We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Executive dysfunction, including working memory deficits, is prominent in posttraumatic stress disorder (PTSD) and can impede treatment effectiveness. Intervention approaches that target executive dysfunction alongside standard PTSD treatments could boost clinical response. The current study reports secondary analyses from a randomized controlled trial testing combined PTSD treatment with a computerized training program to improve executive dysfunction. We assessed if pre-treatment neurocognitive substrates of executive functioning predicted clinical response to this novel intervention.
Methods
Treatment-seeking veterans with PTSD (N = 60) completed a working memory task during functional magnetic resonance imaging prior to being randomized to six weeks of computerized executive function training (five 30-minute sessions each week) plus twelve 50-minute sessions of cognitive processing therapy (CEFT + CPT) or placebo training plus CPT (PT + CPT). Using linear mixed effects models, we examined the extent to which the neurocognitive substrates of executive functioning predicted PTSD treatment response.
Results
Results indicated that veterans with greater activation of working memory regions (e.g. lateral prefrontal and cingulate cortex) had better PTSD symptom improvement trajectories in CEFT + CPT v. PT + CPT. Those with less neural activation during working memory showed similar trajectories of PTSD symptom change regardless of treatment condition.
Conclusions
Greater activity of frontal regions implicated in working memory may serve as a biomarker of response to a novel treatment in veterans with PTSD. Individuals with greater regional responsiveness benefited more from treatment that targeted cognitive dysfunction than treatment that did not include active cognitive training. Clinically, findings could inform our understanding of treatment mechanisms and may contribute to better personalization of treatment.
Iraq and Afghanistan Veterans with posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) history have high rates of performance validity test (PVT) failure. The study aimed to determine whether those with scores in the invalid versus valid range on PVTs show similar benefit from psychotherapy and if psychotherapy improves PVT performance.
Method:
Veterans (N = 100) with PTSD, mild-to-moderate TBI history, and cognitive complaints underwent neuropsychological testing at baseline, post-treatment, and 3-month post-treatment. Veterans were randomly assigned to cognitive processing therapy (CPT) or a novel hybrid intervention integrating CPT with TBI psychoeducation and cognitive rehabilitation strategies from Cognitive Symptom Management and Rehabilitation Therapy (CogSMART). Performance below standard cutoffs on any PVT trial across three different PVT measures was considered invalid (PVT-Fail), whereas performance above cutoffs on all measures was considered valid (PVT-Pass).
Results:
Although both PVT groups exhibited clinically significant improvement in PTSD symptoms, the PVT-Pass group demonstrated greater symptom reduction than the PVT-Fail group. Measures of post-concussive and depressive symptoms improved to a similar degree across groups. Treatment condition did not moderate these results. Rate of valid test performance increased from baseline to follow-up across conditions, with a stronger effect in the SMART-CPT compared to CPT condition.
Conclusion:
Both PVT groups experienced improved psychological symptoms following treatment. Veterans who failed PVTs at baseline demonstrated better test engagement following treatment, resulting in higher rates of valid PVTs at follow-up. Veterans with invalid PVTs should be enrolled in trauma-focused treatment and may benefit from neuropsychological assessment after, rather than before, treatment.