We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The semantical framework for the positive view of this book is one in which entailment is understood primarily in terms of theory closure. This chapter outlines both the history of the notion, beginning with Alfred Tarski’s theory of closure operators, and the relationship between closure operators and the entailment connective. At the end of the chapter, it is shown how closure operators can be used to model a simple logic, Graham Priest’s logic N4.
Given a poset $P$ and a standard closure operator $\unicode[STIX]{x1D6E4}:{\wp}(P)\rightarrow {\wp}(P)$, we give a necessary and sufficient condition for the lattice of $\unicode[STIX]{x1D6E4}$-closed sets of ${\wp}(P)$ to be a frame in terms of the recursive construction of the $\unicode[STIX]{x1D6E4}$-closure of sets. We use this condition to show that, given a set ${\mathcal{U}}$ of distinguished joins from $P$, the lattice of ${\mathcal{U}}$-ideals of $P$ fails to be a frame if and only if it fails to be $\unicode[STIX]{x1D70E}$-distributive, with $\unicode[STIX]{x1D70E}$ depending on the cardinalities of sets in ${\mathcal{U}}$. From this we deduce that if a poset has the property that whenever $a\wedge (b\vee c)$ is defined for $a,b,c\in P$ it is necessarily equal to $(a\wedge b)\vee (a\wedge c)$, then it has an $(\unicode[STIX]{x1D714},3)$-representation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.