Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T20:40:38.407Z Has data issue: false hasContentIssue false

Yellow Nutsedge (Cyperus esculentus) Control and Tomato Response to Application Methods of Drip-Applied Herbicides in Polyethylene-Mulched Tomato

Published online by Cambridge University Press:  20 January 2017

Tyler A. Monday*
Affiliation:
Department of Horticulture, Auburn University, Auburn AL 36849
Wheeler G. Foshee III
Affiliation:
Department of Horticulture, Auburn University, Auburn AL 36849
Eugene K. Blythe
Affiliation:
Coastal Research and Extension Center, Mississippi State University, South Mississippi Branch Experiment Station, Poplarville, MS 39470
Glenn R. Wehtje
Affiliation:
Department of Agronomy and Soils, Auburn University, Auburn, AL 36849
Charles H. Gilliam
Affiliation:
Department of Horticulture, Auburn University, Auburn AL 36849
*
Corresponding author's E-mail: mondata@auburn.edu.

Abstract

Drip-applied herbicides provide farmers with a more timely and cost-effective approach for applying PRE herbicides; however, herbicide movement is often limited. Field studies were conducted evaluating drip-application methods for applying PRE herbicides under polyethylene-mulched beds on yellow nutsedge punctures and the corresponding responses of a tomato crop (height and yield). The experiment was a factorial treatment arrangement of three drip application methods and three PRE-applied herbicides [halosulfuron (54 g ai ha−1), S-metolachlor (1.4 kg ha−1), and fomesafen (280 g ha−1)]. Herbicides were applied either immediately following saturation of the planting beds (method A), over an extended period while saturating the beds (method B), or prior to bed saturation (method C). Additional treatments included a commercial standard (S-metolachlor sprayed to the bed surface prior to mulch application) and a nontreated control (polyethylene mulch only). Drip-applied fomesafen, halosulfuron, and S-metolachlor provided similar control of yellow nutsedge, produced comparable yields, and failed to elicit any negative growth responses when compared to our commercial standard. With the exception of nutsedge punctures counted 56 DAT, application method did not influenced measurable outcomes. At 56 DAT nutsedge punctures were significantly lower in treatments applied by method B compared to those applied with method A.

Los herbicidas aplicados en sistemas de riego por goteo brindan a los productores un sistema más barato y flexible para la aplicación de herbicidas PRE en diferentes momentos. Sin embargo, el movimiento del herbicida es a menudo limitado. Se realizaron estudios de campo para evaluar métodos de aplicación de herbicidas por goteo para aplicar herbicidas PRE bajo camas con coberturas de polyethylene para el control de la perforación causada por Cyperus esculentus y la correspondiente respuesta del cultivo de tomate (altura y rendimiento). El experimento fue un arreglo factorial de tratamientos de tres métodos de aplicación por goteo y tres herbicidas aplicados PRE [halosulfuron (54 g ai ha−1), S-metolachlor (1.4 kg ha−1), y fomesafen (280 g ha−1)]. Los herbicidas fueron aplicados ya fuera inmediatamente después de saturar las camas de siembra (método A), a lo largo de un período extendido durante la saturación de las camas (método B), o antes de la saturación de las camas (método C). Tratamientos adicionales incluyeron un estándar comercial (S-metolachlor asperjado sobre la cama de siembra antes de la colocación de la cobertura) y un testigo sin tratamiento (solamente cobertura de polyethylene). Fomesafen, halosulfuron, y S-metolachlor aplicados por goteo brindaron un control similar de C. esculentus, produjeron rendimientos comparables, y no generaron respuestas negativas en el crecimiento del cultivo cuando se compararon con nuestro estándar comercial. Con la excepción del número de perforaciones causadas por C. esculentus contadas 56 DAT, el método de aplicación no influenció ninguna de los factores medidos. A 56 DAT, las perforaciones de C. esculentus fueron significativamente menores en tratamientos aplicados con el método B al compararse con los del método A.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adcock, CW (2007) Combinations of Selected Sulfonylurea Herbicides with S-metolachlor for Nutsedge Control in Tomatoes. . Auburn, AL: Auburn University.Google Scholar
Adcock, CW, Foshee, WG III, Wehtje, GR, Gilliam, CH (2008) Herbicide combinations in tomato to prevent nutsedge (Cyperus esculentus) punctures in plastic mulch for multi-cropping systems. Weed Technol 22:136141 Google Scholar
Anonymous (2011) Dual Magnum® herbicide label. Greensboro, NC: Syngenta Crop Protection. 50 pGoogle Scholar
Anonymous (2012) Sandea® herbicide product label. Yuma, AZ: Gowan Company. 9 pGoogle Scholar
Anonymous (2013) Reflex® herbicide label. Greensboro, NC: Syngenta Crop Protection. 28 pGoogle Scholar
Blum, RR, Isgrigg, J, Yelverton, FH (2000) Purple (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) control in bermudagrass (Cynodon dactylon) turf. Weed Technol 14:357365 CrossRefGoogle Scholar
Candole, BL, Csinos, AS, Wang, D (2007) Concentrations in soil and efficacy of drip-applied 1,3-D + chloropicrin and metam sodium in plastic-mulched sandy soil beds. Crop Prot 26:18011809 Google Scholar
Chase, CA, Stall, WM, Simmone, EH, Hochmuth, RC, Dukes, MD, Weiss, AW (2006) Nutsedge control with drip-applied 1, 3-dichloropropene plus chloropicrin in a sandy soil. HortTechnology 16:641648 CrossRefGoogle Scholar
Csinos, AS, Laska, JE, Childers, S (2002) Dye injection for predicting pesticide movement in micro-irrigated polyethylene film mulch beds. Pest Manage Sci 58:381384 Google Scholar
Culpepper, AS, Grey, TL, Webster, TM (2009) Vegetable response to herbicides applied to low-density polyethylene mulch prior to transplant. Weed Technol 23:444449 Google Scholar
Derr, JF, Chandran, RS, Ward, WD (1996) Preemergence and postemergence yellow nutsedge (Cyperus esculentus) control with MON12000 in nursery crops. Weed Technol 10:9599 Google Scholar
Dittmar, PJ (2013) Weed control strategies in tomato. University of Florida Tomato Institute Proc. 24. pGoogle Scholar
Dittmar, PJ, Monks, DW, Jennings, KM (2012a) Effect of drip-applied herbicides on yellow nutsedge (Cyperus esculentus) in plasticulture. Weed Technol 26:243247 Google Scholar
Dittmar, PJ, Monks, DW, Jennings, KM, Booker, FL (2012b) Tolerance of tomato to herbicides applied through drip irrigation. Weed Technol 26:684690 Google Scholar
Fennimore, SA, Haar, MJ, Ajwa, HA (2003) Weed control in strawberry provided by shank- and drip-applied methyl bromide alternative fumigants. HortScience 38:5561 Google Scholar
Gilreath, JP, Santos, BM (2004) Efficacy of methyl bromide alternatives on purple nutsedge control (Cyperus rotundus) in tomatoes and peppers. Weed Technol 18:141145 Google Scholar
Johnson, WC III, Mullinax, BG Jr. (2008) Cultural control of yellow nutsedge (Cyperus esculentus) in transplanted cantaloupe (Cucumis melo) by varying application timing and type of thin-filmed mulches. Crop Prot 27:735739 Google Scholar
Kemble, JM, ed (2013) Vegetable Crop Handbook for Southeastern US—2013. Lincolnshire, IL: Vance Publishing. Pp 99102 Google Scholar
Locascio, SJ, Gilreath, RJ, Dickson, DW, Kucharek, TA, Jones, JP, Noling, JW (1997) Fumigant alternatives of methyl bromide for polyethylene mulched tomato. HortScience 32:12081211 Google Scholar
Lollar, MC (2010) Combinations of Selected Sulfonylurea Herbicides and Diazinon for Yellow Nutsedge Control in Tomatoes. . Auburn, AL: Auburn University Google Scholar
McCraw, D, Motes, JE (2000) Use of plastic mulch and row covers in vegetable production. Stillwater, OK: Oklahoma State University, Oklahoma Cooperative Extension Service HLA-6034Google Scholar
Morales-Payan, JP, Stall, WM, Shilling, DG, Charudattan, RC, Dusky, JA, Bewick, TA (2003) Above- and belowground interference of purple and yellow nutsedge (Cyperus spp.) with tomato. Weed Sci 51:181185 CrossRefGoogle Scholar
Santos, BM, Gilreath, JP, Lugo, ML, Rivera, LE (2008) Managing weeds with drip-applied herbicides in tomato. Crop Prot 27:101103 CrossRefGoogle Scholar
Senseman, SA, ed (2007) Herbicide handbook, 9th edn. Champaign, IL: Weed Science Society of America. Pp 77, 207, 276Google Scholar
Thomas, JG, Pennington, DA, Schmidt, AM, Pringle, L (2003) Chemigation. Mississippi State, MS: Mississippi State Extension Service Publication 1551Google Scholar
[USDA] U.S. Department of Agriculture (1991) United States Standards for Grades of Fresh Tomatoes. http://www.ams.usda.gov/AMSv1.0/getfile?dDoName=STELPRDC5050331. Accessed October 15, 2013Google Scholar
Wang, X, Zhu, H, Reding, ME, Locke, JC, Leland, JE, Derksen, RC, Spongberg, AL, Krause, CR (2009) Delivery of chemical and microbial pesticides through drip irrigation systems. Appl Eng Agric 25:883893 Google Scholar
Webster, TM (2003) Nutsedge (Cyperus spp.) eradication: impossible dream?. Pages 2125 in Riley, L.E., Dumroese, R. K. and Landis, T. D., eds. National Proceedings: Forest and Conservatory Nursery Associations—2002. Ogden, UT. Proceedings RMRS-P-28Google Scholar
Webster, TM (2005) Patch expansion of purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) with and without polyethylene mulch. Weed Sci 53:839845 Google Scholar
Webster, TM (2010) Weed survey—southern states: vegetable, fruit, and nut crops subsection. Proc South Weed Sci Soc 63:246253 Google Scholar