Skip to main content Accessibility help

Scouringrush (Equisetum spp.) control in dryland winter wheat

  • Blake D. Kerbs (a1), Andrew G. Hulting (a2) and Drew J. Lyon (a3)


The adoption of chemical fallow rotations in Pacific Northwest dryland winter wheat production has caused a weed species composition shift in which scouringrush has established in production fields. Thus, there has been interest in identifying herbicides that effectively control scouringrush in winter wheat–chemical fallow cropping systems. Field experiments were established in growers’ fields near Reardan, WA, in 2014, and The Dalles, OR, in 2015. Ten herbicide treatments were applied to mowed and nonmowed plots during chemical fallow rotations. Scouringrush stem densities were quantified the following spring and after wheat harvest at both locations. Chlorsulfuron plus MCPA-ester resulted in nearly 100% control of scouringrush through wheat harvest. Before herbicide application, mowing had no effect on herbicide efficacy. We conclude chlorsulfuron plus MCPA-ester is a commercially acceptable treatment for smooth and intermediate scouringrush control in winter wheat–chemical fallow cropping systems; however, the lack of a positive yield response when scouringrushes were controlled should factor into management decisions.


Corresponding author

Author of correspondence: Blake D. Kerbs, Research and Development Manager, Helena Agri-Enterprises, 401 E. Railroad Avenue, Paul, ID 83347. (Email:


Hide All
Ainsworth, N, Gunasekera, L, Bonilla, J (2006) Management of horsetail species using herbicides. Pages 279282 in Proceedings of the 15th Australian Weeds Conference. Adelaide, SA, Australia: Weed Management Society of South Australia
Bernards, ML, Sandell, LD, Frasure, EF (2010) UNL CropWatch June 16, 2010: controlling scouringrush. Accessed: October 17, 2014
Brewster, BD, Appleby, AP (1983) Response of wheat (Triticum aestivum) and rotation crops to chlorsulfuron. Weed Sci 31:861865
Brune, T, Thiv, M, Haas, K (2008) Equisetum (Equisetaceae) species or hybrids? ISSR fingerprinting profiles help improve diagnosis based on morphology and anatomy. Plant Syst Evol 274:6781
Camara, KM, Payne, WA, Rasmussen, PE (2003) Wheat long-term effects of tillage, nitrogen, and rainfall on winter wheat yields in the Pacific Northwest. Agron J 95:828835
Campbell, J, Mallory-Smith, C, Hulting, A, Thill, D (2011) Herbicide-Resistant Weeds and Their Management. Pacific Northwest Extension. PNW 437. Moscow, ID: University of Idaho Extension. 4 p
Coupland, D, Peabody, DV (1981) Effect of four foliage-applied herbicides on field horsetail (Equisetum arvense). Weed Sci 29:113119
Ghimire, R, Machado, S, Rhinhart, K (2015) Long-term crop residue and nitrogen management effects on soil profile carbon and nitrogen in wheat-fallow systems. Agron J 107:22302240
Guglielmini, AC, Satorre, EH (2004) Effect of non-inversion tillage and light availability on dispersal and spatial growth of Cynodon dactylon . Weed Res 44:366374
Hauke, RL (1966) A systematic study of Equisetum arvense . Nova Hedwigia 13:81109
Huggins, DR, Reganold, JP (2008) No-till: the quiet revolution. Sci Am 299:7077
Husby, C (2013) Biology and functional ecology of Equisetum with emphasis on the giant horsetails. Bot Rev 79:147177
Jemmett, ED, Thill, DC, Rauch, TA, Ball, DA, Frost, SM, Bennett, LH, Yenish, JP, Rood, RL (2008) Rattail fescue (Vulpia myuros) control in chemical fallow cropping systems. Weed Technol 22:435441
Juergens, LA, Young, DL, Schillinger, WF, Hinman, HR (2004) Economics of alternative no-till spring crop rotations in Washington’s wheat-fallow region. Agron J 96:154158
Leggett, GE (1959) Relationships between wheat yield, available moisture and nitrogen in eastern Washington dry land areas. Wash Agric Exp Sta Bull 609:116
Nice, G, Jordan, T, Johnson, B, Bauman, T (2010) Scouringrush encroaching on agricultural turf- what we know so far. Accessed: May 29, 2019
Reed, J, Rauch, T, Thill, D (2005) Field horsetail and smooth scouringrush control in winter wheat. Pages 167–168 in Western Society of Weed Science Research Progress Report. Vancouver, BC, Canada: Western Society of Weed Science. 167 p
Riar, DS, Ball, DA, Yenish, JP, Wuest, SP, Corp, MK (2010) Comparison of fallow tillage methods in the intermediate rainfall Inland Pacific Northwest. Agron J 102:16641673
Rutz, LM, Farrar, DR (1984) The habitat characteristics and abundance of Equisetum × ferrissii and its parent species, Equisetum hyemale and Equisetum laevigatum, in Iowa. American Fern J 74:6576
Schillinger, WF, Jirava, RP, Kennedy, AC, Young, DL, Schafer, HL, Schofstoll, SE (2007) Eight years of annual no-till cropping in Washington’s winter wheat-summer fallow region. Agric Ecosys Environ 120:345358
Schillinger, WF, Papendick, RI (2008) Then and now: 125 years of dryland wheat farming in the Inland Pacific Northwest. Agron J 100:S166S182
Unger, PW, Allen, RR, Wise, AF (1971) Tillage and herbicides for surface residue maintenance, weed control, and water conservation. J. Soil Water Conserv 26:147150
Veseth, R (1988) Conservation tillage considerations for cereals. Accessed: September 10, 2016
Wicks, GA, Smika, DE (1973) Chemical fallow in a winter wheat-fallow rotation. Weed Sci 2:97102
Williams, JD (2008) Soil erosion from dryland winter wheat-fallow in a long term residue and nutrient management experiment in north-central Oregon. J Soil Water Conserv 63:5359


Scouringrush (Equisetum spp.) control in dryland winter wheat

  • Blake D. Kerbs (a1), Andrew G. Hulting (a2) and Drew J. Lyon (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed