We report the failure mode observed in polymer EL blue device. Such modes were analyzed by non-destructive and destructive ways. As a non-destructive way, investigation of mobility changes of hole and electron, measuring transient EL corresponding to life curve, had been done. We also observed compositional and morphological variation using TEM-EDX, STM, FT-IR, TOF-SIMS and reverse engineering method as a destructive way. Electron mobility has a higher dependency on life curve, which fact could be reflected on the formation of insoluble layer inside emitting layer on anode side. And such insoluble layer showed relatively ordered surface morphology, and might be a cross-linked layer through C-O-C bond cleavage process while EL operation. But, contrary to sulfur migration mechanism into insoluble layer insisted by CDT, we did confirm no obvious difference of sulfur composition between insoluble and emitting layers. Rather, there's some degree of Ba diffusion into emitting layer from decomposition of BaF2, but, which dose not have a major effect on device degradation.