Skip to main content Accessibility help
×
Home

Response of Direct-Seeded Dry Bulb Onion to Simulated Glyphosate Drift with Variable Rates and Application Timings

  • Joel Felix (a1), Rick Boydston (a2) and Ian C. Burke (a3)

Abstract

Field studies were conducted in 2011 at the Malheur Experiment Station, Ontario, OR and Prosser, WA to evaluate the effect of simulated glyphosate drift on direct-seeded dry bulb onion. Glyphosate was applied at 8.6, 25.8, 86, 290, 434, and 860 g ae ha−1 when onion plants were at the flag-, two-, four-, and six-leaf stages. Onion foliar injury was directly related to the glyphosate dose and varied with application timing. Foliar injury at 7 d after treatment (DAT) ranged from 0 to 12% for glyphosate ≤ 25.8 g ha−1. Foliar injury increased at 21 DAT when glyphosate was applied ≥ 25.8 g ha−1 to plants at the flag- and four-leaf stage, and ranged from 24 to 99%. The 50%-injury glyphosate dose at 21 DAT was lowest when onion was treated at the four-leaf and flag stages and was estimated to be 76.8 and 81 g ha−1, respectively. Onion injury severity increased when glyphosate was applied at ≥ 86 g ha−1 and eventually resulted in plant death at 860 g ha−1. Foliar injury was inversely correlated to U.S. no. 1 onion yield. Onions displayed sensitivity to very low glyphosate doses especially at the four-leaf stage. Shikimic acid accumulation increased with the increase in glyphosate dose and was positively correlated with foliar injury and negatively correlated with plant height and onion yield.

Se realizaron estudios de campo en 2011 en la Estación Experimental Malheur, Ontario, OR y Prosser, WA para evaluar el efecto de la deriva simulada de glyphosate sobre el bulbo de cebolla seca de siembra directa. Se aplicó glyphosate a 8.6, 25.8, 86, 290, 434 y 860 g ae ha−1 cuando las plantas de cebolla estaban en los estadios de hoja bandera, dos, cuatro y seis hojas. El daño foliar de la cebolla estuvo directamente relacionado a la dosis de glyphosate y varió con el momento de aplicación. El daño foliar a 7 días después del tratamiento (DAT) varió de 0 a 12% para glyphosate a ≤25.8 g ha−1. El daño foliar incrementó a 21 DAT cuando glyphosate se aplicó a ≥25.8 g ha−1 a plantas en los estados de bandera y cuatro hojas y varió de 24 a 99%. La dosis más baja de 50% de daño de glyphosate a 21 DAT se observó cuando la cebolla fue tratada en los estados de cuatro hojas y hoja bandera y se estimó que fue 76.8 y 81 g ha−1, respectivamente. La severidad del daño de la cebolla aumentó cuando glyphosate se aplicó a ≥86 g ha−1 y eventualmente resultó en la muerte de la planta a 860 g ha−1. El daño foliar estuvo inversamente correlacionado con el rendimiento de cebolla U.S. no. 1. La cebolla mostró sensibilidad a dosis muy bajas de glyphosate especialmente en el estado de cuatro hojas. La acumulación de shikimic acid aumentó con el incremento en la dosis de glyphosate y estuvo positivamente correlacionada con el daño foliar y negativamente correlacionada con la altura de la planta y el rendimiento de la cebolla.

Copyright

Corresponding author

Corresponding author's E-mail: Joel.Felix@oregonstate.edu

References

Hide All
Akey, W. C. and Souza Machado, V. 1985. Response of onion (Allium cepa) to oxyfluorfen during early seedling development. Can. J. Plant Sci. 65 :357362.
Al-Khatib, K., Claassen, M. M., Stahlman, P. W., Geier, P. W., Regehr, D. L., Duncan, S. R., and Heer, W. F. 2003. Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethapyr, and sethoxydim. Weed Technol. 17 :261265.
Anonymous. 2007. Roundup original Max label 63008G5-36. St. Louis, MO : Monsanto Co. 27 p.
Ashton, F. M., Monaco, T. J. 1991. Weed Science: Principles and Practices, 3rd ed. New York : Wiley.
Berti, A., Dunan, C., Sattin, M., Zanin, G., and Westra, P. 1996. A new approach to determine when to control weeds. Weed Sci. 44 :496503.
Bode, L. E. 1987. Spray application technology. Pages 85110 in McWhorter, C. G. and Gebhardt, M. R., eds. Methods of Applying Herbicides. Monograph 4. Champaign, IL : Weed Science Society of America.
Brewster, J. L. 2008. Onions and Other Vegetable Alliums. Oxon, UK : CAB International P 29.
Bromilow, R. H. and Chamberlain, K. 2000. The herbicide glyphosate and mobility in phloem. Pest Manag. Sci. 56 :368373.
Burke, I., Thomas, C. W. E., Pline-Srnić, W. A., Fisher, L. R., Smith, W. D., and Wilcut, J. W. 2005. Yield and physiological response of flue-cured tobacco to simulated glyphosate drift. Weed Technol. 19 :255260.
Deeds, Z. A., Al-Khatib, K., Peterson, D. E., and Stahlman, P. W. 2006. Wheat response to simulated drift of glyphosate and imazamox applied at two growth stages. Weed Technol. 20 :2331.
Eberlein, C. V., Westra, P., Haderlie, L. C., Whitmore, J. C., and Guttieri, M. J. 1997. Herbicide drift and carryover injury in potatoes. Pacific Northwest Extension Publ. 498. 15 p.
Ellis, J. M., Griffin, J. L., Linscombe, S. D., and Webster, E. P. 2003. Rice (Oryza sativa) and corn (Zea mays) response to simulated drift of glyphosate and glufosinate. Weed Technol. 17 :452460.
Felix, J., Boydston, R., and Burke, I. C. 2011. Potato response to simulated glyphosate drift. Weed Technol. 25 :637644.
Hurst, H. R. 1982. Cotton (Gossypium hirsutum) response to simulated drift from selected herbicides. Weed Sci. 30 :311315.
Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci. 50 :773786.
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21 :840848.
Koger, C. H., Shaner, D. L., Krutz, L. J., Walker, T. W., Buehring, N., Henry, W. B., Thomas, W. E., and Wilcut, J. W. 2005. Rice (Oryza sativa) response to drift rates of glyphosate. Pest Manag. Sci. 61 :11611167.
Lassiter, B. R., Burke, I. C., Thomas, W. E., Pline-Srnić, W. A., Jordan, D. L., Wilcut, J. W., and Wilkerson, G. G. 2007. Yield and physiological response of peanut to glyphosate drift. Weed Technol. 21 :954960.
Maybank, J., Yoshida, K., and Grover, R. 1978. Spray drift from agricultural pesticide application. Air Pollut. Control Assoc. J. 28 :10091014.
Norsworthy, J. K., Smith, J. P., and Meister, C. 2007. Tolerance of direct-seeded green onions to herbicides applied before or after crop emergence. Weed Technol. 21 :119123.
Pline, W. A., Price, A. J., Wilcut, J. W., Edmisten, K. L., and Wells, R. 2001. Absorption and translocation of glyphosate in glyphosate-resistant Gossypium hirsutum as influenced by application methods and growth stage. Weed Sci. 49 :460467.
Pline, W. A., Wilcut, J. W., Duke, S. O., Edmisten, K. L., and Wells, R. 2002. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J. Agric. Food Chem. 50 :506512.
R Development Core Team. 2009. R: A Language and Environment for Statistical Computing. Vienna, Austria : R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL: http://www.R-project.org.
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Software. 12 (5):URL : http://www.jstatsoft.org/. Accessed: July 19, 2012.
SAS. 2008. Version 9.2. Cary, NC : SAS Institute.
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9 :218227.
Shock, C. C., Feibert, E., and Sanders, L. D. 2005. Single-centered and super colossal bulbs from yellow onion cultivars. HortTechnology 15 :399408.
Shock, C. C., Ishida, J. K., Eldridge, E. P., and Seddigh, M. 2000. Yield of yellow onion cultivars in eastern Oregon and southwestern Idaho. HortTechnology 10 :613620.
Singh, B. K. and Shaner, D. L. 1998. Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol. 12 :527530.
Smid, D. and Hiller, L. K. 1981. Phytotoxicity and translocation of glyphosate in the potato (Solanum tuberosum) prior to tuber initiation. Weed Sci. 29 :218223.
Snipes, C. E., Street, J. E., and Mueller, T. C. 1991. Cotton (Gossypium hirsutum) response to simulated triclopyr drift. Weed Technol. 5 :493498.
Stoller, E. W., Wax, L. M., and Matthiesen, R. L. 1975. Response of yellow nutsedge and soybeans to bentazon, glyphosate, and perfluidone. Weed Sci. 23 :215221.
[USDA] U.S. Department of Agriculture. 1995. United States standards for grades of onions (other than Bermuda-Granex-Grano and Creole Type). Washington, DC : Agricultural Marketing Service, p. 9. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050312. Accessed: April 27, 2012.
[USDA] Economics, Statistics and Market Information System. 2009. U.S. Onion Statistics (94013). http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1396. Accessed: November 28, 2011.
[USDA] USDA-National Agricultural Statistics Service. 2010. USDA/NASS: Agricultural Chemical Usage, 2010 Corn, Organic Corn, Upland Cotton, and Fall Potatoes Summary. USDA-NASS Quick Stats 2.0: http://quickstats.nass.usda.gov/. Accessed: May 30, 2012.
Yates, W. E., Cowden, R. E., and Akesson, N. B. 1985. Drop size spectra from nozzles in high speed airstream. Trans. Am. Soc. Agric. Eng. 28 :405410.

Keywords

Related content

Powered by UNSILO

Response of Direct-Seeded Dry Bulb Onion to Simulated Glyphosate Drift with Variable Rates and Application Timings

  • Joel Felix (a1), Rick Boydston (a2) and Ian C. Burke (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.