Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-04T23:48:39.805Z Has data issue: false hasContentIssue false

Spring- and Fall-Seeded Radish Cover-Crop Effects on Weed Management in Corn

Published online by Cambridge University Press:  20 January 2017

Miriam F. Gieske*
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108
Donald L. Wyse
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108
Beverly R. Durgan
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108
*
Corresponding author's E-mail: gies0107@umn.edu.

Abstract

Weeds often limit productivity of organic cropping systems. Radish is a fast-growing, potentially allelopathic cover crop that has the potential to improve weed management in organic systems. To evaluate the effect of radish on density, cover, and biomass of weeds in organically managed corn, 2-yr field experiments were conducted over 4 site years. Four cover-crop planting treatments (fall-only, spring-only, fall + spring, and no cover) were tested in factorial with three cultivation treatments (standard [three to four passes], false seedbed [standard with a false seedbed], and reduced [two passes]). All plots were tilled before planting. Shoot biomass averaged 3,057 kg ha−1 for fall-seeded radish and 385 kg ha−1 for spring-seeded radish. Radish cover crops generally did not improve management of weeds during the corn growing season. However, in the absence of a false seedbed, fall-seeded radish reduced field pennycress density from 9 to < 1 plant m−2 and horseweed density from 6 to 2 plants m−2 in spring in site years where these weeds were present. Fall-seeded radish also reduced cover of summer annual weeds during the fall cover-crop growing season from 4 to 0% in 1 site year, preventing these weeds from setting seed. Radish cover crops did not affect corn grain yield.

Las malezas a menudo limitan la productividad de los sistemas de cultivos orgánicos. El rábano es un cultivo de cobertura potencialmente alelopático de rápido crecimiento que tiene el potencial de mejorar el manejo de malezas en sistemas orgánicos. Para evaluar el efecto del rábano sobre la densidad, cobertura, y biomasa de malezas en maíz manejado orgánicamente, se realizaron estudios de campo de dos años de duración en 4 sitios-años. Cuatro tratamientos de siembra de cultivos de cobertura (sólo otoño, sólo primavera, otoño + primavera, y sin cobertura) fueron evaluados en forma factorial con tres tratamientos de labranza (estándar [tres a cuatro pases], cama de siembra falsa [estándar con cama de siembra falsa], y reducida [dos pases]). Todas las parcelas fueron labradas antes de la siembra. La biomasa de la parte aérea promedió 3,057 kg ha−1 para el rábano sembrado en el otoño y 385 kg ha−1 para el rábano sembrado en la primavera. Los cultivos de cobertura de rábano generalmente no mejoraron el manejo de malezas durante la temporada de crecimiento del maíz. Sin embargo, en ausencia de la cama de siembra falsa, el rábano sembrado en el otoño redujo la densidad de Thlaspi arvense de 9 a < 1 planta m−2 y la densidad de Conyza canadensis de 6 a 2 plantas m−2 en la primavera, en sitios-años en los que estas malezas estuvieron presentes. El rábano sembrado en el otoño también redujo la cobertura de malezas anuales de verano durante la temporada de crecimiento del cultivo de cobertura de 4 a 0% en 1 sitio-año, previniendo así que estas malezas produjeran semillas. Los cultivos de cobertura de rábano no afectaron el rendimiento de grano del maíz.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108

Associate Editor for this paper: W. Carroll Johnson III, USDA-ARS.

References

Literature Cited

Ackroyd, VJ, Ngouajio, M (2011) Brassicaceae cover crops affect seed germination and seedling establishment in cucurbit crops. HortTechnology 21:525532 Google Scholar
Adams, C, Scott, WR, Wilson, DR, Purves, L (2005) Dry matter accumulation and phenological development of four brassica cultivars sown in Canterbury. Pages 118 in Proceedings of the Thirty-fifth Annual Conference, Agronomy Society of New Zealand. Hastings, NZ Agronomy Society of New Zealand Google Scholar
Bastiaans, L, Paolini, R, Baumann, DT (2008) Focus on ecological weed management: what is hindering adoption? Weed Res 48:481491 Google Scholar
Bond, W, Grundy, AC (2001) Non-chemical weed management in organic farming systems. Weed Res 41:383405 Google Scholar
Brown, PD, Morra, MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167231 Google Scholar
Buhler, DD, Owen, MDK (1997) Emergence and survival of horseweed (Conyza canadensis). Weed Sci 45:98101 Google Scholar
Cavigelli, MA, Teasdale, JR, Conklin, AE (2008) Long-term agronomic performance of organic and conventional field crops in the mid-Atlantic region. Agron J 100:785794 Google Scholar
Charles, KS, Ngouajio, M, Warncke, DD, Poff, KL, Hausbeck, MK (2006) Integration of cover crops and fertilizer rates for weed management in celery. Weed Sci 54:326334 Google Scholar
Davis, VM, Johnson, WG (2008) Glyphosate-resistant horseweed (Conyza canadensis) emergence, survival, and fecundity in no-till soybean. Weed Sci 56:231236 Google Scholar
Haramoto, ER, Gallandt, ER (2005) Brassica cover cropping: I. Effects on weed and crop establishment. Weed Sci 53:695701 Google Scholar
Haramoto, ER, Gallandt, ER (2004) Brassica cover cropping for weed management: a review. Renewable Agric Food Syst 19:187198 Google Scholar
Huang, JZ, Shrestha, A, Tollenaar, M, Deen, W, Rajcan, I, Rahimian, H, Swanton, CJ (2001) Effect of temperature and photoperiod on the phenological development of wild mustard (Sinapis arvensis L.). Field Crops Res 70:7586 Google Scholar
Kegode, GO, Forcella, F, Durgan, BR (2003) Effects of common wheat (Triticum aestivum) management alternatives on weed seed production. Weed Technol 17:764769 Google Scholar
Kruidhof, H, Bastiaans, L, Kropff, M (2008) Ecological weed management by cover cropping: effects on weed growth in autumn and weed establishment in spring. Weed Res 48:492502 Google Scholar
Lawley, YE, Teasdale, JR, Weil, RR (2012) The mechanism for weed suppression by a forage radish cover crop. Agron J 104:205214 Google Scholar
Lawley, YE, Weil, RR, Teasdale, JR (2011) Forage radish cover crop suppresses winter annual weeds in fall and before corn planting. Agron J 103:137144 Google Scholar
Liebman, M, Davis, AS (2000) Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40:2747 Google Scholar
McMaster, GS, Wilhelm, WW (1997) Growing degree-days: one equation, two interpretations. Agric Forest Meteorol 87:291300 Google Scholar
Minnesota Department of Agriculture (2007) Overview: Experiences and Outlook of Minnesota Organic Farmers. St. Paul, MN: Minnesota Department of Agriculture. 9 pGoogle Scholar
Mohler, CL (2001) Mechanical management of weeds. Pages 139209 in Liebman, M, Mohler, CL, Staver, CP, eds. Ecological Management of Agricultural Weeds. Cambridge, United Kingdom: Cambridge University Press Google Scholar
Moynihan, M (2010) Status of organic agriculture in Minnesota: A report to the Minnesota Legislature: 2010. St. Paul, MN: Minnesota Department of Agriculture. 55 pGoogle Scholar
Norsworthy, JK, Brandenberger, L, Burgos, NR, Riley, M (2005) Weed suppression in Vigna unguiculata with a spring-seeded brassicaceae green manure. Crop Prot 24:441447 Google Scholar
O'Reilly, KA, Robinson, DE, Vyn, RJ, Van Eerd, LL (2011) Weed populations, sweet corn yield, and economics following fall cover crops. Weed Technol 25:374384 Google Scholar
Petersen, J, Belz, R, Walker, F, Hurle, K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:37 Google Scholar
Porter, PM, Huggins, DR, Perillo, CA, Quiring, SR, Crookston, RK (2003) Organic and other management strategies with two- and four-year crop rotations in Minnesota. Agron J 95:233244 Google Scholar
Posner, JL, Baldock, JO, Hedtcke, JL (2008) Organic and conventional production systems in the Wisconsin integrated cropping systems trials: I. Productivity 1990–2002. Agron J 100:253260 Google Scholar
Sang, JP, Minchinton, IR, Johnstone, PK, Truscott, RJW (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can J Plant Sci 64:7793 Google Scholar
Snapp, SS, Swinton, SM, Labarta, R, Mutch, D, Black, JR, Leep, R, Nyiraneza, J, O'Neil, K (2005) Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron J 97:322332 Google Scholar
Stivers-Young, L (1998) Growth, nitrogen accumulation, and weed suppression by fall cover crops following early harvest of vegetables. HortScience 33:6063 Google Scholar
Walz, E (1999) Final Results of the Third Biennial National Organic Farmers' Survey. Santa Cruz, CA: Organic Farming Research Foundation. 126 pGoogle Scholar
Wang, G, Ngouajio, M, Warncke, DD (2008) Nutrient cycling, weed suppression, and onion yield following brassica and sorghum sudangrass cover crops. HortTechnology 18:6874 Google Scholar