We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
India has introduced health technology assessment (HTA) as a tool for improving the allocation of health resources. The core mandate of HTA in India (HTAIn) is to undertake critical appraisal of available technologies, identify cost-effective interventions, and help the government pursue evidence-informed decisions regarding public health expenditures. We conducted a systematic review to assess economic evaluation studies published in the last four years from India.
Methods
Economic evaluations published from September 2015 to September 2019 were identified by searching various databases, including PubMed, Scopus, Embase, The Cochrane Library, and CINAHL according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline. Cost-effectiveness studies and HTAs reported or conducted in India were included. Two independent reviewers performed the final selection of studies by assessing the full-text articles and conducted the data extraction. Differences of opinions were resolved through discussion and mutual consensus.
Results
After screening 2,837 articles, seventy met the inclusion criteria and were selected. The articles predominantly used secondary data (70%) to evaluate the cost effectiveness of an innovation. Among the technologies assessed, fifty-seven percent were curative in nature and most commonly addressed infectious diseases (27%), closely followed by non-communicable diseases, and maternal and child health. Principally, the cost effectiveness of a technology was expressed in terms of disability-adjusted or quality-adjusted life-years. Only two studies reported negative findings.
Conclusions
HTA can play a pivotal role in equipping policy makers and public health payers to make appropriate decisions for healthcare budget allocations when mapped with the true disease burden of the population. It is important to highlight negative results and to create a national repository of HTA studies to facilitate faster adoption of best practices in India.
This study aimed to investigate the possible association between recurrent facial nerve palsy and migraines.
Method
This study was a prospective case series with a two-year follow-up at an academic, tertiary referral centre and included patients with at least four episodes of recurrent lower motor neuron facial nerve palsy. All patients underwent standardised diagnostic tests.
Results
Four patients fulfilled the inclusion criteria. The patients were all female with an average age at presentation of 40.75 years (range, 33–60 years) and an average age at the initial episode of 14 years (range, 12–16 years). The number of episodes varied between six and nine. All patients had at least one episode of facial nerve palsy on the contralateral side. Two patients were diagnosed and treated for migraine with aura remaining asymptomatic following prophylactic medication for migraines.
Conclusion
The results raise the possibility of an association between recurrent facial nerve palsy and migraines. Prospective studies in patients with even fewer episodes of facial nerve palsy could shed more light on this association.
There is little information on cervical screening attendance in the psychiatric population. 78.3% of the general population have been screened once in five years. Evidence suggests that women with mental illness are less likely to engage in recommended health screening programmes. Reasons for non-attendance include shame and embarrassment, lack of knowledge, fear of a positive result, beliefs that the procedure may cause cancer and a high rate of sexual abuse, rendering the procedure too traumatic.
Standard
Cervical screening in the UK- recommended every 3 years for women aged 25-49 and every 5 years for women aged 50-64. Expected standard 100%
Method
Cross-sectional survey of psychiatric inpatient sample, including ages 25-64, inpatient sample size 28. Questioned individuals about awareness of cervical screening programme, last/next screening date and cross-correlated with primary care records
Results
25 (90%) were aware of cervical screening programme. 20 (70%) claimed correspondence from their doctor and had accepted the screening. Further analysis of primary care records indicated only 8(36%) had actually had the screening, with 20 (64%) being non responders.
Conclusion
Women with mental illness are 50% less likely to attend a cervical screening programme, compared to general population. Level of education appears to be an important indicator of uptake, regardless of severity and duration of illness.
Recommendations
Further exploration of identifying barriers to accepting such important screening tests needs to be conducted in the psychiatric population and raising awareness of such screening should not only be the domain of primary care, but also mental health services.
OCD is a common disorder, affecting 1% of the population and usually responds to treatment with serotonin reuptake inhibitors (SRIs) or exposure and response prevention (ERP) and to augmentation with antipsychotics. However, some patients fail to respond. The national inpatient unit for obsessive compulsive disorder (OCD) and body dysmorphic disorder (BDD) (i) is the only 24-hour staffed inpatient facility for OCD in the UK and treats patients with profound, treatment-refractory OCD. There is evidence of efficacy of aripiprazole in augmenting SRI sin severe OCD (ii).
Objectives
To compare the efficacy of aripiprazole versus other antipsychotics as SRI augmentation.
Methods
One hundred and nine patients admitted to the unit between March 2006 and September 2011 and discharged on an antipsychotic and an SRI were included. The Yale-Brown obsessive compulsive scale (YBOCS) was administered at admission and at discharge. Data were analysed using SPSS version 23 using analysis of variance (ANOVA). Two groups were compared: those receiving SRI + aripiprazole versus those receiving SRI + another antipsychotic.
Results
sixty-two patients received SRI with aripiprazole and 47 SRIs with another antipsychotic. Overall, patients showed improvement, with an average YBOCS reduction of 11.7 (33% reduction). Patients taking aripiprazole improved by an average of 13 (36% reduction, P < 0.05).
Conclusions
Patients of the national unit with severe, treatment refractory OCD treated with aripiprazole augmentation showed a greater improvement than those on other antipsychotics. Further research into aripiprazole in OCD is warranted.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
The modification of fluid turbulence due to suspended particles is analysed using direct numerical simulations for the fluid turbulence and discrete particle simulations where the point-particle approximation is used for the particle force on the fluid. Two values of the Reynolds number based on the channel width
$h$
and the average gas velocity
$\bar{u}$
,
$(\unicode[STIX]{x1D70C}_{f}\bar{u}h/\unicode[STIX]{x1D702}_{f})=3300$
and 5600 are considered, where
$\unicode[STIX]{x1D70C}_{f}$
and
$\unicode[STIX]{x1D702}_{f}$
are the gas density and viscosity. The particle Reynolds number based on the root mean square of the difference in the particle and fluid velocities is in the range 4–15. The particle volume fraction is small, in the range
$0{-}3.5\times 10^{-3}$
, the mass loading is varied in the range 0–13.5 and the particle Stokes number (ratio of particle relaxation time and fluid integral time) is varied in the range 1–420. Multiple models for the force on the particles are examined, the Stokes drag law, the Schiller–Naumann correlation, a correction to determine the ‘undisturbed’ fluid velocity at the particle centre, the lift force and wall corrections. In all cases, as the particle volume fraction is systematically increased, there is a discontinuous decrease in the turbulence intensities at a critical volume fraction. The mean square velocities and the rate of production of turbulent energy decrease by 1–2 orders of magnitude when the volume fraction is increased by
$10^{-4}$
at the critical volume fraction. There is no compensatory increase in the particle fluctuating velocities or the energy dissipation rate due to the drag force on the particles, and there is a significant decrease in the total fluid energy dissipation rate at the critical volume fraction. This shows that the turbulence collapse is due to a catastrophic reduction in the turbulent energy production rate. This is contrary to the current understanding that turbulence attenuation is caused by the enhanced dissipation due to particle drag.
where $\unicode[STIX]{x1D6FA}$ is a smooth bounded domain in $\mathbb{R}^{N}$, $N\geq 2$. This work generalizes the well-known works on the Lyapunov inequality for extremal Pucci’s equations with gradient nonlinearity.
Chickpea is one of the most important nutritious grain legume crops in the world. There is limited information available on micro- and macro-nutrients in chickpea. Therefore, an effort was made to evaluate a set of 40 chickpea genotypes belonging to all the gene pools including cultivated (Cicer arietinum) as well as wild, Cicer reticulatum from the primary gene pool, Cicer echinospermum from the secondary gene pool and Cicer microphyllum from the tertiary gene pools. Concentration in the seed of the micro- (Zn, Fe, Cu and Mn) and macro-nutrients (Ca, Mg and K) was studied. Substantial variation was observed among different gene pools for the concentration of all the nutrients. The cultivated chickpea exhibited higher seed Cu, Mn, Mg and Ca than wilds indicating positive domestication effect, whereas wild crop relatives were found to have higher levels than cultivated chickpeas for seed Zn, Fe and K concentrations. While comparing desi-type chickpeas with Kabulis, it was revealed that desi types possessed more Zn, Cu, Ca and Mg than Kabulis but reverse was true for seed Fe, Mn and K. Among different desi types (desi brown, desi green and desi black), desi brown types were generally associated with higher mineral nutrient levels. The present study led to the identification of most promising genotypes for different seed micro- and macro-nutrients. These promising lines may serve as genetic resources useful in gene discovery programmes and for alleviating malnutrition or hidden hunger in the developing world.
The difference in the defect structures produced by different ion masses in a tungsten lattice is investigated using 80 MeV Au7+ ions and 10 MeV B3+ ions. The details of the defects produced by ions in recrystallized tungsten foil samples are studied using transmission electron microscopy. Dislocations of type b = 1/2[111] and [001] were observed in the analysis. While highly energetic gold ion produced small clusters of defects with very few dislocation lines, boron has produced large and sparse clusters with numerous dislocation lines. The difference in the defect structures could be due to the difference in separation between primary knock-on atoms produced by gold and boron ions.
Horizontal gene transfer (HGT) has played an important role in the evolution of nematodes. Among candidate genes, cyanase, which is typically found only in plants, bacteria and fungi, is present in more than 35 members of the Phylum Nematoda, but absent from free-living and clade V organisms. Phylogenetic analyses showed that the cyanases of clade I organisms Trichinella spp., Trichuris spp. and Soboliphyme baturini (Subclass: Dorylaimia) represent a well-supported monophyletic clade with plant cyanases. In contrast, all cyanases found within the Subclass Chromadoria which encompasses filarioids, ascaridoids and strongyloids are homologous to those of bacteria. Western blots exhibited typical multimeric forms of the native molecule in protein extracts of Trichinella spiralis muscle larvae, where immunohistochemical staining localized the protein to the worm hypodermis and underlying muscle. Recombinant Trichinella cyanase was bioactive where gene transcription profiles support functional activity in vivo. Results suggest that: (1) independent HGT in parasitic nematodes originated from different Kingdoms; (2) cyanase acquired an active role in the biology of extant Trichinella; (3) acquisition occurred more than 400 million years ago (MYA), prior to the divergence of the Trichinellida and Dioctophymatida, and (4) early, free-living ancestors of the genus Trichinella had an association with terrestrial plants.
Magnetic tunnel junction can produce highly configurable molecular spintronics devices. This paper highlights a rather subtle attribute of magnetic tunnel junction fabrication that can lead to the very pronounced impact on magnetic properties of molecular spintronics device. We conducted magnetic studies to observe the effect of depositing ~5 nm Tantalum (Ta) on the top of a magnetic tunnel junction. We investigated the effect of Ta by using characterization techniques like ferromagnetic resonance, magnetometry, and polarized neutron reflectometry. Bridging paramagnetic molecules between the two ferromagnetic electrodes of magnetic tunnel junctions with and without Ta top layer produced the very different magnetic response.
Agriculture in the Central Himalayan Region depends on the availability of suitable germplasm as well as natural conditions. Due to extreme weather conditions, food and nutrition security is a major issue for communities inhabiting these remote and inaccessible areas. Millets are common crops grown in these areas. Foxtail millet (Setaria italica (L.) P. Beauv) is an important crop and forms a considerable part of the diet in this region. The aim of the present study was to explore, collect, conserve and evaluate the untapped genetic diversity of foxtail millet at the molecular level and discover variability in their nutritional traits. A total of 30 accessions having unique traits of agronomic importance were collected and molecular profiling was performed. A total of 63 alleles were generated with an average of 2.52 alleles per locus and average expected heterozygosity of 0.37 ± 0.231. Significant genetic variability was revealed through the genetic differentiation (Fst) and gene flow (Nm) values. Structure-based analysis divided whole germplasm into three sub-groups. Rich variability was found in nutritional traits such as dietary fibre in husked grains, carbohydrate, protein, lysine and thiamine content. The collected germplasm may be useful for developing nutritionally rich and agronomically beneficial varieties of foxtail millet and also designing strategies for utilization of unexploited genetic diversity for food and nutrition security in this and other similar agro-ecological regions.
The present study aimed to evaluate growth performance and meat quality of broiler chicken with respect to feeding of 100 g flaxseed meal (FM)/kg and increasing lysine levels in the broiler diet. The results revealed no effect of lysine and FM feeding on growth performance except for a negative effect of FM on feed efficiency of birds, which was countered by feeding 1.25 BIS lysine. Feeding FM improved the fatty acid profile of broiler chicken meat significantly, whereas no effect was observed for increasing lysine levels beyond BIS recommendation. FM significantly reduced meat cholesterol, fat, water-holding capacity (WHC), extract release volume (ERV) and antioxidant potential, whereas it increased the pH of fresh meat, drip loss and lipid peroxidation of broiler chicken meat. As compared with other lysine levels, generally 1.25 BIS lysine significantly increased the pH of refrigerated stored meat, WHC, ERV and antioxidant potential, whereas it significantly reduced cholesterol, fat, drip loss and lipid peroxidation of broiler chicken meat. Thus, the inclusion of 100 g FM/kg diet along with 1.25 BIS lysine in broiler ration was optimum for desirable broiler performance, fatty acid profile, oxidative stability and other functional properties of broiler chicken meat.
The mountain ecosystem of the Central Himalayan Region is known for its diversity of crops and their wild relatives. In spite of adverse climatic conditions, this region is endowed with a rich diversity of millets. Hence, the aim of the present study was to explore, collect, conserve and evaluate the diversity of barnyard millet (Echinochloa frumentacea) to find out the extent of diversity available in different traits and the traits responsible for abiotic stress tolerance, and to identify trait-specific accessions for crop improvement and also for the cultivation of millets in the region as well as in other similar agro-ecological regions. A total of 178 accessions were collected and evaluated for a range of morpho-physiological and biochemical traits. Significant variability was noted in days to 50% flowering, days to 80% maturity, 1000 seed weight and yield potential of the germplasm. These traits are considered to be crucial for tailoring new varieties for different agro-climatic conditions. Variations in biochemical traits such as lipid peroxidation (0·552–7·421 nmol malondialdehyde formed/mg protein/h), total glutathione (105·270–423·630 mmol/g fresh weight) and total ascorbate (4·980–9·880 mmol/g fresh weight) content indicate the potential of collected germplasm for abiotic stress tolerance. Principal component analysis also indicated that yield, superoxide dismutase activity, plant height, days to 50% flowering, catalase activity and glutathione content are suitable traits for screening large populations of millet and selection of suitable germplasm for crop improvement and cultivation. Trait-specific accessions identified in the present study could be useful in crop improvement programmes, climate-resilient agriculture and improving food security in areas with limited resources.
The occurrence of pesticidal pollution in the environment and the resistance in the mosquito species makes an urge for the safer and an effective pesticide. Permethrin, a poorly water-soluble pyrethroid pesticide, was formulated into a hydrodispersible nanopowder through rapid solvent evaporation of pesticide-loaded oil in water microemulsion. Stability studies confirmed that the nanopermethrin dispersion was stable in paddy field water for 5 days with the mean particle sizes of 175.3 ± 0.75 nm and zeta potential of −30.6 ± 0.62 mV. The instability rate of the nanopermethrin particles was greater in alkaline (pH 10) medium when compared with the neutral (pH 7) and acidic (pH 4) dispersion medium. The colloidal dispersion at 45°C was found to be less stable compared with the dispersions at 25 and 5°C. The 12- and 24-h lethal indices (LC50) for nanopermethrin were found to be 0.057 and 0.014 mg l−1, respectively. These results were corroborative with the severity of damages observed in the mosquito larvae manifested in epithelial cells and the evacuation of the midgut contents. Further, the results were substantiated by the decrease in cellular biomolecules and biomarker enzyme activity in nanopermethrin treated larvae when compared to bulk and control treatment.
Photolithographically patterned thin films often possess unwanted spikes along the side edges. These spikes are a significant issue for the development of spinvalve memory, tunnel junction based molecular devices, and micro-electromechanical systems. Here, we report a very simple, economical, and fast way of creating an optimum photoresist profile for the production of spike-free patterned films. This approach is based on performing a soaking step in the positive-photoresist’s developer solution before the UV exposure. However, the success of this method depends on multiple photolithography factors: photoresist thickness (governed by spin speed), soft baking temperature, soaking time in developer, and exposure time. In this paper, we report our systematic experiments to study the effect of these factors by following the L9 experimental scheme of the Taguchi Design of experiment (TDOE) approach. The L9 experiment scheme effectively accommodated the study of four photolithography factors, each with three levels. After performing photolithography as per L9 TDOE scheme, we sputter deposited 20 nm Tantalum to check the side edge profile of the patterned film by atomic force microscope (AFM). We measured the heights of the spikes along the thin film edges. We utilized spike height as the desired property and chose “smaller the better” criteria for the TDOE analysis. TDOE enabled us to understand the relative importance of the parameters, relationship among the parameters, and impact of the various levels of the parameters on the thin film edge profile. TDOE analysis yielded an optimum combination of levels for the four photolithography factors. The optimum combination of photolithography factors included spin speed 4000 rpm, 100 °C soft baking temperature, 60 sec pre-soaking in the developer solution, and 15 sec UV exposure. We validated the TDOE by AFM and observed spike free patterned films. We also made complete tunnel junction devices by utilizing the optimized photolithography factors for the bottom electrode and obtained excellent tunneling behavior. In summary, this study provides a very simple, economical, and fast photolithography approach for creating optimum photoresist profile for the micro-nano scale devices and electromechanical structures.
Interaction of GaAs with sulfur can be immensely beneficial in reducing the deleterious effect of surface states on recombination attributes. Bonding of sulfur on GaAs is also important for developing novel molecular devices and sensors, where a molecular channel can be connected to GaAs surface via thiol functional group. However, the primary challenge lies in increasing the stability and effectiveness of the sulfur passivated GaAs. We have investigated the effect of single and double step surface passivation of n-GaAs(100) by using the sulfide and fluoride ions. Our single-step passivation involved the use of sulfide and fluoride ions individually. However, the two kinds of double-step passivations were performed by treating the n-GaAs surface. In the first approach GaAs surface was firstly treated with sulfide ions and secondly with fluoride ions, respectively. In the second double step approach GaAs surface was first treated with fluoride ions followed by sulfide ions, respectively. Sulfidation was conducted using the nonaqueous solution of sodium sulfide salt. Whereas the passivation steps with fluoride ion was performed with the aqueous solution of ammonium fluoride. Both sulfidation and fluoridation steps were performed either by dipping the GaAs sample in the desired ionic solution or electrochemically. Photoluminescence was conducted to characterize the relative changes in surface recombination velocity due to the single and double step surface passivation. Photoluminescence study showed that the double-step chemical treatment where GaAs was first treated with fluoride ions followed by the sulfide ions yielded the highest improvement. The time vs. photoluminescence study showed that this double-step passivation exhibited lower degradation rate as compared to widely discussed sulfide ion passivated GaAs surface. We also conducted surface elemental analysis using Rutherford Back Scattering to decipher the near surface chemical changes due to the four passivation methodologies we adopted. The double-step passivations affected the shallower region near GaAs surface as compared to the single step passivations.
We carried out a cross-sectional study to assess cognitive function in a sample of adult CHD patients, within the Functioning in Adult Congenital Heart Disease study London. The association between cognitive functioning and disease complexity was examined.
Methods
A total of 310 patients participated in this study. Patients were classified into four structural complexity groups – tetralogy of Fallot, transposition of the great arteries, single ventricle, and simple conditions. Each patient underwent neuropsychological assessment to evaluate cognitive function, including memory and executive function, and completed questionnaires to assess depression and anxiety.
Results
Among all, 41% of the sample showed impaired performance (>1.5 SD below the normative mean) on at least three tests of cognitive function compared with established normative data. This was higher than the 8% that was expected in a normal population. The sample exhibited significant deficits in divided attention, motor function, and executive functioning. There was a significant group difference in divided attention (F=5.01, p=0.002) and the mean total composite score (F=5.19, p=0.002) between different structural complexity groups, with the simple group displaying better cognitive function.
Conclusion
The results indicate that many adult CHD patients display impaired cognitive function relative to a healthy population, which differs in relation to disease complexity. These findings may have implications for clinical decision making in this group of patients during childhood. Possible mechanisms underlying these deficits and how they may be reduced or prevented are discussed; however, further work is needed to draw conclusive judgements.
Understanding spatial and temporal neuronal activities is crucial for finding the
cure for brain related ailments and advancement of our knowledge about the brain
itself. This paper discusses our recent finding of the patternable rough
textured gold microwire for neurochemical sensing. We have successfully
fabricated the ∼5 µm wide and ∼ 60 nm thick gold
microwires based electrochemical sensor. We produced these microwires along the
edge of lithographically patterned nickel thin film. A nickel thin film edge was
shadowed by the photoresist overhang during electrochemical growth only to allow
gold deposition along the edges. Our electrochemical growth conditions yielded
very rough textured sensor. Rough textured biosensors are highly desirable for
increasing surface/volume ratio for efficient electrochemical sensing. These
rough-textured microwires were transformed into the functional neurochemical
sensor to detect dopamine. Our voltammetry and chronoamperometry studies on
rough textured microwires based sensor confirmed the successful detection of
dopamine.
We have studied the diffusion mechanism of lithium ions in glassy oxide-based solid state electrolytes using elastic and quasielastic neutron scattering. Samples of xLi2SO4-(1-x)(Li2O-P2O5) were prepared using conventional melt techniques. Elastic and inelastic scattering measurements were performed using the triple-axis spectrometer (TRIAX) at Missouri University Research Reactor at University of Missouri and High Flux Backscattering Spectrometer (HFBS) at NIST Center for Neutron Research, respectively. These compounds have a base glass compound of P2O5 which is modified with Li2O. Addition of Li2SO4 leads to the modification of the structure and to an increase lithium ion (Li+) conduction. We find that an increase of Li2SO4 in the compounds leads to an increase in the Lorentzian width of the fit for the quasielastic data, which corresponds to an increase in Li+ diffusion until an over-saturation point is reached (< 60% Li2SO4). We find that the hopping mechanism is best described by the vacancy mediated Chudley-Elliot model. A fundamental understanding of the diffusion process for these glassy compounds can help lead to the development of a highly efficient solid electrolyte and improve the viability of clean energy technologies.