Skip to main content Accessibility help
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T11:15:27.904Z Has data issue: false hasContentIssue false


Published online by Cambridge University Press:  10 November 2022

Greg Tallents
University of York
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alberto, P., Das, S., and Vagenas, E. C. 2018. Relativistic particle in a box: Klein-Gordon versus Dirac equations. Eur. J. Phys., 39, 025401.Google Scholar
Alexanian, M. 1968. Photon bremsstrahlung from an extreme-relativistic electron gas. Phys. Rev., 165, 253257.Google Scholar
Aniculaesei, C., Pathak, V. B., Kim, H. T., et al. 2019. Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles. Sci. Rep., 9, 11249.Google Scholar
Babzien, M., Ben-Zvi, I., Kusche, K., et al. 2006. Observation of the second harmonic in Thomson scattering from relativistic electrons. Phys. Rev. Lett., 96, 054802.Google Scholar
Beesley, J. J., and Rose, S. J. 2019. Free electron relativistic correction factor to collisional excitation and ionisation rates in a plasma. HEDP, 33, 100716.Google Scholar
Bell, A. R. 1978. The acceleration of cosmic rays in shock fronts. Mon. Not. R. Ast. Soc., 182, 147156.Google Scholar
Bell, A. R. 2012. Cosmic ray acceleration. Astroparticle Phys., 43, 5670.Google Scholar
Bernstein, J. 2001. Hitler’s Uranium Club: The secret recordings at Farm Hall. Springer-Verlag, New York.Google Scholar
Bird, D. J., Corbato, S. C., Dai, H. Y., et al. 1995. Detection of a cosmic ray with measured energy well beyond the expected spectral cut off due to cosmic microwave radiation. Astrophys. J., 441, 144.Google Scholar
Blackburn, T. G., Ridgers, C. P., Kirk, J. G., and Bell, A. R. 2014. Quantum radiation reaction in laser-electron beam collisions. Phys. Rev. Lett., 112, 015001.Google Scholar
Blumenthal, G. R., and Gould, R. J. 1970. Bremsstrahlung, synchrotron radiation and Compton scattering of high energy electrons traversing dilute gases. Rev. Mod. Phys., 42, 237270.Google Scholar
Brian, D. 1996. Einstein: A life. Wiley, New York.Google Scholar
Capdessus, R., King, M., Sorbo, D. Del, et al. 2018. Relativistic Doppler-boosted γ -rays in high fields. Nature Sci. Rep., 8, 9115.Google Scholar
Carlstrom, J. E., Holder, G. P., and Reese, E. D. 2002. Cosmology with the Sunyaev-Zel’dovich effect. Ann. Rev. Astron. Astrophys., 40, 643680.Google Scholar
Chalmers, M. 2011. Freeze framing the atomic world. Phys. World Supplement: Big Science, Oct., 1920.Google Scholar
Chen, S., Maksimchuk, A., and Umstadter, D. 1998. Experimental observation of relativistic nonlinear Thomson scattering. Nature, 17, 653655.Google Scholar
Clemmow, P. C., and Dougherty, J. P. 1990. Electrodynamics of particles and plasmas. Addison-Wesley Inc., Redwood City, CA. 309 310 ReferencesGoogle Scholar
Clery, D. 2011. Magnet challenges for ITER. Phys. World Supplement: Big Science, Oct., 910.Google Scholar
Cocke, W. J., and Holm, D. A. 1972. Lorentz transformation properties of the Stokes parameters. Nature, 240, 161162.Google Scholar
Cole, J. M., Behm, K. T., Gerstmayr, E., et al. 2018. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with laser-wakefield accelerated electron beam. Phys. Rev. X, 8, 011020.Google Scholar
Colgan, J., Kilcrease, D. P., Magee, N. H., et al. 2016. A new generation of Los Alamos opacity tables. Astrophys. J., 817:116, 110.Google Scholar
Collaboration, HESS. 2016. Acceleration of petaelectronvolt protons in the galactic centre. Nature, 531, 476479.Google Scholar
Collaboration, The Event Horizon Telescope, et al. 2021. First M87 event Horizon telescope results. VII polarization of the ring. Astrophys. J. Lett., 910, L12.Google Scholar
Cui, Y. Q., Wang, W. M., Sheng, Z. M., Li, Y. T., and Zhang, J. 2013. Laser absorption and hot electron temperature scalings in laser–plasma interactions. Plasma Phys. Cont. Fus., 55, 085008.CrossRefGoogle Scholar
