Skip to main content Accessibility help
×
Home

Trumpetcreeper (Campsis radicans) Control in Double-Crop Glyphosate-Resistant Soybean with Glyphosate and Conventional Herbicide Systems

  • Kevin W. Bradley (a1), Edward S. Hagood (a1) and Paul H. Davis (a1)

Abstract

Field trials were conducted in Virginia to evaluate trumpetcreeper control with glyphosate and conventional herbicide systems in double-crop glyphosate-resistant soybean. When compared with the untreated control, none of the conventional herbicide systems evaluated in these trials provided any reductions in the trumpetcreeper stem density at 1 yr after treatment (YAT). Glyphosate systems generally provided much higher levels of trumpetcreeper stem reduction than conventional herbicide systems. By 1 YAT, densities of trumpetcreeper that received conventional herbicide treatments ranged from 97 to 141% of the initial population, whereas densities of trumpetcreeper that received preemergence (PRE) followed by postemergence (POST) or POST-only applications of the isopropylamine (IPA) or diammonium (DIA) salts of glyphosate ranged from 30 to 66% of the initial population. However, PRE applications of the IPA or DIA salts of glyphosate generally provided lower levels of trumpetcreeper stem reduction than PRE followed by POST or POST-only applications. These results indicate that glyphosate applications made later in the growing season will provide greater trumpetcreeper stem reductions than those made at or close to soybean planting in double-crop soybean production systems. Glyphosate systems did not provide higher soybean yields than the untreated control that contained trumpetcreeper only when densities averaged 6 trumpetcreeper stems/m2 in 2000, but 12 of the 16 glyphosate-containing treatments provided higher soybean yields than the untreated control that contained trumpetcreeper only when densities averaged 13 stems/m2 in 2001.

Copyright

Corresponding author

Corresponding author's E-mail: bradleyke@missouri.edu

Footnotes

Hide All
Current address: 206A Waters Hall, Department of Agronomy, University of Missouri, Columbia, MO 65211

Footnotes

References

Hide All
Anonymous. 1970. Common Weeds of the United States. Agricultural Research Service. United States Department of Agriculture. New York: Dover. Pp. 342343.
Bertin, R. I. 1982a. Paternity and fruit production in trumpet creeper (Campsis radicans). Am. Nat. 119:694709.
Bertin, R. I. 1982b. Floral biology, hummingbird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniaceae). Am. J. Bot. 69:122134.
Bloodworth, K. M., Reynolds, D. B., and Barber, L. T. 2002. Evaluation of glyphosate formulations for efficacy and crop tolerance in roundup ready corn and cotton. Proc. South. Weed Sci. Soc. 55:1.
Buhler, D. D. 1995. Influence of tillage systems on weed population dynamics and management in corn and soybean in the central USA. Crop Sci. 35:12471258.
Buhler, D. D., Stoltenberg, D. E., Becker, R. L., and Gunsolus, J. L. 1994. Perennial weed populations after 14 years of variable tillage and cropping practices. Weed Sci. 42:205209.
Chachalis, D. and Reddy, K. N. 2000. Factors affecting Campsis radicans seed germination and seedling emergence. Weed Sci. 48:212216.
Chachalis, D., Reddy, K. N., and Elmore, C. D. 2001. Characterization of leaf surface, wax composition, and control of redvine and trumpetcreeper with glyphosate. Weed Sci. 49:156163.
[CTIC] Conservation Technology Information Center. 2002. West Lafayette, IN. Web page: http://www.ctic.purdue.edu/CTIC/. Accessed: September 15, 2002.
Darwent, L. A., Kirkland, K. J., Baig, M. N., and Lefkovitch, L. P. 1994. Preharvest applications of glyphosate for Canada thistle (Cirsium arvense) control. Weed Technol. 8:477482.
DeFelice, M. S. and Oliver, L. R. 1980. Redvine and trumpetcreeper control in soybeans and grain sorghum. Ark. Farm Res. 29:5.
Etheridge, R. E. and Mueller, T. C. 1998. Roundup Ultra effects on perennial weeds. Proc. South. Weed Sci. Soc. 51:10.
Froud-Williams, R. J. 1988. Changes in weed flora with different tillage and agronomic management systems. in Altieri, M. A. and Liebman, M., eds. Weed Management in Agroecosystems: Ecological Approaches. Boca Raton, FL: CRC. Pp. 213236.
Froud-Williams, R. J., Chancellor, R. J., and Drennan, D. S. H. 1981. Potential changes in weed floras associated with reduced-cultivation systems for cereal production in temperate regions. Weed Res. 21:99109.
Hume, L., Tessier, S., and Dyck, F. B. 1991. Tillage and rotation influences on weed community composition in wheat (Triticum aestivum L.) in southwestern Saskatchewan. Can. J. Plant Sci. 71:783789.
Padgette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. E., Delannay, X., Fuchs, R. L., Kishore, G. M., and Fraley, R. T. 1996. New weed control opportunities: development of soybeans with a roundup ready™ gene. in Duke, S. O., ed. Herbicide Resistant Crops: Agricultural Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL: CRC and Lewis. Pp. 5384.
Richardson, R. J., Bailey, W. A., Armel, G. R., Whaley, C. M., Wilson, H. P., and Hines, T. E. 2003. Responses of selected weeds and glyphosate-resistant cotton and soybean to two glyphosate salts. Weed Technol. 17:560564.
[SAS] Statistical Analysis Systems. 1989. SAS User's Guide. Cary, NC: Statistical Analysis Systems Institute. 956 p.
Satchivi, N. M., Wax, L. M., Stoller, E. W., and Briskin, D. P. 2000. Absorption and translocation of glyphosate isopropylamine and trimethylsulfonium salts in Abutilon theophrasti and Setaria faberi . Weed Sci. 48:675679.
Swanton, C. J., Clements, D. R., and Derksen, D. A. 1993. Weed succession under conservation tillage: a hierarchical framework for research and management. Weed Technol. 7:286297.
Triplett, G. B. Jr. 1985. Principles of weed control for reduced-tillage corn production. in Wiese, A. F., ed. Weed Control in Limited Tillage Systems. Champaign, IL: Weed Science Society of America. Pp. 2640.
Triplett, G. B. Jr. and Lytle, G. D. 1972. Control and ecology of weeds in continuous corn grown without tillage. Weed Sci. 20:453457.
[USDA] U.S. Department of Agriculture. 1997. Agricultural Chemical Usage, 1997 Field Crops Summary. Washington, DC: National Agricultural Statistics Service and Economics Research Service. 100 p.
[USDA] U.S. Department of Agriculture. 2001. Agricultural Chemical Usage, 2001 Field Crops Summary. Washington, DC: National Agricultural Statistics Service and Economics Research Service. 107 p.
VanGessel, M. J., Ayeni, A. O., and Majek, B. A. 2000. Optimum glyphosate timing with or without residual herbicides in glyphosate-resistant soybean (Glycine max) under full-season conventional tillage. Weed Technol. 14:140149.
Webster, T. M. 2000. Weed survey—southern states grass crops subsection. Proc. South. Weed Sci. Soc. 53:247264.
Webster, T. M. 2001. Weed survey—southern states broadleaf crops subsection. Proc. South. Weed Sci. Soc. 54:244260.
Whaley, C. M. and VanGessel, M. J. 2002. Horsenettle (Solanum carolinense) control with a field corn (Zea mays) weed management program. Weed Technol. 16:293300.
Yenish, J. P., Fry, T. A., Durgan, B. R., and Wyse, D. L. 1997. Establishment of common milkweed (Asclepias syriaca) in corn, soybean, and wheat. Weed Sci. 45:4453.
Yonce, M. H. and Skroch, W. A. 1989. Control of selected perennial weeds with glyphosate. Weed Sci. 37:360364.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed