We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
New cryogenic characterization techniques for exploring the nanoscale structure and chemistry of intact solid–liquid interfaces have recently been developed. These techniques provide high-resolution information about buried interfaces from large samples or devices that cannot be obtained by other means. These advancements were enabled by the development of instrumentation for cryogenic focused ion beam liftout, which allows intact solid–liquid interfaces to be extracted from large samples and thinned to electron-transparent thicknesses for characterization by cryogenic scanning transmission electron microscopy or atom probe tomography. Future implementation of these techniques will complement current strides in imaging of materials in fluid environments by in situ liquid-phase electron microscopy, providing a more complete understanding of the morphology, surface chemistry, and dynamic processes that occur at solid–liquid interfaces.
The growth of epitaxial semiconductor nanostructures and films at low temperatures is important for semiconductor technology because it allows the possibility of monolithically integrating different high-performance single-crystalline semiconductor structures directly onto low cost technologically important substrates. At sufficiently low temperatures this can enable, for example, Si or Ge device fabrication on flexible substrates such as plastics. We have studied the reduced-temperature liquid-mediated growth of Ge nanostructures and films on crystalline template layers on non-single-crystalline substrates in a low-pressure chemical vapor deposition (LPCVD) system. The heteroepitaxial process is implemented by the Au seeded vapor-liquidsolid (VLS) catalytic growth technique with germane below 400 ºC. Crystalline template layers were prepared with ion-beam-assisted-deposition (IBAD) texturing and electron-beam evaporation on glass substrates. A thin layer of e-beam evaporated Au forms the catalyst layer, upon which we grew Ge films at 386 ºC. Scanning electron microscopy and x-ray diffraction results indicated that both Ge islands and nanowires grew heteroepitaxially on the crystalline template layers on glass substrates with good alignment over large areas.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.