Skip to main content Accessibility help


  • ROB EGROT (a1)

Given a poset $P$ and a standard closure operator $\unicode[STIX]{x1D6E4}:{\wp}(P)\rightarrow {\wp}(P)$ , we give a necessary and sufficient condition for the lattice of $\unicode[STIX]{x1D6E4}$ -closed sets of ${\wp}(P)$ to be a frame in terms of the recursive construction of the $\unicode[STIX]{x1D6E4}$ -closure of sets. We use this condition to show that, given a set ${\mathcal{U}}$ of distinguished joins from $P$ , the lattice of ${\mathcal{U}}$ -ideals of $P$ fails to be a frame if and only if it fails to be $\unicode[STIX]{x1D70E}$ -distributive, with $\unicode[STIX]{x1D70E}$ depending on the cardinalities of sets in ${\mathcal{U}}$ . From this we deduce that if a poset has the property that whenever $a\wedge (b\vee c)$ is defined for $a,b,c\in P$ it is necessarily equal to $(a\wedge b)\vee (a\wedge c)$ , then it has an $(\unicode[STIX]{x1D714},3)$ -representation.

Hide All
[1] Abian, A., ‘Boolean rings with isomorphisms preserving suprema and infima’, J. Lond. Math. Soc. (2) 3 (1971), 618620.
[2] Balbes, R., ‘A representation theory for prime and implicative semilattices’, Trans. Amer. Math. Soc. 136 (1969), 261267.
[3] Cheng, Y. and Kemp, P., ‘Representation of posets’, Zeitschr. f. math. Logik und Grundlagen d. Math 38 (1992), 269276.
[4] Cornish, W. and Hickman, R., ‘Weakly distributive semilattices’, Acta Math. Acad. Sci. Hungar. 32 (1978), 516.
[5] Doctor, H. P., ‘Extensions of a partially ordered set’, PhD Thesis, McMaster University (Canada), 1967.
[6] Egrot, R., ‘No finite axiomatizations for posets embeddable into distributive lattices’, Preprint, 2016, arXiv:1610.00858.
[7] Egrot, R., ‘Representable posets’, J. Appl. Log. 16 (2016), 6071.
[8] Erné, M., ‘Closure’, in: Beyond Topology, Contemporary Mathematics, 486 (Amer. Math. Soc., Providence, RI, 2009), 163238.
[9] Erné, M. and Wilke, G., ‘Standard completions for quasiordered sets’, Semigroup Forum 27(1–4) (1983), 351376.
[10] Grätzer, G. and Schmidt, E. T., ‘On congruence lattices of lattices’, Acta Math. Acad. Sci. Hungar. 13 (1962), 179185.
[11] Hickman, R., ‘Distributivity in semilattices’, Acta Math. Acad. Sci. Hungar. 32 (1978), 3545.
[12] Hickman, R. C. and Monro, G. P., ‘Distributive partially ordered sets’, Fund. Math. 120 (1984), 151166.
[13] Kearnes, K., ‘The class of prime semilattices is not finitely axiomatizable’, Semigroup Forum 55 (1997), 133134.
[14] Kemp, P., ‘Representation of partially ordered sets’, Algebra Universalis 30 (1993), 348351.
[15] Schein, B., ‘On the definition of distributive semilattices’, Algebra Universalis 2 (1972), 12.
[16] Schmidt, J., ‘Universal and internal properties of some completions of k-join-semilattices and k-join-distributive partially ordered sets’, J. reine angew. Math. 255 (1972), 822.
[17] Schmidt, J., ‘Each join-completion of a partially ordered set is the solution of a universal problem’, J. Aust. Math. Soc. 17 (1974), 406413.
[18] Schmidt, J., ‘Universal and internal properties of some extensions of partially ordered sets’, J. reine angew. Math. 253 (1972), 2842.
[19] Van Alten, C., ‘Embedding ordered sets into distributive lattices’, Order 33 (2016), 419427.
[20] Varlet, J. C., ‘On separation properties in semilattices’, Semigroup Forum 10 (1975), 220228.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed