Skip to main content Accessibility help
Hostname: page-component-768dbb666b-6zkrn Total loading time: 4.354 Render date: 2023-02-05T15:54:58.221Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true


Published online by Cambridge University Press:  26 February 2021

Lewis I. Held, Jr
Texas Tech University
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Animal Anomalies
What Abnormal Anatomies Reveal about Normal Development
, pp. 187 - 260
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abdelilah, S., Solnica-Krezel, L., Stainier, D.Y.R., and Driever, W. (1994). Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature 370, 468471.CrossRefGoogle ScholarPubMed
Abe, M. and Kuroda, R. (2019). The development of CRISPR for a mollusc establishes the formin Lsdia1 as the long-sought gene for snail dextral/sinistral coiling. Development 146, dev175976.CrossRefGoogle ScholarPubMed
Aboitiz, F. and Montiel, J.F. (2019). Morphological evolution of the vertebrate forebrain: from mechanical to cellular processes. Evol. Dev. 21, 330341.CrossRefGoogle ScholarPubMed
Abu-Shaar, M. and Mann, R.S. (1998). Generation of multiple antagonistic domains along the proximodistal axis during Drosophila leg development. Development 125, 38213830.Google ScholarPubMed
Abzhanov, A. (2017). The old and new faces of morphology: the legacy of D’Arcy Thompson’s “theory of transformations” and “laws of growth”. Development 144, 42844297.CrossRefGoogle Scholar
Acurio, A.E., Rhebergen, F.T., Paulus, S., Courtier-Orgogozo, V., and Lang, M. (2019). Repeated evolution of asymmetric genitalia and right-sided mating behavior in the Drosophila nannoptera species group. BMC Evol. Biol. 19, 109.CrossRefGoogle ScholarPubMed
Adhikari, K., Fontanil, T., Cal, S., Mendoza-Revilla, J., Fuentes-Guajardo, M., Chacón-Duque, J.C., Al-Saadi, F., Johansson, J.A., Quinto-Sánchez, M., Acuña-Alonzo, V., Jaramillo, C., Arias, W., Lozano, R.B., Pérez, G.M., Gómez-Valdés, J., Villamil-Ramírez, H., Hunemeier, T., Ramallo, V., Silva de Cerqueira, C.C., Hurtado, M., Villegas, V., Granja, V., Gallo, C., Poletti, G., Schuler-Faccini, L., Salzano, F.M., Cátira Bortolinia, M., Canizales-Quinteros, S., Rothhammer, F., Bedoya, G., González-José, R., Headon, D., López-Otín, C., Tobin, D.J., Balding, D., and Ruiz-Linares, A. (2016). A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nat. Commun. 7, 10815.CrossRefGoogle ScholarPubMed
Agi, E., Langen, M., Altschuler, S.J., Wu, L.F., Zimmermann, T., and Hiesinger, P.R. (2014). The evolution and development of neural superposition. J. Neurogenet. 28, 216232.CrossRefGoogle ScholarPubMed
Aiello, D. and Lasagna, E. (2018). The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim. Genet. 49, 505519.CrossRefGoogle ScholarPubMed
Akam, M. (1998). Hox genes: from master genes to micromanagers. Curr. Biol. 8, R676R678.CrossRefGoogle ScholarPubMed
Akey, J.M., Ruhe, A.L., Akey, D.T., Wong, A.K., Connelly, C.F., Madeoy, J., Nicholas, T.J., and Neff, M.W. (2010). Tracking footprints of artificial selection in the dog genome. PNAS 107, 11601165.CrossRefGoogle ScholarPubMed
Alberch, P. (1982). Developmental constraints in evolutionary processes. In Evolution and Development, Bonner, J.T., editor. Springer-Verlag, Berlin, pp. 313332.CrossRefGoogle Scholar
Alberch, P. (1985). Developmental constraints: why St. Bernards often have an extra digit and poodles never do. Am. Nat. 126, 430433.CrossRefGoogle Scholar
Alberch, P. (1986). Possible dogs. Nat. Hist. 95(12), 48.Google Scholar
Alberch, P. (1989). The logic of monsters: evidence for internal constraint in development and evolution. Geobios 22(Suppl. 2), 2157.CrossRefGoogle Scholar
Alberch, P., Gould, S.J., Oster, G.F., and Wake, D.B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology 5, 296317.CrossRefGoogle Scholar
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). Molecular Biology of the Cell, 4th ed. Garland, New York.Google Scholar
Alexander, R.M. (1995). Big flies have bigger cells. Nature 375, 20.CrossRefGoogle ScholarPubMed
Alibardi, L. (2018). Appendage regeneration in amphibians and some reptiles derived from specific evolutionary histories. J. Exp. Zool. B Mol. Dev. Evol. 330, 396405.CrossRefGoogle ScholarPubMed
Alibardi, L. (2018). Limb regeneration in humans: dream or reality? Ann. Anat. 217, 16.CrossRefGoogle ScholarPubMed
Allchin, D. (2019). How the tiger changed its stripes. Am. Biol. Teacher 81, 599604.CrossRefGoogle Scholar
Allen, W.L., Cuthill, I.C., Scott-Samuel, N.E., and Baddeley, R. (2011). Why the leopard got its spots: relating pattern development to ecology in felids. Proc. R. Soc. B 278, 13731380.CrossRefGoogle ScholarPubMed
Alpert, B.O. (2013). The meaning of the dots on the horses of Pech Merle. Arts 2, 476490.CrossRefGoogle Scholar
Alsina, B. and Whitfield, T.T. (2017). Sculpting the labyrinth: morphogenesis of the developing inner ear. Semin. Cell Dev. Biol. 65, 4759.CrossRefGoogle ScholarPubMed
Ambegaonkar, A.A. and Irvine, K.D. (2015). Coordination of planar cell polarity pathways through Spiny legs. eLife 4, e09946.CrossRefGoogle ScholarPubMed
Ambrosi, D., Ben Amar, M., Cyron, C.J., DeSimone, A., Goriely, A., Humphrey, J.D., and Kuhl, E. (2019). Growth and remodelling of living tissues: perspectives, challenges and opportunities. J. R. Soc. Interface 16, 20190233.CrossRefGoogle ScholarPubMed
Anderson, D. and Brenner, S. (2008). Seymour Benzer (1921–2007): restless spirit, and pioneer in molecular genetics. Nature 451, 139.CrossRefGoogle Scholar
Andl, T., Reddy, S.T., Gaddapara, T., and Millar, S.E. (2002). WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643653.CrossRefGoogle ScholarPubMed
Andrew, D.J. and Ewald, A.J. (2010). Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev. Biol. 341, 3455.CrossRefGoogle ScholarPubMed
Angelini, D.R. and Kaufman, T.C. (2005). Insect appendages and comparative ontogenetics. Dev. Biol. 286, 5777.CrossRefGoogle ScholarPubMed
Anon, . (1957). The Science of Fingerprints. Federal Bureau of Investigation, Washington, DC.Google Scholar
Arendt, J. (2007). Ecological correlates of body size in relation to cell size and cell number: patterns in flies, fish, fruits and foliage. Biol. Rev. 82, 241256.CrossRefGoogle ScholarPubMed
Argyriou, T., Clauss, M., Maxwell, E.E., Furrer, H., and Sánchez-Villagra, M.R. (2016). Exceptional preservation reveals gastrointestinal anatomy and evolution in early actinopterygian fishes. Sci. Rep. 6, 18758.CrossRefGoogle ScholarPubMed
Arnone, M.I. and Davidson, E.H. (1997). The hardwiring of development: organization and function of genomic regulatory systems. Development 124, 18511864.Google ScholarPubMed
Arnosti, D.N. and Kulkarni, M.M. (2005). Transcriptional enhancers: intelligent enhanceosomes or flexible billboards? J. Cell. Biochem. 94, 890898.CrossRefGoogle ScholarPubMed
Artavanis-Tsakonas, S. and Muskavitch, M.A.T. (2010). Notch: the past, the present, and the future. Curr. Top. Dev. Biol. 92, 129.CrossRefGoogle ScholarPubMed
Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770776.CrossRefGoogle ScholarPubMed
Arthur, W. (2006). D’Arcy Thompson and the theory of transformations. Nat. Rev. Genet. 7, 401406.CrossRefGoogle Scholar
Atallah, J. and Larsen, E. (2009). Genotype–phenotype mapping: developmental biology confronts the toolkit paradox. Int. Rev. Cell Mol. Biol. 278, 119148.CrossRefGoogle ScholarPubMed
Atallah, J., Liu, N.H., Dennis, P., Hon, A., Godt, D., and Larsen, E.W. (2009). Cell dynamics and developmental bias in the ontogeny of a complex sexually dimorphic trait in Drosophila melanogaster. Evol. Dev. 11, 191204.CrossRefGoogle ScholarPubMed
Atallah, J., Watabe, H., and Kopp, A. (2012). Many ways to make a novel structure: a new mode of sex comb development in Drosophilidae. Evol. Dev. 14, 476483.CrossRefGoogle ScholarPubMed
Athanasiadis, A.P., Tzannatos, C., Mikos, T., Zafrakas, M., and Bontis, J.N. (2005). A unique case of conjoined triplets. Am. J. Obstet. Gynecol. 192, 20842087.CrossRefGoogle ScholarPubMed
Ather, S., Proudlock, F.A., Welton, T., Morgan, P.S., Sheth, V., Gottlob, I., and Dineen, R.A. (2018). Aberrant visual pathway development in albinism: from retina to cortex. Hum. Brain Mapp. 40, 777788.CrossRefGoogle ScholarPubMed
Audette, D.S., Scheiblin, D.A., and Duncan, M.K. (2017). The molecular mechanisms underlying lens fiber elongation. Exp. Eye Res. 156, 4149.CrossRefGoogle ScholarPubMed
Auerbach, C. (1936). The development of the legs, wings, and halteres in wild type and some mutant strains of Drosophila melanogaster. Trans. R. Soc. Edinb. 58, 787815.Google Scholar
Averbach, B. and Chein, O. (1999). Problem Solving Through Recreational Mathematics. Dover, New York.Google Scholar
Aw, S. and Levin, M. (2008). What’s left in asymmetry? Dev. Dynamics 237, 34533463.CrossRefGoogle ScholarPubMed
Aw, W.Y. and Devenport, D. (2016). Planar cell polarity: global inputs establishing cellular asymmetry. Curr. Opin. Cell Biol. 44, 110116.CrossRefGoogle ScholarPubMed
Axelrod, J. (2008). Bad hair days for mouse PCP mutants. Nat. Cell Biol. 10, 12511252.CrossRefGoogle ScholarPubMed
Ayala-Carmago, A., Ekas, L.A., Flaherty, M.S., Baeg, G.-H., and Bach, E.A. (2007). The JAK/STAT pathway regulates proximo-distal patterning in Drosophila. Dev. Dynamics 236, 27212730.CrossRefGoogle Scholar
Ayukawa, T., Akiyama, M., Mummery-Widmer, J.L., Stoeger, T., Sasaki, J., Knoblich, J.A., Senoo, H., Sasaki, T., and Yamazaki, M. (2014). Dachsous-dependent asymmetric localization of Spiny-legs determines planar cell polarity orientation in Drosophila. Cell Rep. 8, 610621.CrossRefGoogle ScholarPubMed
Babler, W.J. (1991). Embryologic development of epidermal ridges and their configurations. Birth Defects Orig. Artic. Ser. 27, 95112.Google ScholarPubMed
Baer, M.M., Chanut-Delalande, H., and Affolter, M. (2009). Cellular and molecular mechanisms underlying the formation of biological tubes. Curr. Top. Dev. Biol. 89, 137162.CrossRefGoogle ScholarPubMed
Baker, N.E. (2011). Proximodistal patterning in the Drosophila leg: models and mutations. Genetics 187, 10031010.CrossRefGoogle ScholarPubMed
Baker, N.E. and Brown, N.L. (2018). All in the family: proneural bHLH genes and neuronal diversity. Development 145, 159426.CrossRefGoogle ScholarPubMed
Baker, R.E., Schnell, S., and Maini, P.K. (2006). A clock and wavefront mechanism for somite formation. Dev. Biol. 293, 116126.CrossRefGoogle ScholarPubMed
Ball, P. (1999). The Self-Made Tapestry: Pattern Formation in Nature. Oxford University Press, New York.Google Scholar
Ball, P. (2015). Forging patterns and making waves from biology to geology: a commentary on Turing (1952) “The chemical basis of morphogenesis”. Philos. Trans. R. Soc. Lond. B 370, 20140218.CrossRefGoogle Scholar
Bando, T., Mito, T., Hamada, Y., Ishimaru, Y., Noji, S., and Ohuchi, H. (2018). Molecular mechanisms of limb regeneration: insights from regenerating legs of the cricket Gryllus bimaculatus. Int. J. Dev. Biol. 62, 559569.CrossRefGoogle ScholarPubMed
Bando, T., Mito, T., Maeda, Y., Nakamura, T., Ito, F., Watanabe, T., Ohuchi, H., and Noji, S. (2009). Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration. Development 136, 22352245.CrossRefGoogle ScholarPubMed
Bangru, S. and Kalsotra, A. (2020). Cellular and molecular basis of liver regeneration. Semin. Cell Dev. Biol. 100, 7487.Google Scholar
Bao, R., Dia, S.E., Issa, H.A., Alhusein, D., and Friedrich, M. (2018). Comparative evidence of an exceptional impact of gene duplication on the developmental evolution of Drosophila and the higher Diptera. Front. Ecol. Evol. 6, 63.CrossRefGoogle Scholar
Barad, O., Hornstein, E., and Barkai, N. (2011). Robust selection of sensory organ precursors by the Notch–Delta pathway. Curr. Opin. Cell Biol. 23, 663667.CrossRefGoogle ScholarPubMed
Bard, J. (2011). A systems biology representation of developmental anatomy. J. Anat. 218, 591599.CrossRefGoogle ScholarPubMed
Bard, J.B.L. (1977). A unity underlying the different zebra striping patterns. J. Zool. Lond. 183, 527539.Google Scholar
Bard, J.B.L. (1981). A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol. 93, 363385.CrossRefGoogle Scholar
Bard, J.B.L. (2008). Waddington’s legacy to developmental and theoretical biology. Biol. Theory 3, 188197.CrossRefGoogle Scholar
Bard, J.B.L. (2018). Tinkering and the origins of heritable anatomical variation in vertebrates. Biology 7, 7010020.CrossRefGoogle ScholarPubMed
Barham, G. and Clarke, N.M.P. (2008). Genetic regulation of embryological limb development with relation to congenital limb deformity in humans. J. Child. Orthop. 2, 19.CrossRefGoogle ScholarPubMed
Barmina, O. and Kopp, A. (2007). Sex-specific expression of a HOX gene associated with rapid morphological evolution. Dev. Biol. 311, 277286.CrossRefGoogle ScholarPubMed
Barnes, J., ed. (1984). The Complete Works of Aristotle: The Revised Oxford Translation, Vol. 1. Princeton University Press, Princeton, NJ.Google Scholar
Barolo, S. and Posakony, J.W. (2002). Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev. 16, 11671181.CrossRefGoogle ScholarPubMed
Barriga, E.H. and Mayor, R. (2015). Embryonic cell–cell adhesion: a key player in collective neural crest migration. Curr. Top. Dev. Biol. 112, 301323.CrossRefGoogle ScholarPubMed
Bartos, L., Bubenik, G.A., and Kuzmova, E. (2012). Endocrine relationships between rank-related behavior and antler growth in deer. Front. Biosci. E4, 11111126.CrossRefGoogle Scholar
Bassnett, S. and Costello, M.J. (2017). The cause and consequence of fiber cell compaction in the vertebrate lens. Exp. Eye Res. 156, 5057.CrossRefGoogle ScholarPubMed
Bassnett, S., Shi, Y., and Vrensen, G.F.J.M. (2011). Biological glass: structural determinants of eye lens transparency. Philos. Trans. R. Soc. Lond. B 366, 12501264.CrossRefGoogle ScholarPubMed
Bastida, M.F., Pérez-Gómez, R., Trofka, A., Zhu, J., Rada-Iglesias, A., Sheth, R., Stadler, H.S., Mackem, S., and Ros, M.A. (2020). The formation of the thumb requires direct modulation of Gli3 transcription by Hoxa13. PNAS 117, 10901096.CrossRefGoogle ScholarPubMed
Bate, M. and Martinez Arias, A. (1991). The embryonic origin of imaginal discs in Drosophila. Development 112, 755761.Google ScholarPubMed
Bateson, G. (1971). A re-examination of “Bateson’s rule”. J. Genet. 60, 230240.CrossRefGoogle Scholar
Bateson, W. (1894). Materials for the Study of Variation Treated with Especial Regard to Discontinuity in the Origin of Species. Macmillan, London.Google Scholar
Bateson, W. (1909). Mendel’s Principles of Heredity. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Baudouin-Gonzalez, L., Santos, M.A., Tempesta, C., Sucena, E., Roch, F., and Tanaka, K. (2017). Diverse cis-regulatory mechanisms contribute to expression evolution of tandem gene duplicates. Mol. Biol. Evol. 34, 31323147.CrossRefGoogle ScholarPubMed
Baumeister, F.A.M., Egger, J., Schildhauer, M.T., and Stengel-Rutkowski, S. (1993). Ambras syndrome: delineation of a unique hypertrichosis universalis congenita and association with a balanced pericentric inversion (8) (p11.2; q22). Clin. Genet. 44, 121128.CrossRefGoogle Scholar
Bazin-Lopez, N., Valdivia, L.E., Wilson, S.W., and Gestri, G. (2015). Watching eyes take shape. Curr. Opin. Genet. Dev. 32, 7379.CrossRefGoogle ScholarPubMed
Bazopoulou-Kyrkanidou, E. (2001). Chimeric creatures in Greek mythology and reflections in science. Am. J. Med. Genet. 100, 6680.3.0.CO;2-U>CrossRefGoogle Scholar
Beadle, G.W. (1970). Alfred Henry Sturtevant (1891–1970). Am. Philos. Soc. Yearbook 1970, 166171.Google Scholar
Bear, J.E. and Haugh, J.M. (2014). Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Curr. Opin. Cell Biol. 30, 7482.CrossRefGoogle ScholarPubMed
Bechtel, H.B. (1995). Reptile and Amphibian Variants: Colors, Patterns, and Scales. Krieger, Malabar, FL.Google Scholar
Beebe, D.C., Vasiliev, O., Guo, J., Shui, Y.-B., and Bassnett, S. (2001). Changes in adhesion complexes define stages in the differentiation of lens fiber cells. Invest. Ophthalmol. Vis. Sci. 42, 727734.Google ScholarPubMed
Beermann, F., Orlow, S.J., and Lamoreux, M.L. (2004). The Tyr (albino) locus of the laboratory mouse. Mamm. Genome 15, 749758.CrossRefGoogle ScholarPubMed
Begley, S. (1982). How life begins. Newsweek (Jan. 11, 1982), 38–43.Google Scholar
Beira, J.V. and Paro, R. (2016). The legacy of Drosophila imaginal discs. Chromosoma 125, 573592.CrossRefGoogle ScholarPubMed
Bell, M.L., Earl, J.B., and Britt, S.G. (2007). Two types of Drosophila R7 photoreceptor cells are arranged randomly: a model for stochastic cell-fate determination. J. Comp. Neurol. 502, 7585.CrossRefGoogle Scholar
Bellaïche, Y., Gho, M., Kaltschmidt, J., Brand, A., and Schweisguth, F. (2001). Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nat. Cell Biol. 3, 5057.CrossRefGoogle ScholarPubMed
Bellone, R.R., Forsyth, G., Leeb, T., Archer, S., Sigurdsson, S., Imsland, F., Mauceli, E., Engensteiner, M., Bailey, E., Sandmeyer, L., Grahn, B., Lindblad-Toh, K., and Wade, C.M. (2010). Fine-mapping and mutation analysis of TRPM1: a candidate gene for leopard complex (LP) spotting and congenital stationary night blindness in horses. Brief. Funct. Genomics 9, 193207.CrossRefGoogle ScholarPubMed
Beloussov, L.V., Opitz, J.M., and Gilbert, S.F. (1997). Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields. Int. J. Dev. Biol. 41, 771779.Google Scholar
Bénazéraf, B. and Pourquie, O. (2013). Formation and segmentation of the vertebrate body axis. Annu. Rev. Cell Dev. Biol. 29, 126.CrossRefGoogle ScholarPubMed
Benkel, B.F., Rouvinen-Watt, K., Farid, H., and Anistoroaei, R. (2009). Molecular characterization of the Himalayan mink. Mamm. Genome 20, 256259.CrossRefGoogle ScholarPubMed
Benzer, S. (1971). From the gene to behavior. JAMA 218, 10151022.CrossRefGoogle ScholarPubMed
Benzer, S. (1973). Genetic dissection of behavior. Sci. Am. 229(6), 2437.CrossRefGoogle ScholarPubMed
Bercovitch, F.B. (2019). Giraffe taxonomy, geographic distribution and conservation. Afr. J. Ecol. 58, 150158.CrossRefGoogle Scholar
Bergman, J. (2002). Darwin’s ape-men and the exploitation of deformed humans. Technical Journal 16, 116122.Google Scholar
Bergmann, P., Richter, S., Glöckner, N., and Betz, O. (2018). Morphology of hindwing veins in the shield bug Graphosoma italicum (Heteroptera: Pentatomidae). Arthropod Struct. Dev. 47, 375390.CrossRefGoogle ScholarPubMed
Bernard, B.A. (2017). The hair follicle enigma. Exp. Dermatol. 26, 472477.CrossRefGoogle ScholarPubMed
Bernays, M.E. and Smith, R. (1999). Convergent strabismus in a white Bengal tiger. Aust. Vet. J. 77, 152155.CrossRefGoogle Scholar
Berton, P. (1977). The Dionne Years: A Thirties Melodrama. W. W. Norton, New York.Google Scholar
Beverdam, A., Merlo, G.R., Paleari, L., Mantero, S., Genova, F., Barbieri, O., Janvier, P., and Levi, G. (2002). Jaw transformation with gain of symmetry after Dlx5/Dlx6 inactivation: mirror of the past? Genesis 34, 221227.CrossRefGoogle ScholarPubMed
Bhalla, U.S. and Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science 283, 381387.CrossRefGoogle ScholarPubMed
Biesecker, L.G. (2011). Polydactyly: how many disorders and how many genes? 2010 update. Dev. Dynamics 240, 931942.CrossRefGoogle ScholarPubMed
Biesecker, L.G. and Spinner, N.B. (2013). A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14, 307320.CrossRefGoogle ScholarPubMed
Bigas, A. and Espinosa, L. (2016). Notch signaling in cell-cell communication pathways. Curr. Stem Cell Rep. 2, 349355.CrossRefGoogle Scholar
Binns, W., James, L.F., Shupe, J.L., and Everett, G. (1963). A congenital cyclopian-type malformation in lambs induced by maternal ingestion of a range plant, Veratrum californicum. Am. J. Vet. Res. 24, 11641175.Google ScholarPubMed
Biosa, G., Bastianoni, S., and Rustici, M. (2006). Chemical waves. Chem. Eur. J. 12, 34303437.CrossRefGoogle ScholarPubMed
Bishop, S.A., Klein, T., Martinez Arias, A., and Couso, J.P. (1999). Composite signalling from Serrate and Delta establishes leg segments in Drosophila through Notch. Development 126, 29933003.Google ScholarPubMed
Bizzarri, M., Giuliani, A., Minini, M., Monti, N., and Cucina, A. (2020). Constraints shape cell function and morphology by canalizing the developmental path along the Waddington’s landscape. BioEssays 42, 1900108.CrossRefGoogle ScholarPubMed
Black, S.D. and Gerhart, J.C. (1986). High frequency twinning in Xenopus eggs centrifuged before first cleavage. Dev. Biol. 116, 228240.CrossRefGoogle ScholarPubMed
Blair, S.S. (2004). Developmental biology: Notching the hindbrain. Curr. Biol. 14, R570R572.CrossRefGoogle ScholarPubMed
Blair, S.S., Brower, D.L., Thomas, J.B., and Zavortink, M. (1994). The role of apterous in the control of dorsoventral compartmentalization and PS integrin gene expression in the developing wing of Drosophila. Development 120, 18051815.Google ScholarPubMed
Blanco, J., Girard, F., Kamachi, Y., Kondoh, H., and Gehring, W. (2005). Functional analysis of the chicken d1-crystallin enhancer activity in Drosophila reveals remarkable evolutionary conservation between chicken and fly. Development 132, 18951905.CrossRefGoogle ScholarPubMed
Blanco, M.J., Misof, B.Y., and Wagner, G.P. (1998). Heterochronic differences of Hoxa–11 expression in Xenopus fore- and hind limb development: evidence for lower limb identity of the anural ankle bones. Dev. Genes Evol. 208, 175187.CrossRefGoogle Scholar
Blaustein, A.R. and Johnson, P.T.J. (2003). Explaining frog deformities. Sci. Am. 288(2), 6065.CrossRefGoogle ScholarPubMed
Blaustein, A.R. and Johnson, P.T.J. (2003). The complexity of deformed amphibians. Front. Ecol. Environ. 1, 8794.CrossRefGoogle Scholar
Blum, M. and Ott, T. (2018). Animal left–right asymmetry. Curr. Biol. 28, R301R304.CrossRefGoogle ScholarPubMed
Blum, M. and Ott, T. (2019). Mechanical strain, novel genes and evolutionary insights: news from the frog left–right organizer. Curr. Biol. 56, 814.Google ScholarPubMed
Blum, M., Feistel, K., Thumberger, T., and Schweickert, A. (2014). The evolution and conservation of left–right patterning mechanisms. Development 141, 16031613.CrossRefGoogle ScholarPubMed
Blum, M., Schweickert, A., Vick, P., Wright, C.V.E., and Danilchik, M.V. (2014). Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev. Biol. 393, 109123.CrossRefGoogle ScholarPubMed
Blumberg, M.S. (2009). Freaks of Nature: What Anomalies Tell Us about Development. Oxford University Press, New York.Google Scholar
Boareto, M. (2020). Patterning via local cell–cell interactions in developing systems. Dev. Biol. 460, 7785.CrossRefGoogle ScholarPubMed
Boer, L.L., Schepens-Franke, A.N., and Oostra, R.J. (2019). Two is a crowd: on the enigmatic etiopathogenesis of conjoined twinning. Clin. Anat. 32, 722741.CrossRefGoogle ScholarPubMed
Bohn, H. (1965). Analyse der Regenerationfähigkeit der Insektenextremität durch Amputations- und Transplantationsversuche an Larven der Afrikanischen Schabe (Leucophaea maderae Fabr.). II. Achsendetermination. Roux Arch. Entw.-Mech. 156, 449503.CrossRefGoogle Scholar
Böhni, R., Riesgo-Escovar, J., Oldham, S., Brogiolo, W., Stocker, H., Andruss, B.F., Beckingham, K., and Hafen, E. (1999). Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1–4. Cell 97, 865875.CrossRefGoogle ScholarPubMed
Bohring, A., Stamm, T., Spaich, C., Haase, C., Spree, K., Hehr, U., Hoffmann, M., Ledig, S., Sel, S., Wieacker, P., and Röpke, A. (2009). WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. Am. J. Hum. Genet. 85, 97105.CrossRefGoogle ScholarPubMed
Bökel, C. and Brand, M. (2014). Endocytosis and signaling during development. Cold Spring Harb. Perspect. Biol. 6, a017020.CrossRefGoogle ScholarPubMed
Boklage, C.E. (2006). Embryogenesis of chimeras, twins and anterior midline asymmetries. Hum. Reprod. 21, 579591.CrossRefGoogle ScholarPubMed
Bolk, L. (1926). Das Problem der Menschwerdung. Gustav Fischer, Jena.Google Scholar
Borok, M.J., Tran, D.A., Ho, M.C.W., and Drewell, R.A. (2010). Dissecting the regulatory switches of development: lessons from enhancer evolution in Drosophila. Development 137, 513.CrossRefGoogle ScholarPubMed
Bosch, M., Bishop, S.-A., Baguña, J., and Couso, J.-P. (2010). Leg regeneration in Drosophila abridges the normal developmental program. Int. J. Dev. Biol. 54, 12411250.CrossRefGoogle ScholarPubMed
Botelho, J.F., Smith-Paredes, D., Soto-Acuña, S., Núñez-León, D., Palma, V., and Vargas, A.O. (2016). Greater growth of proximal metatarsals in bird embryos and the evolution of hallux position in the grasping foot. J. Exp. Zool. B Mol. Dev. Evol. 328, 106118.CrossRefGoogle ScholarPubMed
Botstein, D. and Maurer, R. (1982). Genetic approaches to the analysis of microbial development. Annu. Rev. Genet. 16, 6183.CrossRefGoogle ScholarPubMed
Bower, M.A., McGivney, B.A., Campana, M.G., Gu, J., Andersson, L.S., Barrett, E., Davis, C.R., Mikko, S., Stock, F., Voronkova, V., Bradley, D.G., Fahey, A.G., Lindgren, G., MacHugh, D.E., Sulimova, G., and Hill, E.W. (2012). The genetic origin and history of speed in the Thoroughbred racehorse. Nat. Commun. 3, 643.CrossRefGoogle ScholarPubMed
Bownes, M. and Seiler, M. (1977). Developmental effects of exposing Drosophila embryos to ether vapour. J. Exp. Zool. 199, 923.CrossRefGoogle ScholarPubMed
Boyce, D. (1992). A sight to behold: Deidre finds a toad with eyes in its mouth. The Hamilton Spectator (Sept. 3, 1992).Google Scholar
Bozorgmehr, J.E.H. (2014). The role of self-organization in developmental evolution. Theory Biosci. 133, 145163.CrossRefGoogle ScholarPubMed
Brakefield, P.M. (1999). Butterfly wings: the evolution of development of colour patterns. BioEssays 21, 391401.3.0.CO;2-Q>CrossRefGoogle Scholar
Brakefield, P.M., French, V., and Zwaan, B.J. (2003). Development and the genetics of evolutionary change within insect species. Annu. Rev. Ecol. Evol. Syst. 34, 633660.CrossRefGoogle Scholar
Bray, S. (1998). Notch signalling in Drosophila: three ways to use a pathway. Semin. Cell Dev. Biol. 9, 591597.CrossRefGoogle ScholarPubMed
Bredov, D. and Volodyaev, I. (2018). Increasing complexity: mechanical guidance and feedback loops as a basis for self-organization in morphogenesis. BioSystems 173, 133156.CrossRefGoogle ScholarPubMed
Brewer, A.A. (2009). Visual maps: to merge or not to merge. Curr. Biol. 19, R945R947.CrossRefGoogle ScholarPubMed
Bridges, C.B. and Brehme, K.S. (1944). The Mutants of Drosophila melanogaster. Carnegie Institution of Washington, Washington, DC.Google Scholar
Brigham, P.A., Cappas, A., and Uno, H. (1988). The stumptailed macaque as a model for androgenetic alopecia: effects of topical minoxidil analyzed by use of the folliculogram. Clin. Dermatol. 6(4), 177187.CrossRefGoogle ScholarPubMed
Briscoe, J. and Kicheva, A. (2017). The physics of development 100 years after D’Arcy Thompson’s “On Growth and Form”. Mech. Dev. 145, 2631.CrossRefGoogle Scholar
Brison, N., Debeer, P., and Tylzanowski, P. (2013). Joining the fingers: a HOXD13 story. Dev. Dynamics 243, 3748.CrossRefGoogle Scholar
Britton, N.F. (1986). Reaction–Diffusion Equations and Their Applications to Biology. Academic Press, New York.Google Scholar
Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213221.CrossRefGoogle ScholarPubMed
Brommage, R., Powell, D.R., and Vogel, P. (2019). Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis. Model. Mech. 12, dmm038224.CrossRefGoogle ScholarPubMed
Bronner, M.E. and LeDouarin, N.M. (2012). Development and evolution of the neural crest: an overview. Dev. Biol. 366, 29.CrossRefGoogle ScholarPubMed
Browd, S.R., Goodrich, J.T., and Walker, M.L. (2008). Craniopagus twins. J. Neurosurg. Pediatr. 1, 120.CrossRefGoogle ScholarPubMed
Brower, J.S., Wootton-Gorges, S.L., Costouros, J.G., Boakes, J., and Greenspan, A. (2003). Congenital diplopodia. Pediatr. Radiol. 33, 797799.CrossRefGoogle ScholarPubMed
Brown, D.M., Brenneman, R.A., Koepfli, K.-P., Pollinger, J.P., Milá, B., Georgiadis, N.J., Louis, E.E. Jr., Grether, G.F., Jacobs, D.K., and Wayne, R.K. (2007). Extensive population genetic structure in the giraffe. BMC Biol. 5, 57.CrossRefGoogle ScholarPubMed
Brückner, K., Perez, L., Clausen, H., and Cohen, S. (2000). Glycosyltransferase activity of Fringe modulates Notch–Delta interactions. Nature 406, 411415.CrossRefGoogle ScholarPubMed
Brunet, T., Larson, B.T., Linden, T.A., Vermeij, M.J.A., McDonald, K., and King, N. (2019). Light-regulated collective contractility in a multicellular choanoflagellate. Science 366, 326334.CrossRefGoogle Scholar
Bryant, P.J. (1971). Regeneration and duplication following operations in situ on the imaginal discs of Drosophila melanogaster. Dev. Biol. 26, 637651.CrossRefGoogle ScholarPubMed
Bryant, S.V., French, V., and Bryant, P.J. (1981). Distal regeneration and symmetry. Science 212, 9931002.CrossRefGoogle ScholarPubMed
Budday, S., Nay, R., de Rooij, R., Steinmann, P., Wyrobek, T., Ovaert, T.C., and Kuhl, E. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46, 318–330.CrossRefGoogle Scholar
Buffry, A.D., Mendes, C.C., and McGregor, A.P. (2016). The functionality and evolution of eukaryotic transcriptional enhancers. Adv. Genet. 96, 143206.CrossRefGoogle ScholarPubMed
Bulger, M. and Groudine, M. (2010). Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev. Biol. 339, 250257.CrossRefGoogle ScholarPubMed
Bullough, W.S. (1962). The control of mitotic activity in adult mammalian tissues. Biol. Rev. 37, 307342.CrossRefGoogle ScholarPubMed
Burger, B., Fuchs, D., Sprecher, E., and Itin, P. (2011). The immigration delay disease: adermatoglyphia – inherited absence of epidermal ridges. J. Am. Acad. Dermatol. 64, 974980.CrossRefGoogle ScholarPubMed
Butler, M.T. and Wallingford, J.B. (2017). Planar cell polarity in development and disease. Nat. Rev. Mol. Cell Biol. 18, 375388.CrossRefGoogle ScholarPubMed
Cadieu, E., Neff, M.W., Quignon, P., Walsh, K., Chase, K., Parker, H.G., VonHoldt, B.M., Rhue, A., Boyko, A., Byers, A., Wong, A., Mosher, D.S., Elkahloun, A.G., Spady, T.C., André, C., Lark, K.G., Cargill, M., Bustamante, C.D., Wayne, R.K., and Ostrander, E.A. (2009). Coat variation in the domestic dog is governed by variants in three genes. Science 326, 150153.CrossRefGoogle ScholarPubMed
Cai, J., Townsend, J.P., Dodson, T.C., Heiney, P.A., and Sweeney, A.M. (2017). Eye patches: protein assembly of index-gradient squid lenses. Science 357, 564569.CrossRefGoogle ScholarPubMed
Campbell, G. (2002). Distalization of the Drosophila leg by graded EGF-receptor activity. Nature 418, 781785.CrossRefGoogle ScholarPubMed
Campbell, G. and Tomlinson, A. (1995). Initiation of the proximodistal axis in insect legs. Development 121, 619628.Google ScholarPubMed
Campbell, G. and Tomlinson, A. (1998). The roles of the homeobox genes aristaless and Distal-less in patterning the legs and wings of Drosophila. Development 125, 44834493.Google ScholarPubMed
Campbell, G., Weaver, T., and Tomlinson, A. (1993). Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell 74, 11131123.CrossRefGoogle ScholarPubMed
Campos-Ortega, J.A. (1998). The genetics of the Drosophila achaete-scute gene complex: a historical appraisal. Int. J. Dev. Biol. 42, 291297.Google ScholarPubMed
Cañestro, C., Albalat, R., Irimia, M., and Garcia-Fernàndez, J. (2013). Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin. Cell Dev. Biol. 24, 8394.CrossRefGoogle ScholarPubMed
Capdevila, M.P. and García-Bellido, A. (1978). Phenocopies of bithorax mutants. W. Roux Arch. Dev. Biol. 185, 105126.CrossRefGoogle Scholar
Capek, D. and Müller, P. (2019). Positional information and tissue scaling during development and regeneration. Development 146, dev177709.CrossRefGoogle ScholarPubMed
Capilla, A., Johnson, R., Daniels, M., Benavente, M., Bray, S.J., and Galindo, M.I. (2012). Planar cell polarity controls directional Notch signaling in the Drosophila leg. Development 139, 25842593.CrossRefGoogle ScholarPubMed
Caro, T. (2009). Contrasting coloration in terrestrial mammals. Philos. Trans. R. Soc. Lond. B 364, 537548.CrossRefGoogle ScholarPubMed
Caro, T. and Mallarino, R. (2020). Coloration in mammals. Trends Ecol. Evol. 35, 357366.CrossRefGoogle ScholarPubMed
Carpenter, A.C., Smith, A.N., Wagner, H., Cohen-Tayar, Y., Rao, S., Wallace, V., Ashery-Padan, R., and Lang, R.A. (2015). Wnt ligands from the embryonic surface ectoderm regulate “bimetallic strip” optic cup morphogenesis in mouse. Development 142, 972982.CrossRefGoogle Scholar
Carroll, L. and Gardner, M. (1960). The Annotated Alice: Alice’s Adventures in Wonderland & Through the Looking Glass. Meridian, New York.Google Scholar
Carroll, R.L. and Holmes, R.B. (2007). Evolution of the appendicular skeleton of amphibians. In Fins into Limbs: Evolution, Development, and Transformation, Hall, B.K., editor. University of Chicago Press, Chicago, IL, pp. 185224.Google Scholar
Carroll, S.B. (2000). Endless forms: the evolution of gene regulation and morphological diversity. Cell 101, 577580.CrossRefGoogle ScholarPubMed
Carroll, S.B. (2005). Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. Norton, New York.Google Scholar
Carroll, S.B., Grenier, J.K., and Weatherbee, S.D. (2005). From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, 2nd ed. Blackwell, Malden, MA.Google Scholar
Carson, H.L. and Kaneshiro, K.Y. (1976). Drosophila of Hawaii: systematics and ecological genetics. Annu. Rev. Ecol. Syst. 7, 311345.CrossRefGoogle Scholar
Casares, F. and Mann, R.S. (2001). The ground state of the ventral appendage in Drosophila. Science 293, 14771480.CrossRefGoogle ScholarPubMed
Casas, E. and Kehrli, M.E. Jr. (2016). A review of selected genes with known effects on performance and health of cattle. Front. Vet. Sci. 3, 113.CrossRefGoogle ScholarPubMed
Cassina, M., Cagnoli, G.A., Zuccarello, D., Di Gianantonio, E., and Clementi, M. (2017). Human teratogens and genetic phenocopies. Understanding pathogenesis through human genes mutation. Eur. J. Med. Genet. 60, 2231.CrossRefGoogle ScholarPubMed
Castelli-Gair, J. (1998). Implications of the spatial and temporal regulation of Hox genes on development and evolution. Int. J. Dev. Biol. 42, 437444.Google ScholarPubMed
Castelli-Gair Hombría, J. and Lovegrove, B. (2003). Beyond homeosis: HOX function in morphogenesis and organogenesis. Differentiation 71, 461476.CrossRefGoogle Scholar
Cavodeassi, F. and Houart, C. (2011). Brain regionalization: of signaling centers and boundaries. Dev. Neurobiol. 72, 218233.CrossRefGoogle Scholar
Cavodeassi, F., del Corral, R.D., Campuzano, S., and Domínguez, M. (1999). Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126, 49334942.Google ScholarPubMed
Chan, C.J., Heisenberg, C.-P., and Hiiragi, T. (2017). Coordination of morphogenesis and cell-fate specification in development. Curr. Biol. 27, R1024R1035.CrossRefGoogle ScholarPubMed
Chang, H.Y. (2009). Anatomic demarcation of cells: genes to patterns. Science 326, 12061207.CrossRefGoogle ScholarPubMed
Chang, S. (2017). How squid build their graded-index spherical lenses. Physics Today 70, 2628.CrossRefGoogle Scholar
Chang, X., Li, D., Tian, L., Liu, Y., March, M., Wang, T., Hou, C., Pellegrino, R., Levy, R., Jen, M., Soccio, R., Sleiman, P., Hakonarson, H., and Castelo-Soccio, L. (2018). Heterozygous deletion impacting SMARCAD1 in the original kindred with absent dermatoglyphs and associated features (Baird, 1964). J. Pediatr. 194, 248252.CrossRefGoogle Scholar
Charlton-Perkins, M., Brown, N.L., and Cook, T.A. (2011). The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol. Genet. Genomics 286, 189213.CrossRefGoogle ScholarPubMed
Chauhan, B., Plageman, T., Lou, M., and Lang, R. (2015). Epithelial morphogenesis: the mouse eye as a model system. Curr. Top. Dev. Biol. 111, 375399.CrossRefGoogle ScholarPubMed
Chauhan, B.K., Lou, M., Zheng, Y., and Lang, R.A. (2011). Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. PNAS 108, 1828918294.CrossRefGoogle ScholarPubMed
Chen, J. and Chuong, C.-M. (2011). Patterning skin by planar cell polarity: the multi-talented hair designer. Exp. Dermatol. 21, 8185.CrossRefGoogle Scholar
Chen, J., Jacox, L.A., Saldanha, F., and Sive, H. (2017). Mouth development. Wiley Interdiscip. Rev. Dev. Biol. 6, e275.CrossRefGoogle ScholarPubMed
Chew, K.Y., Yu, H., Pask, A.J., Shaw, G., and Renfree, M.B. (2012). HOXA13 and HOXD13 expression during development of the syndactylous digits in the marsupial Macropus eugenii. BMC Dev. Biol. 12, 2.CrossRefGoogle ScholarPubMed
Chiang, C., Litingtung, Y., Lee, E., Young, K.E., Corden, J.L., Westphal, H., and Beachy, P.A. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407413.CrossRefGoogle ScholarPubMed
Choe, C.P. and Crump, J.G. (2015). Dynamic epithelia of the developing vertebrate face. Curr. Opin. Genet. Dev. 32, 6672.CrossRefGoogle ScholarPubMed
Chouard, T. (2010). Revenge of the hopeful monster. Nature 463, 864867.CrossRefGoogle ScholarPubMed
Ciechanska, E., Dansereau, D.A., Svendsen, P.C., Heslip, T.R., and Brook, W.J. (2007). dAP–2 and defective proventriculus regulate Serrate and Delta expression in the tarsus of Drosophila melanogaster. Genome 50, 693705.CrossRefGoogle ScholarPubMed
Cieslak, J., Borowska, A., Wodas, L., and Mackowski, M. (2018). Interbreed distribution of the myostatin (MSTN) gene 5′-flanking variants and their relationship with horse biometric traits. J. Equine Vet. Sci. 60, 8389.CrossRefGoogle Scholar
Cieslak, M., Reissmann, M., Hofreiter, M., and Ludwig, A. (2011). Colours of domestication. Biol. Rev. 86, 885899.CrossRefGoogle ScholarPubMed
Clark, D.A., Mitra, P.P., and Wang, S.S.-H. (2001). Scalable architecture in mammalian brains. Nature 411, 189193.CrossRefGoogle ScholarPubMed
Clark, E. (2017). Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation. PLoS Biol. 15(9), e2002439.CrossRefGoogle ScholarPubMed
Clark, W.C. and Russell, M.A. (1977). The correlation of lysosomal activity and adult phenotype in a cell-lethal mutant of Drosophila. Dev. Biol. 57, 160173.CrossRefGoogle Scholar
Cline, T.W. (1993). The Drosophila sex determination signal: how do flies count to two? Trends Genet. 9, 385390.CrossRefGoogle ScholarPubMed
Cloutier, R., Clement, A.M., Lee, M.S.Y., Noël, R., Béchard, I., Roy, V., and Long, J.A. (2020). Elpistostege and the origin of the vertebrate hand. Nature 579, 549554.CrossRefGoogle ScholarPubMed
Cobourne, M.T. and Sharpe, P.T. (2003). Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch. Oral Biol. 48, 114.CrossRefGoogle ScholarPubMed
Cock, A.G. and Forsdyke, D.R. (2008). Treasure Your Exceptions: The Science and Life of William Bateson. Springer, New York.CrossRefGoogle Scholar
Coen, E. (1999). The Art of Genes: How Organisms Make Themselves. Oxford University Press, New York.Google Scholar
Cohen, M.M. Jr. (2006). Holoprosencephaly: clinical, anatomic, and molecular dimensions. Birth Defects Res. A Clin. Mol. Teratol. 76, 658673.CrossRefGoogle ScholarPubMed
Cohen, S.M. (1993). Imaginal disc development. In The Development of Drosophila melanogaster, Bate, M. and Martinez Arias, A., editors. Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 747841.Google Scholar
Cohen, S.M. (2003). Long-range signalling by touch. Nature 426, 503504.CrossRefGoogle ScholarPubMed
Coile, D.C. (2005). Encyclopedia of Dog Breeds. Barron’s Educational Series, Hauppauge, NY.Google Scholar
Colas, J.-F. and Schoenwolf, G.C. (2001). Towards a cellular and molecular understanding of neurulation. Dev. Dynamics 221, 117145.CrossRefGoogle ScholarPubMed
Coletti, S.M., Ide, C.F., Blankenau, A.J., and Meyer, R.L. (1990). Ocular dominance stripe formation by regenerated isogenic double temporal retina in Xenopus laevis. J. Neurobiol. 21, 276282.CrossRefGoogle ScholarPubMed
Collins, T.N., Mao, Y., Li, H., Bouaziz, M., Hong, A., Feng, G.-S., Wang, F., Quilliam, L.A., Chen, L., Park, T., Curran, T., and Zhang, X. (2018). Crk proteins transduce FGF signaling to promote lens fiber cell elongation. eLife 7, e32586.CrossRefGoogle ScholarPubMed
Condic, M.L., Fristrom, D., and Fristrom, J.W. (1991). Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism. Development 111, 2333.Google ScholarPubMed
Conlin, L.K., Thiel, B.D., Bonnemann, C.G., Medne, L., Ernst, L.M., Zackai, E.H., Deardorff, M.A., Krantz, I.D., Hakonarson, H., and Spinner, N.B. (2010). Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum. Mol. Genet. 19, 12631275.CrossRefGoogle ScholarPubMed
Constantine-Paton, M. and Law, M.I. (1978). Eye-specific termination bands in tecta of three-eyed frogs. Science 202, 639641.CrossRefGoogle ScholarPubMed
Cook, T.A. (1914). The Curves of Life. Constable, London.Google Scholar
Cooke, J. (1975). The emergence and regulation of spatial organization in early animal development. Annu. Rev. Biophys. Bioeng. 4, 185217.CrossRefGoogle ScholarPubMed
Cooke, J. and Zeeman, E.C. (1976). A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455476.CrossRefGoogle ScholarPubMed
Cooper, K.L. (2019). Developmental and evolutionary allometry of the mammalian limb skeleton. Integr. Comp. Biol. 59, 13561368.CrossRefGoogle ScholarPubMed
Cooper, S.B. and Van Leeuwen, J., eds. (2013). Alan Turing: His Work and Impact. Elsevier, New York.Google Scholar
Corallo, D., Trapani, V., and Bonaldo, P. (2015). The notochord: structure and functions. Cell. Mol. Life Sci. 72, 29893008.CrossRefGoogle ScholarPubMed
Cordero, R.J.B. and Casadevall, A. (2020). Melanin. Curr. Biol. 30, R142R143.CrossRefGoogle ScholarPubMed
Cordingley, J.E., Sundaresan, S.R., Fischhoff, I.R., Shapiro, B., Ruskey, J., and Rubenstein, D.I. (2009). Is the endangered Grevy’s zebra threatened by hybridization? Anim. Conserv. 12, 505513.CrossRefGoogle Scholar
Córdoba, S. and Estella, C. (2018). The transcription factor Dysfusion promotes fold and joint morphogenesis through regulation of Rho1. PLoS Genet. 14(8), e1007584.CrossRefGoogle ScholarPubMed
Corona, M., Libbrecht, R., and Wheeler, D.E. (2016). Molecular mechanisms of phenotypic plasticity in social insects. Curr. Opin. Insect Sci. 13, 5560.CrossRefGoogle ScholarPubMed
Corson, F., Couturier, L., Roualt, H., Mazouni, K., and Schweisguth, F. (2017). Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 356, 501.CrossRefGoogle ScholarPubMed
Cortes, C., Francou, A., De Bono, C., and Kelly, R.G. (2018). Epithelial properties of the second heart field. Circ. Res. 122, 142154.CrossRefGoogle ScholarPubMed
Coulombre, J.L. and Coulombre, A.J. (1963). Lens development: fiber elongation and lens orientation. Science 142, 14891490.CrossRefGoogle ScholarPubMed
Courgeon, M. and Desplan, C. (2019). Coordination between stochastic and deterministic specification in the Drosophila visual system. Science 366, 325.CrossRefGoogle ScholarPubMed
Couso, J.P., Bishop, S.A., and Martinez Arias, A. (1994). The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development 120, 621636.Google ScholarPubMed
Coutelis, J.-B., González-Morales, N., Géminard, C., and Noselli, S. (2014). Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa. EMBO Rep. 15, 926937.CrossRefGoogle ScholarPubMed
Cozzitorto, C. and Spagnoli, F.M. (2019). Pancreas organogenesis: the interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr. Top. Dev. Biol. 132, 221256.CrossRefGoogle ScholarPubMed
Cranford, T.W., Amundin, M., and Norris, K.S. (1996). Functional morphology and homology in the odontocete nasal complex: implications for sound generation. J. Morphol. 228, 223285.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Creel, D., Garber, S.R., King, R.A., and Witkop, C.J. Jr. (1980). Auditory brainstem anomalies in human albinos. Science 209, 12531255.CrossRefGoogle ScholarPubMed
Cretekos, C.J., Wang, Y., Green, E.D., Martin, J.F., Rasweiler, J.J., IV, and Behringer, R.R. (2008). Regulatory divergence modifies limb length between mammals. Genes Dev. 22, 141151.CrossRefGoogle ScholarPubMed
Crews, D. (2003). Sex determination: where environment and genetics meet. Evol. Dev. 5, 5055.CrossRefGoogle ScholarPubMed
Crispo, E. (2007). The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution 61, 24692479.CrossRefGoogle ScholarPubMed
Crow, J.F. and Bender, W. (2004). Edward B. Lewis, 1918–2004. Genetics 168, 17731783.Google Scholar
Cubas, P., de Celis, J.-F., Campuzano, S., and Modolell, J. (1991). Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 5, 9961008.CrossRefGoogle ScholarPubMed
Cubeñas-Potts, C. and Corces, V.G. (2015). Architectural proteins, transcription, and the three-dimensional organization of the genome. FEBS Lett. 589, 29232930.CrossRefGoogle ScholarPubMed
Cummins, H. and Midlo, C. (1943). Finger Prints, Palms and Soles: An Introduction to Dermatoglyphics. Dover, New York.Google Scholar
Currie, A. (2013). Convergence as evidence. Br. J. Philos. Sci. 64, 763786.CrossRefGoogle Scholar
Curtis, A.S.G. (1960). Cortical grafting in Xenopus laevis. J. Embryol. Exp. Morphol. 8, 163173.Google ScholarPubMed
Curtis, A.S.G. (1962). Morphogenetic interactions before gastrulation in the amphibian, Xenopus laevis: the cortical field. J. Embryol. Exp. Morphol. 10, 410422.Google ScholarPubMed
Curtiss, J., Halder, G., and Mlodzik, M. (2002). Selector and signalling molecules cooperate in organ patterning. Nat. Cell Biol. 4, E48E51.CrossRefGoogle ScholarPubMed
Cvekl, A. and Ashery-Padan, R. (2014). The cellular and molecular mechanisms of vertebrate lens development. Development 141, 44324447.CrossRefGoogle ScholarPubMed
Cvekl, A. and Zhang, X. (2017). Signaling and gene regulatory networks in mammalian lens development. Trends Genet. 33, 677702.CrossRefGoogle ScholarPubMed
D’Souza, B., Meloty-Kapella, C., and Weinmaster, G. (2010). Canonical and non-canonical Notch ligands. Curr. Top. Dev. Biol. 92, 73129.CrossRefGoogle ScholarPubMed
Dall’Olio, S., Fontanesi, L., Costa, L.N., Tassinari, M., Minieri, L., and Falaschini, A. (2010). Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. J. Biomed. Biotech. 2010, 542945.Google ScholarPubMed
Dall’Olio, S., Wang, Y., Sartori, C., Fontanesi, L., and Mantovani, R. (2014). Association of myostatin (MSTN) gene polymorphisms with morphological traits in the Italian Heavy Draft Horse breed. Livestock Sci. 160, 2936.CrossRefGoogle Scholar
Darbellay, F. and Duboule, D. (2016). Topological domains, metagenes, and the emergence of pleiotropic regulations at Hox loci. Curr. Top. Dev. Biol. 116, 299314.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.Google Scholar
Darwin, C. (1872). The Expression of the Emotions in Man and Animals. John Murray, London.CrossRefGoogle Scholar
Dasgupta, A. and Amack, J.D. (2016). Cilia in left–right patterning. Philos. Trans. R. Soc. Lond. B 371, 20150410.CrossRefGoogle ScholarPubMed
DasGupta, R. and Fuchs, E. (1999). Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 45574568.Google ScholarPubMed
Davidson, L.A. (2012). Epithelial machines that shape the embryo. Trends Cell Biol. 22, 8287.CrossRefGoogle ScholarPubMed
Davidson, L.A. (2017). Mechanical design in embryos: mechanical signalling, robustness and developmental defects. Philos. Trans. R. Soc. Lond. B 372, 20150516.CrossRefGoogle ScholarPubMed
Davies-Thompson, J., Scheel, M., Lanyon, L.J., and Barton, J.J.S. (2013). Functional organisation of visual pathways in a patient with no optic chiasm. Neuropsychologia 51, 12601272.CrossRefGoogle Scholar
Davis, A.P., Witte, D.P., Hsieh-Li, H.M., Potter, S.S., and Capecchi, M.R. (1995). Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791795.CrossRefGoogle ScholarPubMed
Davis, D.D. (1964). The Giant Panda: A Morphological Study of Evolutionary Mechanisms. Fieldiana: Zoology Memoirs, Vol. 3. Chicago Natural History Museum, Chicago, IL.Google Scholar
Dawkins, R. (1996). Climbing Mount Improbable. Norton, New York.Google Scholar
Day, S.J. and Lawrence, P.A. (2000). Measuring dimensions: the regulation of size and shape. Development 127, 29772987.Google ScholarPubMed
de Beer, G. (1958). Embryos and Ancestors, 3rd ed. Clarendon Press, Oxford.Google Scholar
de Celis, J.F., García-Bellido, A., and Bray, S.J. (1996). Activation and function of Notch at the dorsal–ventral boundary of the wing imaginal disc. Development 122, 359369.Google ScholarPubMed
de Celis, J.F., Tyler, D.M., de Celis, J., and Bray, S.J. (1998). Notch signalling mediates segmentation of the Drosophila leg. Development 125, 46174626.Google ScholarPubMed
de Joussineau, C., Soulé, J., Martin, M., Anguille, C., Montcourrier, P., and Alexandre, D. (2003). Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555559.CrossRefGoogle ScholarPubMed
de Juan Romero, C. and Borrell, V. (2017). Genetic maps and patterns of cerebral cortex folding. Curr. Opin. Cell Biol. 49, 3137.CrossRefGoogle ScholarPubMed
De Pascalis, C. and Etienne-Manneville, S. (2017). Single and collective cell migration: the mechanics of adhesions. Mol. Biol. Cell 28, 18331846.CrossRefGoogle ScholarPubMed
De Robertis, E.M. (2009). Spemann’s organizer and the self-regulation of embryonic fields. Mech. Dev. 126, 925941.CrossRefGoogle ScholarPubMed
De Robertis, E.M., Morita, E.A., and Cho, K.W.Y. (1991). Gradient fields and homeobox genes. Development 112, 669678.Google ScholarPubMed
De Robertis, E.M., Moriyama, Y., and Colozza, G. (2017). Generation of animal form by the Chordin/Tolloid/BMP gradient: 100 years after D’Arcy Thompson. Dev. Growth Differ. 59, 580592.CrossRefGoogle ScholarPubMed
Deane-Coe, P.E., Chu, E.T., Slavney, A., Boyko, A.R., and Sams, A.J. (2018). Direct-to-consumer DNA testing of 6,000 dogs reveals 98.6-kb duplication associated with blue eyes and heterochromia in Siberian Huskies. PLoS Genet. 14(10), e1007648CrossRefGoogle ScholarPubMed
Degabriele, R. (1980). The physiology of the koala. Sci. Am. 243(1), 110117.Google ScholarPubMed
del Álamo, D., Terriente, J., and Díaz-Benjumea, F.J. (2002). Spitz/EGFr signalling via the Ras/MAPK pathway mediates the induction of bract cells in Drosophila legs. Development 129, 19751982.Google ScholarPubMed
Delgado, I. and Torres, M. (2016). Gradients, waves and timers: an overview of limb patterning models. Semin. Cell Dev. Biol. 49, 109115.CrossRefGoogle ScholarPubMed
Delgado, I. and Torres, M. (2017). Coordination of limb development by crosstalk among axial patterning pathways. Dev. Biol. 429, 382386.CrossRefGoogle ScholarPubMed
Delpretti, S., Zakany, J., and Duboule, D. (2012). A function for all posterior Hoxd genes during digit development? Dev. Dynamics 241, 792802.CrossRefGoogle ScholarPubMed
Deng-Lobnig, M. and Martin, A.C. (2020). Divergent and combinatorial mechanical strategies that promote epithelial folding during morphogenesis. Curr. Opin. Genet. Dev. 63, 2429.CrossRefGoogle Scholar
Depew, M.J., Lufkin, T., and Rubenstein, J.L.R. (2002). Specification of jaw subdivisions by Dlx genes. Science 298, 381385.CrossRefGoogle ScholarPubMed
Deschamps, J. (2008). Tailored Hox gene transcription and the making of the thumb. Genes Dev. 22, 293296.CrossRefGoogle ScholarPubMed
Deutsch, J.S., ed. (2010). Hox Genes: Studies from the 20th to the 21st Century. Advances in Experimental Medicine and Biology. Landes Bioscience, New York.CrossRefGoogle ScholarPubMed
Devenport, D. (2016). Tissue morphodynamics: translating planar polarity cues into polarized cell behaviors. Semin. Cell Dev. Biol. 55, 99110.CrossRefGoogle ScholarPubMed
Diaz de la Loza, M.C. and Thompson, B.J. (2017). Forces shaping the Drosophila wing. Mech. Dev. 144, 2332.CrossRefGoogle ScholarPubMed
Diaz de la Loza, M.C., Loker, R., Mann, R.S., and Thompson, B.J. (2020). Control of tissue morphogenesis by the HOX gene Ultrabithorax. Development 147, dev184564.CrossRefGoogle ScholarPubMed
Diaz de la Loza, M.C., Ray, R.P., Ganguly, P.S., Alt, S., Davis, J.R., Hoppe, A., Tapon, N., Salbreux, G., and Thompson, B.J. (2018). Apical and basal remodeling control epithelial morphogenesis. Dev. Cell 46, 2339.CrossRefGoogle ScholarPubMed
Dickerson, B.H., de Souza, A.M., Huda, A., and Dickinson, M.H. (2019). Flies regulate wing motion via active control of a dual-function gyroscope. Curr. Biol. 29, 35173524.CrossRefGoogle ScholarPubMed
Dickinson, M.H. (1999). Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philos. Trans. R. Soc. Lond. B 354, 903916.CrossRefGoogle ScholarPubMed
Dieters, J., Kowalczyk, W., and Seidl, T. (2016). Simultaneous optimisation of earwig hindwings for flight and folding. Biol. Open 5, 638644.CrossRefGoogle Scholar
Dietrich, M.R. (2000). From hopeful monsters to homeotic effects: Richard Goldschmidt’s integration of development, evolution, and genetics. Am. Zool. 40, 738747.Google Scholar
Dietrich, M.R. (2003). Richard Goldschmidt: hopeful monsters and other “heresies”. Nat. Rev. Genet. 4, 6874.CrossRefGoogle Scholar
Diogo, R. (2017). Evolution Driven by Organismal Behavior: A Unifying View of Life, Function, Form, Mismatches, and Trends. Springer Nature, Cham, Switzerland.CrossRefGoogle Scholar
Diogo, R., Guinard, G., and Diaz, R.E. Jr. (2017). Dinosaurs, chameleons, humans, and evo-devo path: linking Étienne Geoffroy’s teratology, Waddington’s homeorhesis, Alberch’s logic of “monsters,” and Goldschmidt hopeful “monsters”. J. Exp. Zool. B Mol. Dev. Evol. 328, 207229.CrossRefGoogle ScholarPubMed
Diogo, R., Linde-Medina, M., Abdala, V., and Ashley-Ross, M.A. (2013). New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma. Biol. Rev. 88, 196214.CrossRefGoogle ScholarPubMed
Diogo, R., Smith, C.M., and Ziermann, J.M. (2015). Evolutionary developmental pathology and anthropology: a new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine. Dev. Dynamics 244, 13571374.CrossRefGoogle ScholarPubMed
Dittrich-Reed, D.R. and Fitzpatrick, B.M. (2013). Transgressive hybrids as hopeful monsters. Evol. Biol. 40, 310315.CrossRefGoogle ScholarPubMed
Docampo, M.J., Zanna, G., Fondevila, D., Cabrera, J., López-Iglesias, C., Carvalho, A., Cerrato, S., Ferrer, L., and Bassols, A. (2011). Increased HAS2-driven hyaluronic acid synthesis in shar-pei dogs with hereditary cutaneous hyaluronosis (mucinosis). Vet. Dermatol. 22, 535545.CrossRefGoogle ScholarPubMed
Doe, C.Q. and Spana, E.P. (1995). A collection of cortical crescents: asymmetric protein localization in CNS precursor cells. Neuron 15, 991995.CrossRefGoogle ScholarPubMed
Doherty, D., Feger, G., Younger-Shepherd, S., Jan, L.Y., and Jan, Y.N. (1996). Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev. 10, 421434.CrossRefGoogle ScholarPubMed
Doiguchi, M., Nakagawa, T., Imamura, Y., Yoneda, M., Higashi, M., Kubota, K., Yamashita, S., Asahara, H., Iida, M., Fujii, S., Ikura, T., Liu, Z., Nandu, T., Kraus, W.L., Ueda, H., and Ito, T. (2016). SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation. Sci. Rep. 6, 20179.CrossRefGoogle ScholarPubMed
Domingos, P.M., Jenny, A., Combie, K.F., del Alamo, D., Mlodzik, M., Steller, H., and Mollereau, B. (2019). Regulation of Numb during planar cell polarity establishment in the Drosophila eye. Mech. Dev. 160, 103583.CrossRefGoogle ScholarPubMed
Donahue, C.J., Glasser, M.F., Preuss, T.M., Rilling, J.K., and Van Essen, D.C. (2018). Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. PNAS 115, E5183E5192.CrossRefGoogle ScholarPubMed
Donahue, C.J., Glasser, M.F., Preuss, T.M., Rilling, J.K., and Van Essen, D.C. (2019). Reply to Barton and Montgomery: a case for preferential prefrontal cortical expansion. PNAS 116, 56.CrossRefGoogle ScholarPubMed
Dongen, S.V. (2006). Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J. Evol. Biol. 19, 17271743.CrossRefGoogle ScholarPubMed
Donnelly, D.E. and Morrison, P.J. (2014). Hereditary gigantism: the biblical giant Goliath and his brothers. Ulster Med. J. 83, 8688.Google ScholarPubMed
Dougoud, M., Mazza, C., Schwaller, B., and Pecze, L. (2019). Extending the mathematical palette for developmental pattern formation: piebaldism. Bull. Math. Biol. 81, 14611478.CrossRefGoogle ScholarPubMed
Dover, G. (2000). How genomic and developmental dynamics affect evolutionary processes. BioEssays 22, 11531159.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Drimmer, F. (1973). Very Special People. Amjon Publishers, New York.Google Scholar
Driscoll, C.A., Clutton-Brock, J., Kitchener, A.C., and O’Brien, S.J. (2009). The taming of the cat. Sci. Am. 300(6), 6875.CrossRefGoogle ScholarPubMed
Drögemüller, C., Karlsson, E.K., Hytönen, M.K., Perloski, M., Dolf, G., Sainio, K., Lohi, H., Lindblad-Toh, K., and Leeb, T. (2008). A mutation in hairless dogs implicates FOXI3 in ectodermal development. Science 321, 1462.CrossRefGoogle ScholarPubMed
Duan, D., Xia, S., Rekik, I., Wu, Z., Wang, L., Lin, W., Gilmore, J.H., Shen, D., and Li, G. (2020). Individual identification and individual variability analysis based on cortical folding features in developing infant singletons and twins. Hum. Brain Mapp. 41, 19852003.CrossRefGoogle ScholarPubMed
Duboule, D. (2007). The rise and fall of Hox gene clusters. Development 134, 25492560.CrossRefGoogle ScholarPubMed
Duncan, I. and Montgomery, G. (2002). E. B. Lewis and the bithorax complex: part I. Genetics 160, 12651272.Google Scholar
Duncan, I. and Montgomery, G. (2002). E. B. Lewis and the bithorax complex: part II. From cis–trans test to the genetic control of development. Genetics 161, 110.Google Scholar
Dworkin, I. (2005). Canalization, cryptic variation, and developmental buffering: a critical examination and analytical perspective. In Variation: A Central Concept in Biology, Hallgrímsson, B. and Hall, B.K., editors. Elsevier Academic Press, New York, pp. 131158.CrossRefGoogle Scholar
Dybus, A., Proskura, W.S., Sadkowski, S., and Pawlina, E. (2013). A single nucleotide polymorphism in exon 3 of the myostatin gene in different breeds of domestic pigeon (Columba livia var. domestica). Vet. Med. (Praha) 58, 3238.CrossRefGoogle Scholar
Ebisuya, M. and Briscoe, J. (2018). What does time mean in development? Development 145, dev164368.CrossRefGoogle ScholarPubMed
Economou, A.D., Ohazama, A., Porntaveetus, T., Sharpe, P.T., Kondo, S., Basson, M.A., Gritli-Linde, A., Cobourne, M.T., and Green, J.B.A. (2012). Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nat. Genet. 44, 348352.CrossRefGoogle ScholarPubMed
Ede, D.A. (1972). Cell behaviour and embryonic development. Int. J. Neurosci. 3, 165174.CrossRefGoogle ScholarPubMed
Eder, D., Aegerter, C., and Basler, K. (2017). Forces controlling organ growth and size. Mech. Dev. 114, 5361.CrossRefGoogle Scholar
Edgar, B.A. (2006). How flies get their size: genetics meets physiology. Nat. Rev. Genet. 7, 907916.CrossRefGoogle ScholarPubMed
Edgar, B.A. and Orr-Weaver, T.L. (2001). Endoreplication cell cycles: more for less. Cell 105, 297306.CrossRefGoogle Scholar
Edwards, J.S. (1994). In memoriam. Sir Vincent Brian Wigglesworth (1899–1994). Dev. Biol. 166, 361362.CrossRefGoogle Scholar
Edwards, J.S. (1998). Sir Vincent Wigglesworth and the coming of age of insect development. Int. J. Dev. Biol. 42, 471473.Google ScholarPubMed
Efstratiadis, A. (1998). Genetics of mouse growth. Int. J. Dev. Biol. 42, 955976.Google ScholarPubMed
Eizirik, E., David, V.A., Buckley-Beason, V., Roelke, M.E., Schäffer, A.A., Hannah, S.S., Narfström, K., O’Brien, S.J., and Menotti-Raymond, M. (2010). Defining and mapping mammalian coat pattern genes: multiple genomic regions implicated in domestic cat stripes and spots. Genetics 184, 267275.CrossRefGoogle ScholarPubMed
Elgjo, K. and Reichelt, K.L. (2004). Chalones: from aqueous extracts to oligopeptides. Cell Cycle 3, 12081211.CrossRefGoogle ScholarPubMed
Elliott, K.L., Houston, D.W., and Fritzsch, B. (2015). Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs. Sci. Rep. 5, 8338.CrossRefGoogle ScholarPubMed
Elsdale, T. and Wasoff, F. (1976). Fibroblast cultures and dermatoglyphics: the topology of two planar patterns. W. Roux Arch. Dev. Biol. 180, 121147.CrossRefGoogle ScholarPubMed
Emerson, S.B. (1985). Jumping and leaping. In Functional Vertebrate Morphology, Hildebrand, M., Bramble, D.M., Liem, K.F., and Wake, D.B., editors. Harvard University Press, Cambridge, MA, pp. 5872.Google Scholar
Emlen, D.J. (2008). The evolution of animal weapons. Annu. Rev. Ecol. Evol. Syst. 39, 387413.CrossRefGoogle Scholar
Emlen, D.J. (2014). Animal Weapons: The Evolution of Battle. Henry Holt, New York.Google Scholar
Emlen, D.J., Warren, I.A., Johns, A., Dworkin, I., and Lavine, L.C. (2012). A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860864.CrossRefGoogle ScholarPubMed
Enard, D., Depaulis, F., and Crollius, H.R. (2010). Human and non-human primate genomes share hotspots of positive selection. PLoS Genet. 6(2), e1000840.CrossRefGoogle ScholarPubMed
Eom, D.S., Bain, E.J., Patterson, L.B., Grout, M.E., and Parichy, D.M. (2015). Long-distance communication by specialized cellular projections during pigment pattern development and evolution. eLife 4, e12401.CrossRefGoogle ScholarPubMed
Erickson, J.R. and Echeverri, K. (2018). Learning from regeneration research organisms: the circuitous road to scar free wound healing. Dev. Biol. 433, 144154.CrossRefGoogle ScholarPubMed
Estella, C., Voutev, R., and Mann, R.S. (2012). A dynamic network of morphogens and transcription factors patterns the fly leg. Curr. Top. Dev. Biol. 98, 173198.CrossRefGoogle ScholarPubMed
Estrellas, K.M., Chung, L., Cheu, L.A., Sadtler, K., Majumdar, S., Mula, J., Wolf, M.T., Elisseeff, J.H., and Wagner, K.R. (2018). Biological scaffold-mediated delivery of myostatin inhibitor promotes a regenerative immune response in an animal model of Duchenne muscular dystrophy. J. Biol. Chem. 293, 1559415605.CrossRefGoogle Scholar
Etienne-Manneville, S. (2011). Control of polarized cell morphology and motility by adherens junctions. Semin. Cell Dev. Biol. 22, 850857.CrossRefGoogle ScholarPubMed
Etienne-Manneville, S. (2014). Neighborly relations during collective migration. Curr. Opin. Cell Biol. 30, 5159.CrossRefGoogle ScholarPubMed
Falk, D., Lepore, F.E., and Noe, A. (2013). The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs. Brain 136, 13041327.CrossRefGoogle Scholar
Fankhauser, G. (1945). The effects of changes in chromosome number on amphibian development. Q. Rev. Biol. 20, 2078.Google Scholar
Fantauzzo, K.A., Tadin-Strapps, M., You, Y., Mentzer, S.E., Baumeister, F.A.M., Cianfarani, S., Van Maldergem, L., Warburton, D., Sundberg, J.P., and Christiano, A.M. (2008). A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice. Hum. Mol. Genet. 17, 35393551.CrossRefGoogle ScholarPubMed
Fehilly, C.B., Willadsen, S.M., and Tucker, E.M. (1984). Interspecific chimaerism between sheep and goat. Nature 307, 634636.CrossRefGoogle ScholarPubMed
Feigin, C.Y. and Mallarino, R. (2018). Setting the bar: analyzing the genomes of rock pigeons demonstrates that genetic variation comes in many forms and can have unexpected origins. eLife 7, e39068.CrossRefGoogle Scholar
Fernandes, J., Celniker, S.E., Lewis, E.B., and VijayRaghavan, K. (1994). Muscle development in the four-winged Drosophila and the role of the Ultrabithorax gene. Curr. Biol. 4, 957964.CrossRefGoogle ScholarPubMed
Fernández, V., Llinares-Benadero, C., and Borrell, V. (2016). Cerebral cortex expansion and folding: what have we learned? EMBO J. 35, 10211044.CrossRefGoogle ScholarPubMed
Ferree, P.L., Deneke, V.E., and Di Talia, S. (2016). Measuring time during early embryonic development. Semin. Cell Dev. Biol. 55, 8088.CrossRefGoogle ScholarPubMed
Ferreira, R.R., Fukui, H., Chow, R., Vilfan, A., and Vermot, J. (2019). The cilium as a force sensor: myth versus reality. J. Cell Sci. 132, jcs213496.CrossRefGoogle Scholar
Figuera, L.E., Pandolfo, M., Dunne, P.W., Cantú, J.M., and Patel, P.I. (1995). Mapping of the congenital generalized hypertrichosis locus to chromosome Xq24–q27.1. Nat. Genet. 10, 202207.CrossRefGoogle ScholarPubMed
Findlay, G.H. and Harris, W.F. (1977). The topology of hair streams and whorls in man, with an observation on their relationship to epidermal ridge patterns. Am. J. Phys. Anthrop. 46, 427438.CrossRefGoogle ScholarPubMed
Finet, C., Decaras, A., Armisén, D., and Khila, A. (2018). The achaete-scute complex contains a single gene that controls bristle development in the semi-aquatic bugs. Proc. R. Soc. B 285, 20182387.CrossRefGoogle ScholarPubMed
Finlay, B.L. and Huang, K. (2020). Developmental duration as an organizer of the evolving mammalian brain: scaling, adaptations, and exceptions. Evol. Dev. 22, 181195.CrossRefGoogle ScholarPubMed
Finlay, B.L., Darlington, R.B., and Nicastro, N. (2001). Developmental structure in brain evolution. Behav. Brain Sci. 24, 263308.CrossRefGoogle ScholarPubMed
Fisher, A. and Caudy, M. (1998). The function of hairy-related bHLH repressor proteins in cell fate decisions. BioEssays 20, 298306.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Fitch, C.L., Girton, J.R., and Girton, L. (1992). The suppressor of forked locus in Drosophila melanogaster: genetic and molecular analyses. Genetica 85, 185203.CrossRefGoogle ScholarPubMed
Fondon, J.W. III and Garner, H.R. (2004). Molecular origins of rapid and continuous morphological evolution. PNAS 101, 1805818063.CrossRefGoogle ScholarPubMed
Fouilloux, C., Ringler, E., and Rojas, B. (2019). Cannibalism. Curr. Biol. 29, R1295R1297.CrossRefGoogle ScholarPubMed
Francavilla, A., Ove, P., Polimeno, L., Coetzee, M., Makowka, L., Barone, M., Vanthiel, D.H., and Starzl, T.E. (1988). Regulation of liver size and regeneration: importance in liver-transplantation. Transplant. Proc. 20, 494497.Google ScholarPubMed
François, L., Fegraeus, K.J., Eriksson, S., Andersson, L.S., Tesfayonas, Y.G., Viluma, A., Imsland, F., Buys, N., Mikko, S., Lindgren, G., and Velie, B.D. (2016). Conformation traits and gaits in the Icelandic horse are associated with genetic variants in myostatin (MSTN). J. Hered. 107, 431437.CrossRefGoogle ScholarPubMed
Frank, S.A. (2014). Somatic mosaicism and disease. Curr. Biol. 24, R577R581.CrossRefGoogle ScholarPubMed
Frantsevich, L. (2016). A Houdini’s trick in a fly: leg unfolding with the aid of transient hinges in an extricating Calliphora vicina (Diptera: Calliphoridae). Arthropod Struct. Dev. 45, 213.CrossRefGoogle Scholar
French, V., Bryant, P.J., and Bryant, S.V. (1976). Pattern regulation in epimorphic fields. Science 193, 969981.CrossRefGoogle ScholarPubMed
Freytes, D.O., Wan, L.Q., and Vunjak-Novakovic, G. (2009). Geometry and force control of cell function. J. Cell. Biochem. 108, 10471058.CrossRefGoogle ScholarPubMed
Fristrom, D. (1988). The cellular basis of epithelial morphogenesis: a review. Tissue Cell 20, 645690.CrossRefGoogle ScholarPubMed
Fristrom, D. and Fristrom, J.W. (1993). The metamorphic development of the adult epidermis. In The Development of Drosophila melanogaster, Bate, M. and Martinez Arias, A., editors. Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 843897.Google Scholar
Fristrom, D.K., Fekete, E., and Fristrom, J.W. (1981). Imaginal disc development in a non-pupariating lethal mutant in Drosophila melanogaster. W. Roux Arch. Dev. Biol. 190, 1121.CrossRefGoogle Scholar
Fromental-Ramain, C., Warot, X., Lakkaraju, S., Favier, B., Haack, H., Birling, C., Dierich, A., Dollé, P., and Chambon, P. (1996). Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 122, 461472.Google ScholarPubMed
Fuchs, E. (2007). Scratching the surface of skin development. Nature 445, 834842.CrossRefGoogle ScholarPubMed
Fujisawa, Y., Kosakamoto, H., Chihara, T., and Miura, M. (2019). Non-apoptotic function of Drosophila caspase activation in epithelial thorax closure and wound healing. Development 146, dev169037.CrossRefGoogle ScholarPubMed
Furman, D.P. and Bukharina, T.A. (2009). The gene network determining development of Drosophila melanogaster mechanoreceptors. Comp. Biol. Chem. 33, 231234.CrossRefGoogle ScholarPubMed
Furman, D.P. and Bukharina, T.A. (2018). The bristle pattern development in Drosophila melanogaster: the prepattern and achaete-scute genes. Vavilov J. Genet. Breed. 22, 10461054.CrossRefGoogle Scholar
