We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given the aging population of people with HIV (PWH), along with increasing rates of binge drinking among both PWH and the general older adult population, this study examined the independent and interactive effects of HIV, binge drinking, and age on neurocognition.
Method:
Participants were 146 drinkers stratified by HIV and binge drinking status (i.e., ≥4 drinks for women and ≥5 drinks for men within approximately 2 h): HIV+/Binge+ (n = 30), HIV−/Binge+ (n = 23), HIV+/Binge− (n = 55), HIV−/Binge− (n = 38). All participants completed a comprehensive neuropsychological battery measuring demographically-corrected global and domain-specific neurocognitive T scores. ANCOVA models examined independent and interactive effects of HIV and binge drinking on neurocognitive outcomes, adjusting for overall alcohol consumption, lifetime substance use, sex, and age. Subsequent multiple linear regressions examined whether HIV/Binge group moderated the relationship between age and neurocognition.
Results:
HIV+/Binge+ participants had worse global neurocognition, processing speed, delayed recall, and working memory than HIV−/Binge− participants (p’s < .05). While there were significant main effects of HIV and binge drinking, their interaction did not predict any of those neurocognitive outcomes (p’s > .05). Significant interactions between age and HIV/Binge group showed that HIV+/Binge+ participants demonstrated steeper negative relationships between age and neurocognitive outcomes of learning, delayed recall, and motor skills compared to HIV−/Binge− participants (p’s < .05).
Conclusions:
Results showed adverse additive effects of HIV and binge drinking on neurocognitive functioning, with older adults demonstrating the most vulnerability to these effects. Findings support the need for interventions to reduce binge drinking, especially among older PWH.
Recent cannabis exposure has been associated with lower rates of neurocognitive impairment in people with HIV (PWH). Cannabis’s anti-inflammatory properties may underlie this relationship by reducing chronic neuroinflammation in PWH. This study examined relations between cannabis use and inflammatory biomarkers in cerebrospinal fluid (CSF) and plasma, and cognitive correlates of these biomarkers within a community-based sample of PWH.
Methods:
263 individuals were categorized into four groups: HIV− non-cannabis users (n = 65), HIV+ non-cannabis users (n = 105), HIV+ moderate cannabis users (n = 62), and HIV+ daily cannabis users (n = 31). Differences in pro-inflammatory biomarkers (IL-6, MCP-1/CCL2, IP-10/CXCL10, sCD14, sTNFR-II, TNF-α) by study group were determined by Kruskal–Wallis tests. Multivariable linear regressions examined relationships between biomarkers and seven cognitive domains, adjusting for age, sex/gender, race, education, and current CD4 count.
Results:
HIV+ daily cannabis users showed lower MCP-1 and IP-10 levels in CSF compared to HIV+ non-cannabis users (p = .015; p = .039) and were similar to HIV− non-cannabis users. Plasma biomarkers showed no differences by cannabis use. Among PWH, lower CSF MCP-1 and lower CSF IP-10 were associated with better learning performance (all ps < .05).
Conclusions:
Current daily cannabis use was associated with lower levels of pro-inflammatory chemokines implicated in HIV pathogenesis and these chemokines were linked to the cognitive domain of learning which is commonly impaired in PWH. Cannabinoid-related reductions of MCP-1 and IP-10, if confirmed, suggest a role for medicinal cannabis in the mitigation of persistent inflammation and cognitive impacts of HIV.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.