Skip to main content Accessibility help
×
Home

Modeling and characterization of PCB coils for inductive wireless charging

  • Brian Curran (a1), Uwe Maaß (a1), Gerhard Fotheringham (a2), Nobby Stevens (a3), Ivan Ndip (a2) and Klaus-Dieter Lang (a1) (a2)...

Abstract

Wireless charging is emerging as a viable technology in many industries, including consumer, medical, and sensor electronics. An investigation of design principles is conducted for a wireless charging platform that is designed to charge devices of different sizes and technologies, using only through vias. It is shown that at a 5 mm separation distance, a coupling coefficient can be achieved which varies from 0.12 to 0.37 when staggered hexagonal transmitter coils (approximately 5 cm across) are used with an unstaggered square receiver coil, which declines to 0.06–0.11 at 2 cm separation. Without design measures, the coupling coefficient will approach zero at certain positions. The quality factors of the coils can be improved by stacking the coils in parallel, enabling the use of only through-vias, while the inductance can be controlled horizontally by increasing the number of turns in the inductor.

Copyright

Corresponding author

Corresponding author: B. Curran Email: brian.curran@izm.fraunhofer.de

References

Hide All
[1] Hou, P.; Jia, M.-J.; Feng, L.; Mao, Y.; Cheng, Y.-H.: An analysis of wireless power transmission based on magnetic resonance for endoscopic devices, in 2011 Fifth Int. Conf. on Bioinformatics and Biomedical Engineering (iCBBE), 2011, 13.
[2] Scheible, G.; Schutz, J.; Apneseth, C.: Novel wireless power supply system for wireless communication devices in industrial automation systems, in 2002 IEEE 28th Annual Conf. of the Industrial Electronics Society (IECON 02), vol. 2, 2002, 13581363.
[3] Waffenschmidt, E.; Staring, T.: Limitation of inductive power transfer for consumer applications, in 13th European Conf. Power Electronics and Applications, 2009 (EPE ’09), 2009, 110.
[4] Mahomed, S.; Hofsajer, I.W.; Cronje, W.A.; Odendaal, W.G.; Holm, S.R.: An experimental evaluation of losses in planar Litz structures, In Seventh AFRICON Conf. in Africa (AFRICON, 2004), vol. 2, 2004, 11131117.
[5] Sullivan, C.R.: Optimal choice for number of strands in a litz-wire transformer winding. IEEE Trans. Power Electron., 14 (2) (1999), 283291.
[6] Choi, B.; Nho, J.; Cha, H.; Ahn, T.; Choi, B.: Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device. IEEE Trans. Ind. Electron., 51 (1) (2004), 140147.
[7] Jow, U.-M.; Ghovanloo, M.: Design and optimization of printed spiral coils for efficient inductive power transmission, in 14th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS 20072007), 2007, 7073.
[8] Yu, X.; Herrault, F.; Ji, C.-H.; Kim, S.-H.; Allen, M.G.; Lisi, G. et al. : Watt-level wireless power transfer based on stacked flex circuit technology, in 2011 IEEE 61st Electronic Components and Technology Conf. (ECTC), 2011, 21852191.
[9] Lin, K.-C.; Chiou, H.-K.; Wu, P.-C.; Chen, W.-H.; Ko, C.-L.; Juang, Y.-Z.: 2.4-GHz complementary metal oxide semiconductor power amplifier using high-quality factor wafer-level bondwire spiral inductor. IEEE Trans. Compon. Packag. Manuf., Technol., 3 (8) (2013), 12861292.
[10] Casanova, J.J.; Low, Z.N.; Lin, J.; Tseng, R.: Transmitting coil achieving uniform magnetic field distribution for planar wireless power transfer system, in IEEE Radio and Wireless Symp., 2009 (RWS ’09), 2009, 530533.
[11] Waffenschmidt, E.: Free positioning for inductive wireless power system, in 2011 IEEE Energy Conversion Congress and Exposition (ECCE), 2011, 34803487.
[12] Matsumoto, H.; Neba, Y.; Ishizaka, K.; Itoh, R.: Model for a three-phase contactless power transfer system. IEEE Trans. Power Electron., 26 (9) (2011), 26762687.
[13] Yinliang, D.; Yuanmao, S.; Yougang, G.: Design of coil structure achieving uniform magnetic field distribution for wireless charging platform, in 2011 Fourth Int. Conf. on Power Electronics Systems and Applications (PESA), 2011, 15.
[14] Ahn, S.; Park, H.H.; Choi, C.-S.; Kim, J.; Song, E.; Park, H.B. et al. : Reduction of electromagnetic field (EMF) of wireless power transfer system using quadruple coil for laptop applications; in 2012 IEEE MTT-S Int. Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), 2012, 6568.
[15] Ma, H.; Ma, L.: An improved multi-layer PCB winding and circuit design for universal contactless charging platform; in 36th Annual Conf. IEEE Industrial Electronics Society (IECON 2010), 2010, 17631768.
[16] Sun, J.-S.; Teng, H.-C.; Li, T.-L.; Pan, G.-P.; Design of a contactless charging platform, in 2012 IEEE Int. Conf. on Wireless Information Technology and Systems (ICWITS), 2012, 14.
[17] Shen, H.-Y.; Lee, J.-Y.; Chang, T.-W.: Study of contactless inductive charging platform with core array structure for portable products, in 2011 Int. Conf. on Consumer Electronics, Communications and Networks (CECNet), 2011, 756759.
[18] Zhong, W.X.; Liu, X.; Hui, S.Y.R.: A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features. IEEE Trans. Ind. Eelectron. 58 (9) (2011), 41364144.
[19] Jow, U.-M.; Ghovanloo, M.: Geometrical design of a scalable overlapping planar spiral coil array to generate a homogeneous magnetic field. IEEE Trans. Magn. 49 (6) Part: 2 (2013), 29332945.
[20] Liu, X.; Hui, S.Y.R.; Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform, in IEEE 20th Annual Applied Power Electronics Conf. and Exposition, 2005 (APEC 2005), vol. 2, 2005, 13661372.
[21] Liu, X.; Chan, P.W.; Hui, S.Y.R.: Finite element simulation of a universal contactless battery charging platform, in 20th Annual IEEE Applied Power Electronics Conf. and Exposition, 2005 (APEC 2005), vol. 3, 2005, 19271932.
[22] Liu, X.; Hui, S.Y.R.: Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features. IEEE Trans. Power Electron., 22 (6) (2007), 22022210.
[23] Hui, S.Y.R.; Ho, W.W.C.: A new generation of universal contactless battery charging platform for portable consumer electronic equipment. IEEE Trans. Power Electron. 20 (3) (2005), 620627.
[24] Shamonina, E.; Kalinin, V.; Ringhofer, K.; Solymar, L.: Magneto-inductive waveguide, Electron. Lett., 38 (2002), 371373.
[25] Stevens, C.: Magnetoinductive waves and wireless power transfer. IEEE Trans. Power Electron., 30 (2015), 61826190.
[26] Puccetti, G.; Reggiani, U.; Sandrolini, L.: Experimental analysis of wireless power transmission with spiral resonators. Energies, 6 (11) (2013), 58875896.
[27] Puccetti, G.; Stevens, C.J.; Reggiani, U.; Sandrolini, L.: Experimental and numerical investigation of termination impedance effects in wireless power transfer via metamaterial. Energies, 8 (3) (2015), 18821895.
[28] van Schuylenbergh, K.: Inductive Powering: Basic Theory and Applications to Biomedical Systems, Springer, 2009.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed