Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-27T01:16:49.533Z Has data issue: false hasContentIssue false

Shattercane (Sorghum bicolor) Biotype Variation in Tolerance to Primisulfuron

Published online by Cambridge University Press:  12 June 2017

Ronald G. Sabatka
Affiliation:
Dep. Agron., Univ. Nebraska, Lincoln, NE 68508
Fred W. Roeth
Affiliation:
Dep. Agron., Univ. Nebraska, Lincoln, NE 68508
Alex R. Martin
Affiliation:
Dep. Agron., Univ. Nebraska, Lincoln, NE 68508
David A. Mortensen
Affiliation:
Dep. Agron., Univ. Nebraska, Lincoln, NE 68508

Abstract

Shattercane accessions were collected from 33 corn fields previously treated with nicosulfuron or primisulfuron. In a greenhouse study, we found no resistance to primisulfuron among the accessions. However, 15% of the accessions were more tolerant to primisulfuron than the most susceptible accessions. Shattercane survival among the 33 accessions ranged from 0 to 39% at 40 g ai/ha. While most accessions emerged uniformly, 26% of the accessions had 5 to 38% emergence after primisulfuron treatment. Delayed emergence could facilitate herbicide avoidance.

Type
Note
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Brown, H. M., 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29:263281.Google Scholar
2. Burnside, O. C., 1984. Biology, seed dissemination, and cultural control of shattercane. Proc. 1984 Conf. Genetic Contaminants in Hybrid Sorghum. p. 9.Google Scholar
3. Fellows, G. M., 1990. Seed biology, economic impact, and interference characteristics of shattercane (Sorghum bicolor). , University of Nebraska, Lincoln, NE 68583.Google Scholar
4. Harms, C. T., Montoya, A. L., Privalle, L. S., and Briggs, R. W. 1990. Genetic and biochemical characterization of corn inbred lines tolerant to the sulfonylurea herbicide primisulfuron. Theor. Appl. Genet. 80:353358.Google Scholar
5. Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
6. Milliken, G. A., 1992. Wilk's likelihood ratio criterion. p. 5253 in Analysis of messy data. Chapman and Hall, New York, NY.Google Scholar
7. Moberg, W. K., 1990. Herbicides inhibiting branched-chain amino acid biosynthesis. Pestic. Sci. 29:241246.Google Scholar
8. Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.CrossRefGoogle Scholar
9. Subramanian, M. V., Hung, H. Y., Dias, J. M., Miner, V. W., Butler, J. H., and Jachetta, J. J. 1990. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol. 94:239244.Google Scholar
10. Warwick, S. I., 1991. Herbicide resistance in weedy plants: physiology and population biology. Annu. Rev. Ecol. Syst. 22:95114.CrossRefGoogle Scholar