006). A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 167, 495–503.Google Scholar
Rabinowitz, N., and Steinberg, D. M. (1990). Optimal configuration of a seismographic network: A statistical approach. Bulletin of the Seismological Society of America, 80, 187–96.Google Scholar
Resovsky, J., and Trampert, J. (2002). Reliable mantle density error bars: An application of the Neighbourhood Algorithm to normal-mode and surface wave data. Geophysical Journal International, 150, 665–72.Google Scholar
Romero, L. A., Ghiglia, D. C., Ober, C. C., and Morton, S. A. (2000). Phase encoding of shot records in prestack migration. Geophysics, 65, 426–36.Google Scholar
Ronchi, C., Iacono, R., and Paolucci, P. S. (1996). The ‘cubed sphere’: A new method for the solution of partial differential equations in spherical geometry. Journal of Computational Physics, 124, 93–114.Google Scholar
Sambridge, M. S., Bodin, T., Gallagher, K., and Tkalcic, H. (2013). Transdimensional inference in the geosciences. Philosophical Transactions of the Royal Society A, 371, 20110547.Google Scholar
Sambridge, M. S., Gallagher, K., Jackson, A., and Rickwood, P. (2006). Trans-dimensional inverse problems, model comparison, and the evidence. Geophysical Journal International, 167, 528–42.Google Scholar
Schiemenz, A., and Igel, H. (2013). Accelerated 3-D full-waveform inversion using simultaneously encoded sources in the time domain: Application to Valhall ocean-bottom cable data. Geophysical Journal International, 195, 1970–88.Google Scholar
Sieminski, A., Trampert, J., and Tromp, J. (2009). Principal component analysis of anisotropic finite-frequency kernels. Geophysical Journal International, 179, 1186-98.Google Scholar
Sirgue, L., and Pratt, R. G. (2004). Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics, 69, 231–48.Google Scholar
Sirgue, L., Barkved, O. I., Dellinger, J. et al, (2010). Full-waveform inversion: The next leap forward in imaging at Valhall. First Break, 28, 65–70.Google Scholar
Tape, C., Liu, Q., Maggi, A., and Tromp, J. (2010). Seismic tomography of the southern California crust based upon spectral-element and adjoint methods. Geophysical Journal International, 180, 433–62.Google Scholar
Tarantola, A. (1988). Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation. Pure and Applied Geophysics, 128, 365–99.Google Scholar
Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation, 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics.Google Scholar
Thrastarson, S., van Driel, M., Krischer, L. et al. (2020). Accelerating numerical wave propagation by wavefield adapted meshes. Part II: full-waveform inversion. Geophysical Journal International, 221, 1591–604.Google Scholar
Thrastarson, S., van Herwaarden, D.-P. and Fichtner, A. (2021). Inversionson: Fully Automated Seismic Waveform Inversions. EarthArXiv, http://doi.org/10.31223/X5F31V.Google Scholar
Thrastarson, S., van Herwaarden, D.-P., Krischer, L. et al. (2022). Data-adaptive global full-waveform inversion. Geophysical Journal International, 230, 1374–93, https://doi.org/10.1093/gji/ggac122.Google Scholar
Tromp, J., Tape, C., and Liu, Q. (2005). Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160, 195–216.Google Scholar
Tromp, J., and Bachmann, E. (2019). Source encoding for adjoint tomography. Geophysical Journal International, 218, 2019–44.Google Scholar
van Driel, M., Boehm, C., Krischer, L., and Afanasiev, M. (2020). Accelerating numerical wave propagation using wavefield adapted meshes. Part I: forward and adjoint modelling. Geophysical Journal International, 221, 1580–90.Google Scholar
van Herwaarden, D.-P., Boehm, C., Afanasiev, M. et al. (2020). Accelerated full-waveform inversion using dynamic mini-batches. Geophysical Journal International, 221, 1427–38.Google Scholar
van Herwaarden, D.-P., Afanasiev, M., Thrastarson, S., and Fichtner, A. (2021). Evolutionary full-waveform inversion. Geophysical Journal International, 224, 306–11.Google Scholar
van Leeuwen, T., and Herrmann, F. J. (2013). Fast waveform inversion without source‐encoding. Geophysical Prospecting, 61, 10–19.Google Scholar
Virieux, J. (1986). P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method. Geophysics, 51, 889–901.Google Scholar
Virieux, J., and Operto, S. (2009). An overview of full waveform inversion in exploration geophysics. Geophysics, 74, WCC127–WCC152.Google Scholar
Visser, G., Guo, P., and Saygin, E. (2019). Bayesian transdimensional seismic full-waveform inversion with a dipping layer parameterization. Geophysical Journal International, 84(6), R845–R858.Google Scholar
Woodhouse, J. H., and Dziewonski, A. M. (1984). Mapping the upper mantle: Three-dimensional modeling of Earth structure by inversion of seismic waveforms. Journal of Geophysical Research: Solid Earth, 89, 5953–86.Google Scholar
Wolpert, D. H., and Macready, W. G. (1997). No Free Lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–88.Google Scholar
Zhang, Q., Mao, W., Zhou, H., Zhang, H., and Chen, Y. (2018). Hybrid-domain simultaneous-source full waveform inversion without crosstalk noise. Geophysical Journal International, 215, 1659–81.Google Scholar
Zhang, X., and Curtis, A. (2020). Variational full-waveform inversion. Geophysical Journal International, 222, 406–11.Google Scholar
Bibliography
Afonso, J. C., Moorkamp, M., and Fullea, J. (2016). Imaging the lithosphere and upper mantle: Where we are at and where we are go. In Moorkamp, M., Lelièvre, P. G., Linde, N., and Khan, A. (eds.) Integrated Imaging of the Earth: Theory and Applications, AGU Geophysical Monograph 218. Hoboken, NJ: John Wiley & Sons, pp. 191–218.Google Scholar
Afonso, J. C., Salajegheh, F., Szwillus, W., Ebbing, J., and Gaina, C. (2019). A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets. Geophysical Journal International, 217(3), 1602–28.Google Scholar
Astic, T., and Oldenburg, D. W. (2019). A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior. Geophysical Journal International, 219(3), 1989–2012.Google Scholar
Astic, T., Heagy, L. J., and Oldenburg, D. W. (2021). Petrophysically and geologically guided multi-physics inversion using a dynamic Gaussian mixture model. Geophysical Journal International, 224(1), 40–68.Google Scholar
Barton, P. J. (1986). The relationship between seismic velocity and density in the continental crust: A useful constraint?Geophysical Journal International, 87(1), 195–208.Google Scholar
Bedrosian, P. A., and Feucht, D. W. (2014). Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data. Earth and Planetary Science Letters, 402, 275–89.Google Scholar
Bennington, N. L., Zhang, H., Thurber, C. H., and Bedrosian, P. A. (2015). Joint inversion of seismic and magnetotelluric data in the Parkfield region of California using the normalized cross-gradient constraint. Pure and Applied Geophysics, 172(5), 1033–52.Google Scholar
Birch, F. (1961). The velocity of compressional waves in rocks to 10 kilobars: Part 2. Journal of Geophysical Research, 66(7), 2199–224.Google Scholar
Blom, N., Boehm, C., and Fichtner, A. (2017). Synthetic inversions for density using seismic and gravity data. Geophysical Journal International, 209(2), 1204–20.Google Scholar
Bosch, M. (2016). Inference networks in Earth models with multiple components and data. In Moorkamp, M., Lelièvre, P. G., Linde, N., and Khan, A. (eds.) Integrated Imaging of the Earth: Theory and Applications, AGU Geophysical Monograph 218. Hoboken, NJ: John Wiley & Sons, pp. 29–47.Google Scholar
Bosch, M., and McGaughey, J. (2001). Joint inversion of gravity and magnetic data under lithologic constraints. The Leading Edge, 20(8), 877–81.Google Scholar
Bouligand, C., Glen, J. M. G., and Blakely, R. J. (2009). Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. Journal of Geophysical Research: Solid Earth, 114(B11).Google Scholar
Bouligand, C., Glen, J. M. G., and Blakely, R. J. (2014). Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park. Journal of Geophysical Research: Solid Earth, 119(4), 2595–630.Google Scholar
Carter-McAuslan, A., Leliévre, P. G. and Farquharson, C. G. (2015). A study of fuzzy c-means coupling for joint inversion, using seismic tomography and gravity data testscenarios. GEOPHYSICS, 80(1), W1–W15.Google Scholar
Chen, C. W., Rondenay, S., Weeraratne, D. S., and Snyder, D. B. (2007).New constraints on the upper mantle structure of the Slave Craton from Rayleigh wave inversion. Geophysical Research Letters, 34, L10301. https://doi.org/10.1029/2007GL029535Google Scholar
Chulliat, A., Brown, W., Alken, P. et al. (2020). The US/UK world magnetic model for 2020–2025: Technical Report. National Centers for Environmental Information (U.S.); British Geological Survey. https://doi.org/10.25923/ytk1-yx35Google Scholar
Colombo, D., and Rovetta, D. (2018). Coupling strategies in multiparameter geophysical joint inversion. Geophysical Journal International, 215(2), 1171–84.Google Scholar
Darijani, M., Farquharson, C. G., and Lelièvre, P. G. (2021). Joint and constrained inversion of magnetic and gravity data: A case history from the McArthur River area, Canada. Geophysics, 86(2), B79–B95.Google Scholar
Elsasser, W. M. (1950). The Earth’s interior and geomagnetism. Reviews of Modern Physics, 22(1), 1–35.Google Scholar
Finn, C. A., and Morgan, L. A. (2002). High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park. Journal of Volcanology and Geothermal Research, 115(1-2), 207–31.Google Scholar
Fishwick, S. (2010). Surface wave tomography: Imaging of the lithosphere-asthenosphere boundary beneath central and southern Africa?Lithos, 120(1–2), 63–73.Google Scholar
Franz, G., Moorkamp, M., Jegen, M., Berndt, C., and Rabbel, W. (2021). Comparison of different coupling methods for joint inversion of geophysical data: A case study for the Namibian continental margin. Journal of Geophysical Research: Solid Earth, 126 (12), e2021JB022092.Google Scholar
Fullagar, P. K., and Oldenburg, D. W. (1984). Inversion of horizontal loop electromagnetic frequency soundings. Geophysics, 49(2), 150–64.Google Scholar
Gallardo, L. A., and Meju, M. A. (2003). Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophysical Research Letters, 30(13), 1658.Google Scholar
Gallardo, L. A., and Meju, M. A. (2007). Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophysical Journal International, 169, 1261–72.Google Scholar
Gallardo, L. A., and Meju, M. A. (2011). Structure-coupled multiphysics imaging in geophysical sciences. Reviews of Geophysics, 49(1).Google Scholar
Gao, H., and Shen, Y. (2014). Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc. Earth and Planetary Science Letters, 390, 222–33.Google Scholar
Gardner, G. H. F., Gardner, L. W., and Gregory, A. R. (1974). Formation velocity and density: The diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770–80.Google Scholar
Ghalenoei, E., Dettmer, J., Ali, M. Y., and Kim, J. W. (2021). Gravity and magnetic joint inversion for basement and salt structures with the reversible-jump algorithm. Geophysical Journal International, 227(2), 746–58.Google Scholar
Giraud, J., Pakyuz-Charrier, E., Jessell, M. et al. (2017). Uncertainty reduction through geologically conditioned petrophysical constraints in joint inversion. Geophysics, 82(6), ID19–ID34.Google Scholar
Gross, L. (2019). Weighted cross-gradient function for joint inversion with the application to regional 3-D gravity and magnetic anomalies. Geophysical Journal International, 217(3), 2035–46.Google Scholar
Haber, E., and Holtzman Gazit, M. (2013). Model fusion and joint inversion. Surveys in Geophysics, 34(5), 675–95.Google Scholar
Haber, E., and Oldenburg, D. W. (1997). Joint inversion: A structural approach. Inverse Problems, 13(1), 63–77.Google Scholar
Harmon, N., Wang, S., Rychert, C. A.Constable, S., and Kendall, J. M. (2021). Shear velocity inversion guided by resistivity structure from the pi-lab experiment for integrated estimates of partial melt in the mantle. Journal of Geophysical Research: Solid Earth, e2021JB022202.Google Scholar
Heincke, B., Jegen, M., Moorkamp, M., Hobbs, R. W., and Chen, J. (2017). An adaptive coupling strategy for joint inversions that use petrophysical information as constraints. Journal of Applied Geophysics, 136, 279–97.Google Scholar
Hinze, W. J., Von Frese, R. R. B., and Saad, A. H. (2013). Gravity and magnetic exploration: Principles, practices, and applications. Cambridge: Cambridge University Press.Google Scholar
Hong, T., and Sen, M. K. (2009). A new MCMC algorithm for seismic waveform inversion and corresponding uncertainty analysis. Geophysical Journal International, 177 (1), 14–32.Google Scholar
Julia, J., Ammon, C. J., Herrmann, R. B,. and Correig, A. M. (2000). Joint inversion of receiver function and surface wave dispersion observations. Geophysical Journal International,143(1), 99–112.Google Scholar