Dirac, P. A. M. 1926. On the theory of quantum mechanics. Proc. R. Soc. A, 112, 661677.Google Scholar
Dirac, P. A. M. 1978. Directions in physics: Lectures delivered during a visit to Australia and New Zealand August/September 1975. Wiley, New York.Google Scholar
Dunkel, J., Hanggi, P., and Hilbert, S. 2009. Non-local observables and lightconeaveraging in relativistic thermodynamics. Nature Phys., 5, 741747.Google Scholar
Dyson, F. W., Eddington, A. S., and Davidson, C. 1920. IX. A determination of the deflection of light by the Sun’s gravitational field from observation made at the total eclipse of May 29, 1919. Phil. Trans. R. Soc. Lond., 220, 291335.Google Scholar
Dyson, G. 2003. Project Orion: The atomic spaceship. Penguin, London.Google Scholar
Easwar, N., and MacIntire, D. A. 1991. Study of the effect of relativistic time dilation on cosmic ray muon flux: An undergraduate modern physics experiment. Am. J. Phys., 59, 589592.Google Scholar
Eglert, B. G., Scully, M. O., and Walther, H. 1994. The duality in matter and light. Scientific Am., 8892.Google Scholar
Einstein, A. 1905a. Ist die Trägheit eines Körpers von seinem Energiegehalt abhängig? (Does the inertia of a body depend upon its energy content?). Ann. Physik, 18, 639641.Google Scholar
Einstein, A. 1905b. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (Investigations on the theory of Brownian movement). Ann. Physik, 322, 549560.CrossRefGoogle Scholar
Einstein, A. 1905c. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (On a Heuristic Point of View about the Creation and Conversion of Light). Ann. Physik, 17, 132148.CrossRefGoogle Scholar
Einstein, A. 1905d. Zur Elektrodynamik bewegter Körper (On the electrodynamics of moving bodies). Ann. Phys., 17, 891921.Google Scholar
Einstein, A. 1916. Strahlungs-Emission und -Absorption nach der Quantentheorie (Light emission and absorption after quantum theory). Verhandlungen der Deutschen Physikalischen Gesellschaft, 18, 318323.Google Scholar
Einstein, A. 1917. Zur Quantentheorie der Strahlung (On the quantum theory of radiation). Physikalishche Zeitschrift, 18, 121128.Google Scholar
Fermi, E. 1926. Sulla quantizzazione del gas perfetto monoatomico (Quantization of the monoatomic ideal gas). Rendiconti Lincei, 3, 145149.Google Scholar
Fermi, E. 1949. On the origin of cosmic radiation. Phys. Rev, 75, 11691174. References 311Google Scholar
Feynman, Richard P., Leighton, R. B., and Sands., M. L. 1963. The Feynman lectures on physics. Addison-Wesley Pub. Co., Reading, Mass.Google Scholar
Fixsen, D. J. 2009. The temperature of the cosmic microwave background. Astrophys. J., 707, 916920.Google Scholar
Fizeau, H. 1851. The hypotheses relating to the luminous aether, and an experiment which appears to demonstrate that the motion of bodies alters the velocity with which light propagates itself in their interior. Phil. Mag., 2, 568573.Google Scholar
Fruhling, C., Wang, J., Umstadter, D., Schulzke, C., Romero, M., Ware, M., and Peatross, J. 2021. Experimental observation of polarization-resolved nonlinear Thomson scattering of elliptically polarized light. Phys. Rev. A, 104, 053519.Google Scholar
Gaisser, T. K., Engel, R., and Resconi, E. 2016. Cosmic rays and particle physics (2nd edition). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gelfand, I. M., and Fomin, S. V. 2000. Calculus of variations. Dover Publications Inc., Mineola.Google Scholar
Gerbal, D., and Prud’Homme, M. 1974. Some remarks about relativistic line profiles. J. Quant. Spect. Rad. Trans., 14, 351356.Google Scholar
Gibbon, P. 2005. Short pulse laser interaction with matter: An introduction. Imperial College Press, London.Google Scholar
Greisen, K. 1966. End to the cosmic ray spectrum? Phys. Rev. Lett., 16, 748750.Google Scholar
Henke, B. L., Gullison, E. M., and Davis, J. C. 1993. X-ray interaction: Photoabsorption, scattering, transmission and reflection at E = 50 – 30000 eV, Z = 1–92. At. Data Nucl. Data Tables, 54, 181342.Google Scholar
Hestenes, D. 1990. The zitterbewegung interpretation of quantum mechanics. Foundations of Physics, 20, 12131232.Google Scholar
Hooker, S. M. 2013. Developments in laser-driven plasma accelerators. Nature photonics, 7, 775787.Google Scholar
Huang, Y. S. 2020. The classical Doppler-broadened absorption line profile due to thermal effect. Eur. Phys. Lett., 131, 53002.Google Scholar
Huang, Y. S, Chiue, J. H., Huang, Y. C., and Hsiung, T. C. 2010. Relativistic formulation for the Doppler-broadened line profile. Phys. Rev. A, 82, 010102.Google Scholar
Hughes, T. P. 1962. A new method for the determination of plasma electron temperature and density from Thomson scattering of an optical maser beam. Nature, 194, 268269.Google Scholar
Hutchinson, I. H. 2002. Principles of plasma diagnostics. Cambridge University Press, Cambridge.Google Scholar
Iglesias, C. 1996. Comment on “relativistic corrections to inverse bremsstrahlung in the solar interior” by Tsytovich et al. Phys. Lett., 213, 313315.Google Scholar
Iglesias, C. A., and Rose, S. J. 1996. Corrections to bremsstrahlung and Thomson scattering at the solar center. Astrophys. J., 466, L115L118.Google Scholar
Jackson, J. D. 1962. Classical dynamics. Wiley, New York.Google Scholar
Joshi, C., Mori, W. B., Katsouleas, T., Dawson, J. M., Kindel, J. M., and Forslund, D. W. 1984. Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves. Nature, 311, 525529.Google Scholar
Kando, M., Pirozhkov, A. S., Kawase, K., et al. 2009. Enhancement of photon number reflected by the relativistic flying mirror. Phys. Rev. Lett., 103, 235003.Google Scholar
Kando, M., Esirkepov, T. Z., Koga, J. K., Pirozhkov, A. S., and Bulanov, S. V. 2018. Coherent short pulse X-ray generation via relativistic flying mirrors. Quant. Beam Sci., 2, 9, 111.Google Scholar
Klein, O., and Nishina, Y. 1929. Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac (On scattering of 312 References radiation by a free electron using the new quantum electrodynamics of Dirac). Z. Physik, 52, 853868.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1971. The classical theory of fields. Pergamon, Oxford.Google Scholar
Leemans, W. P., Gonsalves, A. J, Nakamura, K., Mao, H. S., et al. 2014. Multi-GeV electron beams from capillary-discharge-guided subpetatwatt laser pulses in the self-trapping regime. Phys. Rev. Lett., 113, 245002.Google Scholar
Levington, F. M., Fonck, R. J., Gammel, G. M., Kaita, R., Kugel, H. W., Powell, E. T., and Roberts, D. W. 1989. Magnetic field pitch-angle measurements in the PBX-M tokamak using the motional Stark effect. Phys. Rev. Lett., 63, 20602063.Google Scholar
Lewis, G. N. 1926. The conservation of photons. Nature, 118, 874875.Google Scholar
Lindl, J. 1995. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933– 4024.Google Scholar
Lindl, J. D., Amendt, P., Berger, R. L., Glendinning, S. G., Glenzer, S. H., Haan, S. W., Kauffman, R. L., Landen, O. L., and Suter, L. J. 2004. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339.Google Scholar
Lotz, W. 1967. An empirical formula for the electron-impact ionization crosssection. Z. Physik, 206, 205.Google Scholar
Lyutikov, M., Pariev, V. I., and Blandford, R. D. 2003. Polarization of prompt gamma-ray burst emission: Evidence for electromagnetically dominated outflow. Astrophys. J., 597, 9981009.Google Scholar
Macchietto, C. D., Benware, B. R., and Rocca, J. J. 1999. Generation of millijoulelevel soft-X-ray laser pulses at a 4-Hz repetition rate in a highly saturated tabletop capillary discharge amplifier. Optics Lett., 24, 11151117.Google Scholar
Macintyre, Ben. 2021 (Nov. 6). “Führers of physics” shame the Nobel prize. The Times London.Google Scholar
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., et al. 2004. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature, 431, 535538.Google Scholar