Fusco, G. and Minelli, A. (2010). Phenotypic plasticity in development and evolution: facts and concepts. Philos. Trans. R. Soc. Lond. B 365, 547556.CrossRefGoogle ScholarPubMed
Galant, R. and Carroll, S.B. (2002). Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415, 910913.CrossRefGoogle Scholar
Galindo, M.I., Bishop, S.A., and Couso, J.P. (2005). Dynamic EGFR-Ras signalling in Drosophila leg development. Dev. Dynamics 233, 14961508.CrossRefGoogle ScholarPubMed
Galindo, M.I., Bishop, S.A., Greig, S., and Couso, J.P. (2002). Leg patterning driven by proximal–distal interactions and EGFR signaling. Science 297, 256259.CrossRefGoogle ScholarPubMed
Galis, F., van Alphen, J.J.M., and Metz, J.A.J. (2001). Why five fingers? Evolutionary constraints on digit numbers. Trends Ecol. Evol. 16, 637646.CrossRefGoogle Scholar
Galloni, M., Gyurkovics, H., Schedl, P., and Karch, F. (1993). The bluetail transposon: evidence for independent cis-regulatory domains and domain boundaries in the bithorax complex. EMBO J. 12, 10871097.CrossRefGoogle ScholarPubMed
Gandolfi, B., Outerbridge, C.A., Beresford, L.G., Myers, J.A., Pimentel, M., Alhaddad, H., Grahn, J.C., Grahn, R.A., and Lyons, L.A. (2010). The naked truth: Sphynx and Devon Rex cat breed mutations in KRT71. Mamm. Genome 21, 509515.CrossRefGoogle ScholarPubMed
Gao, B., Song, H., Bishop, K., Elliot, G., Garrett, L., English, M.A., Andre, P., Robinson, J., Sood, R., Minami, Y., Economides, A.N., and Yang, Y. (2011). Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev. Cell 20, 163176.CrossRefGoogle ScholarPubMed
Garcia, K.E., Kroenke, C.D., and Bayly, P.V. (2018). Mechanics of cortical folding: stress, growth and stability. Philos. Trans. R. Soc. Lond. B 373, 20170321.CrossRefGoogle ScholarPubMed
García-Bellido, A. (1975). Genetic control of wing disc development in Drosophila. In Cell Patterning, Porter, R. and Rivers, J., editors. Elsevier, Amsterdam, pp. 161182.Google Scholar
García-Bellido, A. and de Celis, J.F. (2009). The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development. Genetics 182, 631639.CrossRefGoogle ScholarPubMed
García-Bellido, A. and Merriam, J.R. (1969). Cell lineage of the imaginal discs in Drosophila gynandromorphs. J. Exp. Zool. 170, 6176.CrossRefGoogle ScholarPubMed
García-Bellido, A., Lawrence, P.A., and Morata, G. (1979). Compartments in animal development. Sci. Am. 241(1), 102110.CrossRefGoogle Scholar
Garcia-Cruz, D., Figuera, L.E., and Cantu, J.M. (2002). Inherited hypertrichoses. Clin. Genet. 61, 321329.CrossRefGoogle ScholarPubMed
Gardner, E.W., Miller, H.M., and Lowney, E.D. (1979). Folded skin associated with underlying nevus lipomatosus. Arch. Derm. 115, 978979.CrossRefGoogle ScholarPubMed
Gardner, S. (2015). #ThrowBackThursday: the toad and I. (Jan. 15, 2015).Google Scholar
Garzón-Alvarado, D.A. and Ramirez Martinez, A.M. (2011). A biochemical hypothesis on the formation of fingerprints using a Turing patterns approach. Theor. Biol. Med. Model. 8, 24.CrossRefGoogle ScholarPubMed
Gawne, R., McKenna, K.Z., and Nijhout, H.F. (2018). Unmodern synthesis: developmental hierarchies and the origin of phenotypes. BioEssays 40, 1600265.CrossRefGoogle ScholarPubMed
Gayon, J. (2000). History of the concept of allometry. Am. Zool. 40, 748758.Google Scholar
Gebo, D.L. (1987). Functional anatomy of the tarsier foot. Am. J. Phys. Anthrop. 73, 931.CrossRefGoogle Scholar
Gee, H. (2013). The Accidental Species: Misunderstandings of Human Evolution. University of Chicago Press, Chicago, IL.CrossRefGoogle Scholar
Gehring, W.J. (2012). The animal body plan, the prototypic body segment, and eye evolution. Evol. Dev. 14, 3446.CrossRefGoogle ScholarPubMed
Géminard, C., González-Morales, N., Coutelis, J.B., and Noselli, S. (2014). The Myosin ID pathway and left–right asymmetry in Drosophila. Genesis 52, 471480.CrossRefGoogle ScholarPubMed
Gerhart, J. (1999). Signaling pathways in development (1998 Warkany lecture). Teratology 60, 226239.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Gerhart, J. (2001). Evolution of the organizer and the chordate body plan. Int. J. Dev. Biol. 45, 133153.Google ScholarPubMed
Gerhart, J. (2002). Changing the axis changes the perspective. Dev. Dynamics 225, 380383.CrossRefGoogle ScholarPubMed
Gerhart, J. (2010). Enzymes, embryos, and ancestors. Annu. Rev. Cell Dev. Biol. 26, 120.CrossRefGoogle ScholarPubMed
Gerhart, J. and Kirschner, M. (1997). Cells, Embryos, and Evolution. Blackwell Science, Malden, MA.Google Scholar
Gerhart, J. and Kirschner, M. (2007). The theory of facilitated variation. PNAS 104(Suppl.1), 85828589.CrossRefGoogle ScholarPubMed
Gerhart, J., Ubbels, G., Black, S., Hara, K., and Kirschner, M. (1981). A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature 292, 511516.CrossRefGoogle ScholarPubMed
Gerhart, J.C. (1987). Determinants of early amphibian development. Am. Zool. 27, 593605.CrossRefGoogle Scholar
Germani, F., Bergantinos, C., and Johnston, L.A. (2018). Mosaic analysis in Drosophila. Genetics 208, 473490.CrossRefGoogle ScholarPubMed
Geyer, P.K. and Corces, V.G. (1987). Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of the yellow locus in Drosophila melanogaster. Genes Dev. 1, 9961004.CrossRefGoogle ScholarPubMed
Gho, M., Bellaïche, Y., and Schweisguth, F. (1999). Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 126, 35733584.Google ScholarPubMed
Ghysen, A. (2009). Ontogeny of an adventurous mind: the origin of Antonio García-Bellido’s contributions to developmental genetics. Int. J. Dev. Biol. 53, 12771290.CrossRefGoogle Scholar
Ghysen, A. and Dambly-Chaudière, C. (1988). From DNA to form: the achaete-scute complex. Genes Dev. 2, 495501.CrossRefGoogle ScholarPubMed
Ghysen, A. and Dambly-Chaudière, C. (1989). Genesis of the Drosophila peripheral nervous system. Trends Genet. 5, 251255.CrossRefGoogle ScholarPubMed
Gibert, J.-M. and Simpson, P. (2003). Evolution of cis-regulation of the proneural genes. Int. J. Dev. Biol. 47, 643651.Google ScholarPubMed
Gibson, G. and Hogness, D.S. (1996). Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271, 200203.CrossRefGoogle ScholarPubMed
Gibson, M.C. (2019). Commentary on “Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster”: Schubiger, G. (1971). Dev. Biol. 449, 6382.CrossRefGoogle Scholar
Giebel, B. and Wodarz, A. (2012). Notch signaling: Numb makes the difference. Curr. Biol. 22, R133R135.CrossRefGoogle ScholarPubMed
Giebel, L.B., Tripathi, R.K., King, R.A., and Spritz, R.A. (1991). A tyrosinase gene missense mutation in temperature-sensitive Type I oculocutaneous albinism: a human homologue to the Siamese cat and the Himalayan mouse. J. Clin. Invest. 87, 11191122.CrossRefGoogle Scholar
Gierer, A. and Meinhardt, H. (1974). Biological pattern formation involving lateral inhibition. In Lectures on Mathematics in the Life Sciences, Vol. 7. American Mathematical Society, Providence, RI, pp. 163183.Google Scholar
Gilbert, S.F. (2001). Ecological developmental biology: developmental biology meets the real world. Dev. Biol. 233, 112.CrossRefGoogle ScholarPubMed
Gilbert, S.F. (2014). Developmental Biology, 10th ed. Sinauer, Sunderland, MA.Google Scholar
Gilbert, S.F. (2016). Developmental plasticity and developmental symbiosis: the return of eco-devo. Curr. Top. Dev. Biol. 116, 415433.CrossRefGoogle ScholarPubMed
Gilbert, S.F. and Barresi, M.J.F. (2019). Developmental Biology, 11th ed. Sinauer, Sunderland, MA.Google Scholar
Gilgenkrantz, H. and de l’Hortet, A.C. (2018). Understanding liver regeneration: from mechanisms to regenerative medicine. Am J. Pathol. 188, 13161327.CrossRefGoogle ScholarPubMed
Gillham, N.W. (2001). Evolution by jumps: Francis Galton and William Bateson and the mechanism of evolutionary change. Genetics 159, 13831392.Google Scholar
Gilmour, D., Rembold, M., and Leptin, M. (2017). From morphogen to morphogenesis and back. Nature 541, 311320.CrossRefGoogle Scholar
Girton, J.R. (1981). Pattern triplications produced by a cell-lethal mutation in Drosophila. Dev. Biol. 84, 164172.CrossRefGoogle ScholarPubMed
Girton, J.R. (1982). Genetically induced abnormalities in Drosophila: two or three patterns? Am. Zool. 22, 6577.CrossRefGoogle Scholar
Girton, J.R. (1983). Morphological and somatic clonal analyses of pattern triplications. Dev. Biol. 99, 202209.CrossRefGoogle ScholarPubMed
Girton, J.R. and Berns, M.W. (1982). Pattern abnormalities induced in Drosophila imaginal discs by an ultraviolet laser microbeam. Dev. Biol. 91, 7377.CrossRefGoogle ScholarPubMed
Girton, J.R. and Bryant, P.J. (1980). The use of cell lethal mutations in the study of Drosophila development. Dev. Biol. 77, 233243.CrossRefGoogle Scholar
Girton, J.R. and Kumor, A.L. (1985). The role of cell death in the induction of pattern abnormalities in a cell-lethal mutation of Drosophila. Dev. Genet. 5, 93102.CrossRefGoogle Scholar
Girton, J.R. and Russell, M.A. (1980). A clonal analysis of pattern duplication in a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Dev. Biol. 77, 121.CrossRefGoogle Scholar
Girton, J.R. and Russell, M.A. (1981). An analysis of compartmentalization in pattern duplications induced by a cell-lethal mutation in Drosophila. Dev. Biol. 85, 5564.CrossRefGoogle ScholarPubMed
Gloor, H. (1947). Phänokopie-Versuche mit Äther an Drosophila. Rev. Suisse Zool. 54, 637712.Google Scholar
Gnatzy, W., Grünert, U., and Bender, M. (1987). Campaniform sensilla of Calliphora vicina (Insecta, Diptera). I. Typography. Zoomorphology 106, 312319.CrossRefGoogle Scholar
Goldschmidt, R. (1940). The Material Basis of Evolution. Yale University Press, New Haven, CT.Google Scholar
Goldschmidt, R.B. (1949). Phenocopies. Sci. Am. 181(10), 4649.CrossRefGoogle ScholarPubMed
Goldschmidt, R.B. (1952). Homoeotic mutants and evolution. Acta Biotheor. 10, 87104.CrossRefGoogle Scholar
Goldstein, B. and Freeman, G. (1997). Axis specification in animal development. BioEssays 19, 105116.CrossRefGoogle ScholarPubMed
Golovnin, A., Gause, M., Georgieva, S., Gracheva, E., and Georgiev, P. (1999). The su(Hw) insulator can disrupt enhancer–promoter interactions when located more than 20 kilobases away from the Drosophila achaete-scute complex. Mol. Cell. Biol. 19, 34433456.CrossRefGoogle ScholarPubMed
Gómez, J.A., Ceacero, F., Landete-Castillejos, T., Gaspar-Lopez, E., García, A.J., and Gallego, L. (2012). Factors affecting antler investment in Iberian red deer. Anim. Prod. Sci. 52, 867873.CrossRefGoogle Scholar
Gómez-Skarmeta, J.L., Campuzano, S., and Modolell, J. (2003). Half a century of neural prepatterning: the story of a few bristles and many genes. Nat. Rev. Neurosci. 4, 587598.CrossRefGoogle ScholarPubMed
Gómez-Skarmeta, J.L., Rodríguez, I., Martínez, C., Culí, J., Ferrés-Marcó, D., Beamonte, D., and Modolell, J. (1995). Cis-regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes Dev. 9, 18691882.CrossRefGoogle ScholarPubMed
Gönczy, P. (2008). Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355366.CrossRefGoogle ScholarPubMed
González-Forero, M. and Gardner, A. (2018). Inference of ecological and social drivers of human brain-size evolution. Nature 557, 554557.CrossRefGoogle ScholarPubMed
González-Méndez, L., Gradilla, A.-C., and Guerreiro, I. (2019). The cytoneme connection: direct long-distance signal transfer during development. Development 146, dev174607.CrossRefGoogle ScholarPubMed