Kamm, J., Lundin, I. A., Bastani, M., Sadeghi, M., and Pedersen, L. B. (2015). Joint inversion of gravity, magnetic, and petrophysical data: A case study from a gabbro intrusion in Boden, Sweden. Geophysics, 80(5), B131–B152.Google Scholar
Kelbert, A., Egbert, G. D., and deGroot-Hedlin, C. (2012). Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track. Geology, 40(5), 447–50.Google Scholar
Konstantinou, A., Strickland, A., Miller, E. L., and Wooden, J. P. (2012). Multistage Cenozoic extension of the Albion–Raft River–Grouse Creek metamorphic core complex: Geochronologic and stratigraphic constraints. Geosphere, 8(6), 1429–66.Google Scholar
Lelièvre, P. G., Bijani, R., and Farquharson, C. G. (2016). Joint inversion using multi-objective global optimization methods. In 78th EAGE Conference and Exhibition 2016. Houten: European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201601655.Google Scholar
Li, X., and Sun, J. (2022). Towards a better understanding of the recoverability of physical property relationships from geophysical inversions of multiple potential-field data sets.Geophysical Journal International, 230(3), 1489–507.Google Scholar
Linde, N., Binley, A., Tryggvason, A., Pedersen, L. B., and Revil, A. (2006). Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 42: 12404.Google Scholar
Linde, N., and Doetsch, J. (2016). Joint Inversion in Hydrogeophysics and Near-Surface Geophysics. In Moorkamp, M., Lelièvre, P. G., Linde, N., and Khan, A., eds., Integrated Imaging of the Earth: Theory and Applications. Hoboken, NJ: John Wiley & Sons, pp. 117–35.Google Scholar
Lines, L. R., Schultz, A. K., and Treitel, S. (1986). Cooperative inversion of geophysical data. Geophysics, 53(1), 8–20.Google Scholar
Liu, L., and Gao, S. S. (2018). Lithospheric layering beneath the contiguous United States constrained by S-to-P receiver functions. Earth and Planetary Science Letters, 495, 79–86.Google Scholar
Maceira, M., and Ammon, C. J. (2009). Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure. Journal of Geophysical Research: Solid Earth, 114(B2), B02314.Google Scholar
Mackie, R. L., Meju, M. A., Miorelli, F. et al. (2020). Seismic image-guided 3D inversion of marine controlled-source electromagnetic and magnetotelluric data. Interpretation, 8(4), SS1–SS13.Google Scholar
Manassero, M. C., Afonso, J. C., Zyserman, F I. et al. (2021). A reduced order approach for probabilistic inversions of 3D magnetotelluric data II: Joint inversion of MT and surface-wave data. Journal of Geophysical Research: Solid Earth, 126 (12), e2021JB021962.Google Scholar
Mandolesi, E., and Jones, A. G. (2014). Magnetotelluric inversion based on mutual information. Geophysical Journal International, 199(1), 242–52.Google Scholar
Martin, R., Giraud, J., Ogarko, V. et al. (2021). Three-dimensional gravity anomaly data inversion in the Pyrenees using compressional seismic velocity model as structural similarity constraints. Geophysical Journal International, 225(2), 1063–85.Google Scholar
Meilă, M. (2003). Comparing clusterings by the variation of information. In Schölkopf, B. and Warmuth, M. K., eds., Learning Theory and Kernel Machines: Lecture Notes in Computer Science, vol. 2777. Berlin: Springer, pp. 173–87. https://doi.org/10.1007/978-3-540-45167-9_14.Google Scholar
Meju, M., and Gallardo, L. A. (2016). Structural Coupling Approaches in Integrated Geophysical Imaging. In Moorkamp, M., Lelièvre, P. G., Linde, N., and Khan, A., eds., Integrated Imaging of the Earth: Theory and Applications. Hoboken, NJ: . John Wiley & Sons, pp. 49–67.Google Scholar
Meju, M., Saleh, A. S., Mackie, R. L. et al. (2018). Workflow for improvement of 3D anisotropic CSEM resistivity inversion and integration with seismic using cross-gradient constraint to reduce exploration risk in a complex fold-thrust belt in offshore northwest Borneo. Interpretation, 6(3), SG49–SG57.Google Scholar
Meqbel, N. M., Egbert, G. D., Wannamaker, P. E., Kelbert, A., and Schultz, A. (2014). Deep electrical resistivity structure of the northwestern US derived from 3-D inversion of USArray magnetotelluric data.Earth and Planetary Science Letters, 402,290–304.Google Scholar