Mangles, S. P. D., Thomas, A. G. R., Kaluza, M. C., Lundh, O., Lindau, F., Persson, A., Tsung, F. S., Najmudin, Z., Mori, W. B., Wahlstrom, C.-G., and Krushelnick, K. 2006. Laser wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. Phys. Rev. Lett., 96, 215001.Google Scholar
Maxon, S. 1972. Bremsstrahlung rate and spectra from a hot gas (Z =1). Phys. Rev. A, 5, 16301633.Google Scholar
Maxwell, James Clerk. 1865. A dynamical theory of the electromagnetic field. Phil. Trans. Roy. Soc., 155, 459512.Google Scholar
Meade, D. 2009. 50 years of fusion research. Nucl. Fus, 50, 014004.Google Scholar
Meinecke, J., Doyle, H. W., Miniati, F., Bingham, R., et al. 2014. Turbulent amplification of magnetic field in laboratory laser-produced shock waves. Nature Phys., 7, 520524.Google Scholar
Moore, W. J. 2015. Schrödinger: Life and thought. Cambridge University Press, Cambridge.Google Scholar
Nuckolls, J., Wood, L., Thiessen, A., and Zimmerman, G. 1972. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139142.Google Scholar
Oerter, R. 2006. The theory of almost everything: The Standard model, the unsung triumph of modern physics. Penguin, New York. References 313Google Scholar
Olson, R. E., Rochau, G. A., Landen, O. L, and Leeper, R. J. 2011. X-ray ablation rates in inertial confinement fusion capsule materials. Phys. Plasmas, 18, 032706.Google Scholar
Oxenius, J. 1986. Kinetic theory of particles and photons: Theoretical foundations of non-LTE plasma spectroscopy. Springer-Verlag, Berlin.Google Scholar
Pais, A. 1997. A tale of two continents: A physicist’s life in a turbulent world. Princeton University Press, Princeton.Google Scholar
Passoni, M., Bertagna, L., and Zani, A. 2010. Target normal sheath acceleration: Theory, comparison with experiments and future objectives. New J. Phys., 12, 045012.Google Scholar
Paterniti, M. 2000. Driving Mr. Albert: A trip across America with Einstein’s brain. Dial Press (Random House), New York.Google Scholar
Pellegrini, C., Marinelli, A., and Reiche, S. 2016. The physics of X-ray free-electron lasers. Nature Sci. Rep., 88, 015006.Google Scholar
Pert, G. J. 2013. Introductory fluid mechanics for physicists and mathematicians. Wiley, Oxford.Google Scholar
Pert, G. J. 2021. Foundations of Plasma Physics for Physicists and Mathematicians. Wiley, Oxford.Google Scholar
Pirozhkov, A. S., Bulanov, S. V., Esirkepov, T. Z., Mori, M., Sagisaki, A., and Daido, H. 2006. Attosecond pulse generation in the relativistic regime of the laserfoil interaction: The sliding mirror model. Phys. Plasmas, 13, 013107.Google Scholar
Pitaevskii, L., and Stringari, S. 2003. Bose-Einstein condensation. Clarendon, Oxford.Google Scholar
Planck, Collaboration. 2020. Planck 2018 results 1. Overview and the cosmological legacy of Planck. Astron. Astrophys, 641, 916920.Google Scholar
Pukhov, A. 2002. Strong field interaction of laser radiation. Rep. Prog. Phys., 66, 47101.Google Scholar
Purcell, E. M. 1985. Electricity and magnetism. McGraw-Hill, New York.Google Scholar
Quesnel, B., and Mora, P. 1999. Simulation of the interaction of ultraintense laser pulses with electrons in vacuum. Phys. Rev. E, 58, 3719– 3732.Google Scholar
Quigg, C. 1968. Relativistic correction to plasma bremsstrahlung. Phys. Fluids, 11, 461462.Google Scholar
Repahei, Y. 1995. Comptonization of the cosmic microwave background: The Sunyaev-Zel’dovich effect. Ann. Rev. Astron. Astrophys., 33, 541579.Google Scholar
Robinson, A. 2019. Einstein on the run: How Britain saved the world’s greatest scientist. Yale University Press, New Haven.Google Scholar
Rose, S. J., and Hatfield, P. W. 2021. Astronomy domine: Advancing science with a burning plasma. Contemp. Phys., doi:10.1080/00107514.2021.1959097.Google Scholar
Rothman, T. 2015. Did Einstein really invent E = mc2? Sci. American, 313, 3.Google Scholar