Goodman, B.A. and Johnson, P.T.J. (2011). Disease and the extended phenotype: parasites control host performance and survival through induced changes in body plan. PLoS ONE 6(5), e20193.CrossRefGoogle ScholarPubMed
Goodrich, L.V. and Strutt, D. (2011). Principles of planar polarity in animal development. Development 138, 18771892.CrossRefGoogle ScholarPubMed
Goodwin, B.C. (1985). Developing organisms as self-organizing fields. In Mathematical Essays on Growth and the Emergence of Form, Antonelli, P.L., editor. University of Alberta Press, Edmonton, pp. 185200.Google Scholar
Gotoh, H., Hust, J.A., Miura, T., Niimi, T., Emlen, D.J., and Lavine, L.C. (2015). The Fat/Hippo signaling pathway links within-disc morphogen patterning to whole-animal signals during phenotypically plastic growth in insects. Dev. Dynamics 244, 10391045.CrossRefGoogle ScholarPubMed
Gou, J., Stotsky, J.A., and Othmer, H.G. (2020). Growth control in the Drosophila wing disk. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, e1478.CrossRefGoogle Scholar
Gould, G.M. and Pyle, W.L. (1896). Anomalies and Curiosities of Medicine. Julian Press, New York.Google Scholar
Gould, S.J. (1966). Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587640.CrossRefGoogle ScholarPubMed
Gould, S.J. (1971). D’Arcy Thompson and the science of form. New Lit. Hist. 2, 229258.CrossRefGoogle Scholar
Gould, S.J. (1974). The origin and function of “bizarre” structures: antler size and skull size in the “Irish Elk,” Megaloceros giganteus. Evolution 28, 191220.Google ScholarPubMed
Gould, S.J. (1977). Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA.Google Scholar
Gould, S.J. (1977). The return of hopeful monsters. Nat. Hist. 86(6), 2230.Google Scholar
Gould, S.J. (1980). The Panda’s Thumb: More Reflections in Natural History. W. W. Norton, New York.Google Scholar
Gould, S.J. (1981). What, if anything, is a zebra? Nat. Hist. 90(7), 612.Google Scholar
Gould, S.J. (1981). What color is a zebra? Nat. Hist. 90(8), 1622.Google Scholar
Gould, S.J. (1982). Living with connections: are Siamese twins one person or two? Nat. Hist. 91(11), 1822.Google Scholar
Gould, S.J. (1986). The egg-a-day barrier. Nat. Hist. 95(7), 1624.Google Scholar
Gould, S.J. (1990). Wonderful Life: The Burgess Shale and the Nature of History. Norton, New York.Google Scholar
Gould, S.J. (1994). Cabinet museums revisited. Nat. Hist. 103(1), 1220.Google Scholar
Govind, C.K. (1989). Asymmetry in lobster claws. Am. Sci. 77, 468474.Google Scholar
Graff, J.M. (1997). Embryonic patterning: to BMP or not to BMP, that is the question. Cell 89, 171174.CrossRefGoogle ScholarPubMed
Grall, E. and Tschopp, P. (2019). A sense of place, many times over: pattern formation and evolution of repetitive morphological structures. Dev. Dynamics 249, 313327.CrossRefGoogle ScholarPubMed
Grantham, M.E., Shingleton, A.W., Dudley, E., and Brisson, J.A. (2020). Expression profiling of winged‐ and wingless‐destined pea aphid embryos implicates insulin/insulin growth factor signaling in morph differences. Evol. Dev. 22, 257268.CrossRefGoogle ScholarPubMed
Graván, C.P. and Lahoz-Beltra, R. (2004). Evolving morphogenetic fields in the zebra skin pattern based on Turing’s morphogen hypothesis. Int. J. Appl. Math. Comput. Sci. 14, 351361.Google Scholar
Gray, G.W. (1948). The great ravelled knot. Sci. Am. 179(10), 2639.CrossRefGoogle ScholarPubMed
Green, H. and Thomas, J. (1978). Pattern formation by cultured human epidermal cells: development of curved ridges resembling dermatoglyphics. Science 200, 13851388.CrossRefGoogle Scholar
Green, J.B.A. and Sharpe, J. (2015). Positional information and reaction–diffusion: two big ideas in developmental biology combine. Development 142, 12031211.CrossRefGoogle ScholarPubMed
Green, M.C. (1961). Himalayan, a new allele of albino in the mouse. J. Hered. 52, 7375.CrossRefGoogle Scholar
Greenberg, L. and Hatini, V. (2011). Systematic expression and loss-of-function analysis defines spatially restricted requirements for Drosophila RhoGEFs and RhoGAPs in leg morphogenesis. Mech. Dev. 128, 517.CrossRefGoogle ScholarPubMed
Greenwald, I. (2012). Notch and the awesome power of genetics. Genetics 191, 655669.CrossRefGoogle ScholarPubMed
Greiling, T.M.S. and Clark, J.I. (2012). New insights into the mechanism of lens development using zebra fish. Int. Rev. Cell Mol. Biol. 296, 161.CrossRefGoogle ScholarPubMed
Grimaldi, D.A. (1987). Amber fossil Drosophilidae (Diptera), with particular reference to the Hispaniolan taxa. Am. Mus. Novitates 2880, 123.Google Scholar
Grimes, D.T. (2019). Making and breaking symmetry in development, growth and disease. Development 146, dev170985.CrossRefGoogle ScholarPubMed
Grimes, D.T. and Burdine, R.D. (2017). Left–right patterning: breaking symmetry to asymmetric morphogenesis. Trends Genet. 33, 616628.CrossRefGoogle ScholarPubMed
Grobet, L., Martin, L.J.R., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Ménissier, F., Massabanda, J., Fries, R., Hanset, R., and Georges, M. (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 7174.CrossRefGoogle ScholarPubMed
Grochowska, E., Borys, B., Lisiak, D., and Mroczkowski, S. (2019). Genotypic and allelic effects of the myostatin gene (MSTN) on carcass, meat quality, and biometric traits in Colored Polish Merino sheep. Meat Sci. 151, 417.CrossRefGoogle ScholarPubMed
Gross, J.B., Kerney, R., Hanken, J., and Tabin, C.J. (2011). Molecular anatomy of the developing limb in the coquí frog, Eleutherodactylus coqui. Evol. Dev. 13, 415426.CrossRefGoogle ScholarPubMed
Groves, A.K. and Fekete, D.M. (2012). Shaping sound in space: the regulation of inner ear patterning. Development 139, 245257.CrossRefGoogle ScholarPubMed
Gu, L., Mo, E., Yang, Z., Zhu, X., Fang, Z., Sun, B., Wang, C., Bao, J., and Sung, C. (2007). Expression and localization of insulin-like growth factor-I in four parts of the red deer antler. Growth Factors 25, 264279.CrossRefGoogle ScholarPubMed
Gubb, D. and García-Bellido, A. (1982). A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J. Embryol. Exp. Morphol. 68, 3757.Google ScholarPubMed
Guerreiro, I. and Duboule, D. (2014). Snakes: hatching a model system for Evo-Devo? Int. J. Dev. Biol. 58, 727732.CrossRefGoogle Scholar
Guinard, G. (2015). Introduction to evolutionary teratology, with an application to the forelimbs of Tyrannosauridae and Carnotaurinae (Dinosauria: Theropoda). Evol. Biol. 42, 2041.CrossRefGoogle Scholar
Gumbiner, B.M. and Kim, N.-G. (2014). The Hippo–YAP signaling pathway and contact inhibition of growth. J. Cell Sci. 127, 709717.CrossRefGoogle ScholarPubMed
Gunhaga, L. (2011). The lens: a classical model of embryonic induction providing new insights into cell determination in early development. Philos. Trans. R. Soc. Lond. B 366, 11931203.CrossRefGoogle ScholarPubMed
Haas, B.J. and Whited, J.L. (2017). Advances in decoding axolotl limb regeneration. Trends Genet. 33, 553565.CrossRefGoogle ScholarPubMed
Hadorn, E. (1961). Developmental Genetics and Lethal Factors. Methuen, London [translated from 1955 German original, Thieme Verlag, Stuttgart, by U. Mittwoch].CrossRefGoogle Scholar
Hadorn, E. (1978). Transdetermination. In The Genetics and Biology of Drosophila, Ashburner, M. and Wright, T.R.F., editors. Academic Press, New York, pp. 555617.Google Scholar
Halder, G. and Johnson, R.L. (2011). Hippo signaling: growth control and beyond. Development 138, 922.CrossRefGoogle ScholarPubMed
Hall, B.K. (2008). EvoDevo concepts in the work of Waddington. Biol. Theory 3, 198203.CrossRefGoogle Scholar
Hall, B.K. (2018). Germ layers, the neural crest and emergent organization in development and evolution. Genesis 56, e23103.CrossRefGoogle ScholarPubMed
Hall, J.C., Gelbart, W.M., and Kankel, D.R. (1976). Mosaic systems. In The Genetics and Biology of Drosophila, Ashburner, M. and Novitski, E., editors. Academic Press, New York, pp. 265314.Google Scholar
Hallgrímsson, B., Green, R.M., Katz, D.C., Fish, J.L., Bernier, F.P., Roseman, C.C., Young, N.M., Cheverud, J.M., and Marcucio, R.S. (2019). The developmental-genetics of canalization. Semin. Cell Dev. Biol. 88, 6779.CrossRefGoogle ScholarPubMed
Hallgrímsson, B., Jamniczky, H., Young, N.M., Rolian, C., Parsons, T.E., Boughner, J.C., and Marcucio, R.S. (2009). Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36, 355376.CrossRefGoogle ScholarPubMed
Hamant, O. (2017). Mechano-devo. Mech. Dev. 145, 29.CrossRefGoogle ScholarPubMed
Hamburger, V. (1988). The Heritage of Experimental Embryology: Hans Spemann and the Organizer. Oxford University Press, New York.Google Scholar
Hamburger, V. (2001). Induction of embryonic primordia by implantation of organizers from a different species. [English translation of 1924 German paper by Hans Spemann and Hilde Mangold.] Int. J. Dev. Biol. 45, 1338.Google Scholar
Hamelin, A., Conchou, F., Fusellier, M., Duchenij, B., Vieira, I., Filhol, E., de Citres, C.D., Tiret, L., Gache, V., and Abitbol, M. (2020). Genetic heterogeneity of polydactyly in Maine Coon cats. J. Feline Med. Surg. 1098612X20905061 [published online, 18 Feb 2020].CrossRefGoogle Scholar
Handrigan, G.R. and Wassersug, R.J. (2007). The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology. Biol. Rev. 82, 125.CrossRefGoogle ScholarPubMed
Hannah-Alava, A. (1960). Genetic mosaics. Sci. Am. 202(5), 118130.CrossRefGoogle ScholarPubMed
Hannezo, E. and Heisenberg, C.-P. (2019). Mechanochemical feedback loops in development and disease. Cell 178, 1225.CrossRefGoogle ScholarPubMed
Hanset, R. and Michaux, C. (1985). On the genetic determinism of muscular hypertrophy in the Belgian White and Blue cattle breed. II. Population data. Génét. Sél. Evol. 17, 369386.CrossRefGoogle ScholarPubMed
Happle, R. (2015). The categories of cutaneous mosaicism: a proposed classification. Am. J. Med. Genet. A 170A, 452459.Google ScholarPubMed
Hardie, R.C. (1985). Functional organization of the fly retina. In Progress in Sensory Physiology, Ottoson, D., editor. Springer-Verlag, Berlin, pp. 179.Google Scholar
Harfe, B.D., Scherz, P.J., Nissim, S., Tian, H., McMahon, A.P., and Tabin, C.J. (2004). Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517528.CrossRefGoogle ScholarPubMed
Hariharan, I.K. (2015). Organ size control: lessons from Drosophila. Dev. Cell 34, 255265.CrossRefGoogle ScholarPubMed
Hariharan, I.K. and Bilder, D. (2006). Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila. Annu. Rev. Genet. 40, 335361.CrossRefGoogle ScholarPubMed
Hariharan, I.K. and Serras, F. (2017). Imaginal disc regeneration takes flight. Curr. Opin. Cell Biol. 48, 1016.CrossRefGoogle ScholarPubMed
Harris, M.L., Chora, L., Bishop, C.A., and Bogart, J.P. (2000). Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, Rana pipiens and Bufo americanus. Bull. Environ. Contam. Toxicol. 64, 263270.CrossRefGoogle ScholarPubMed
Harris, R.E., Setiawan, L., Saul, J., and Hariharan, I.K. (2016). Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. eLife 5, e11588.CrossRefGoogle ScholarPubMed
Harrison, R.G. (1918). Experiments on the development of the fore limb of Amblystoma, a self-differentiating equipotential system. J. Exp. Zool. 25, 413461.CrossRefGoogle Scholar
Harrison, R.G. (1921). On relations of symmetry in transplanted limbs. J. Exp. Zool. 32, 1136.CrossRef