Moorkamp, M. (2007). Joint inversion of MT and receiver-function data. PhD thesis, National University of Ireland, Galway.Google Scholar
Moorkamp, M. (2017). Integrating electromagnetic data with other geophysical observations for enhanced imaging of the Earth: A tutorial and review. Surveys in Geophysics, 38(5), 935–62.Google Scholar
Moorkamp, M. (2021). Joint inversion of gravity and magnetotelluric data from the Ernest Henry IOCG deposit with a variation of information constraint. In Swinford, B. and Abubakar, A.First International Meeting for Applied Geoscience & Energy. Houston, TX: Society of Exploration Geophysicists, pp. 1711–15.Google Scholar
Moorkamp, M. (2022). Deciphering the state of the lower crust and upper mantle with multi-physics inversion. Geophysical Research Letters, 49 (9), e2021GL096336.Google Scholar
Moorkamp, M., Jones, A. G., and Eaton, D. W. (2007). Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: Are seismic velocities and electrical conductivities compatible?Geophysical Research Letters, 34(16), L16311.Google Scholar
Moorkamp, M., Roberts, A. W., Jegen, M., Heincke, B., and Hobbs, R. W. (2013). Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data. Geophysical Research Letters, 40(14), 3596–601.Google Scholar
Moorkamp, M., Heincke, B., Jegen, M., Roberts, A. W., and Hobbs, R. W. (2011). A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477–93.Google Scholar
Moorkamp, M., Heincke, B., Jegen, M., Roberts, A. W., and Hobbs, R. W. (2016a). Joint Inversion in Hydrocarbon Exploration. In Moorkamp, M., Lelièvre, P. G., Linde, N., and Khan, A., eds., Integrated Imaging of the Earth: Theory and Applications. Hoboken, NJ: John Wiley & Sons, pp. 167–189.Google Scholar
Moorkamp, M., Lelièvre, P. G., Linde, N., and Khan, A., eds. (2016b). Integrated Imaging of the Earth. Hoboken, NJ: John Wiley & Sons.Google Scholar
Nafe, J. E., and Drake, C. L. (1957). Variation with depth in shallow and deep water marine sediments of porosity, density and the velocities of compressional and shear waves. Geophysics, 22(3), 523–52.Google Scholar
O’Donnell, J. P., Daly, E., Tiberi, C. et al. (2011). Lithosphere-asthenosphere interaction beneath Ireland from joint inversion of teleseismic p-wave delay times and grace gravity. Geophysical Journal International, 184(3), 1379–96.Google Scholar
Pail, R., Fecher, T., Barnes, D. et al. (2018). Short note: The experimental geopotential model XGM2016. Journal of Geodesy, 92(4), 443–51.Google Scholar
Panzner, M., Morten, J. P., Weibull, W. W., and Arntsen, B. (2016). Integrated seismic and electromagnetic model building applied to improve subbasalt depth imaging in the Faroe-Shetland basin. Geophysics, 81(1), E57–E68.Google Scholar
Paulatto, M., Moorkamp, M., Hautmann, S. et al. (2019). Vertically extensive magma reservoir revealed from joint inversion and quantitative interpretation of seismic and gravity data. Journal of Geophysical Research: Solid Earth, 124(11), 11170–91.Google Scholar
Pluim, J. P. W.Maintz, J. B. A. and Viergever, M. A. (2003). Mutual-information-based registration of medical images: A survey. IEEE Transactions on Medical Imaging, 22(8), 986–1004.Google Scholar
Schmandt, B., and Humphreys, E. (2011). Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States. Geology, 39(2), 175–8.Google Scholar
Schultz, A., Egbert, G. D., Kelbert, A. et al., and staff of the National Geoelectromagnetic Facility and their contractors. (2006–8). USArray TA magnetotelluric transfer functions. https://doi.org/10.17611/DP/EMTF/USARRAY/TA.Google Scholar
Shi, Z., Hobbs, R. W., Moorkamp, M., Tian, G., and Jiang, L. (2017). 3-D cross-gradient joint inversion of seismic refraction and dc resistivity data. Journal of Applied Geophysics, 141, 54–67.Google Scholar
Spichak, V. V. (2020). Modern methods for joint analysis and inversion of geophysical data. Russian Geology and Geophysics, 61(3), 341–57.Google Scholar
Sun, J., and Li, Y. (2015a). Advancing the understanding of petrophysical data through joint clustering inversion: A sulfide deposit example from Bathurst mining camp. In Schneider, R. V., ed., SEG Technical Program Expanded Abstracts 2015. Houston, TX: Society of Exploration Geophysicists, pp. 2017–21.