Rybicki, G. B., and Lightman, A. P. 1979. Radiative processes in astrophysics. Wiley, New York.Google Scholar
Sampson, D. H., and Zhang, H. L. 1992. Use of the Van Regemorter formula for collision strengths or cross sections. Phys. Rev. A, 45, 1556 –1561.Google Scholar
De Sanctis, E. De, Monti, S., and Ripani, M. 2016. Energy from nuclear fission: An introduction. Springer, Basel.Google Scholar
Schekochihin, A. A., and Cowley, S. C. 2007. Turbulence and magnetic fields in astrophysical plasmas. In: Magnetohydrodynamics: Fluid mechanics and its applications. Springer, Dordrecht.Google Scholar
Sheffield, J., Froula, D., Glenzer, S. H., and Luhmann, N. C. 2011. Plasma scattering of electromagnetic radiation: Theory and measurement techniques. Academic Press, Amsterdam. 314 ReferencesGoogle Scholar
Kichenassamy, S., Krikorian, R., and Nikoghossian, A. 1982. The relativistic Doppler broadening of the line absorption profile. J. Quant. Spect. Rad. Trans., 27, 635655.Google Scholar
Spitzer, L. 1962. Physics of fully ionized gases. Wiley, New York.Google Scholar
Sunyaev, R. A., and Zel’dovich, Y. B. 1980. Microwave background radiation as a probe of the contemporary structure and history of the universe. Ann. Rev. Astron. Astrophys., 18, 537560.Google Scholar
Tabak, M., Clark, D. S., Hatchett, S. P., Key, M. H., et al. 2005. Review of progress on fast ignition. Phys. Plasmas, 12, 057305.Google Scholar
Tallents, G. J. 2018. An introduction to the atomic and radiation physics of plasmas. Cambridge University Press, Cambridge.Google Scholar
Temme, N. M. 1996. Special functions: An introduction to the classical functions of mathematical physics. Wiley-Interscience, New York.Google Scholar
Umstadter, D. 2003. Relativistic laser-plasma interactions. J. Phys. D., 36, R151R165.Google Scholar
van Regemorter, H. 1962. Rate of collisional excitation in stellar atmospheres. Astrophys. J., A132, 906.Google Scholar
Wilks, S. C., Kruer, W. L., Tabak, M., and Langdon, A. B. 1992. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 13831386.Google Scholar
Willmott, P. 2019. An introduction to synchrotron radiation. Wiley, Hoboken, USA. Hoboken.Google Scholar
Winick, H., and Doniach, S. 1980. Synchrotron radiation research. Plenum, New York.Google Scholar
Wolf, E. C., Bock, A., Ford, O. P., Reimer, R., Burckhart, A., Dinklage, A., Hobirk, J., Howard, J., Reich, M., and Stober, J. 2015. Motional Stark effect measurements of the local magnetic field in high temperature fusion plasmas. JINST, 10, P10008.Google Scholar
Yin, L., Albright, B. J., Hegelich, B. M., and Fernandez, J. C. 2006. GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Particle Beams, 24, 291298.Google Scholar
Yin, L., Albright, B. J., Bowers, D., Jung, D., Fernandez, J. C., and Hegelich, B. M. 2011. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. Phys. Rev. Lett., 107, 045003.Google Scholar
Zekovic, V., Arbutina, B., Dobardzic, A., and Pavlovic, M. 2013. Relativistic nonthermal bremsstrahlung radiation. Int. J. Mod. Phys., 29, 1350141.Google Scholar
Zepf, M., Tsakisi, G. D., Pretzler, G., Watts, I., et al. 1998. Role of the plasma scale length in the harmonic generation from solid targets. Phys. Rev. E, 58, R5253– R5256.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Greg Tallents, University of York
  • Book: An Introduction to Special Relativity for Radiation and Plasma Physics
  • Online publication: 10 November 2022
Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Greg Tallents, University of York
  • Book: An Introduction to Special Relativity for Radiation and Plasma Physics
  • Online publication: 10 November 2022
Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Greg Tallents, University of York
  • Book: An Introduction to Special Relativity for Radiation and Plasma Physics
  • Online publication: 10 November 2022
Available formats