Skip to main content Accessibility help
×
Home

Off-target Movement of DGA and BAPMA Dicamba to Sensitive Soybean

  • Gordon T. Jones (a1), Jason K. Norsworthy (a2), Tom Barber (a3), Edward Gbur (a4) and Greg R. Kruger (a5)...

Abstract

It is well established that dicamba can cause severe injury to soybean that is not resistant to dicamba. Dicamba-resistant (DR) cotton became available in 2015, followed by DR soybean in 2016; in late 2016 came the release of new dicamba formulations approved for topical use in cotton and soybeans. Until this approval, use of dicamba was limited to primarily corn, small grains, range and pasture, and eco-fallow acres. Hence, studies were conducted in 2015 and 2016 to examine off-target movement of two dicamba formulations using non-DR soybean as a bio-indicator. Diglycolamine (DGA) and N,N-Bis(3-aminopropyl)methylamine (BAPMA) dicamba were applied simultaneously at 560 g ae ha–1 in the center of two side-by-side 8-ha fields to vegetative glufosinate-resistant soybean. On the same day, a rate response experiment was established encompassing nine different dicamba rates of each formulation. Results from the rate response experiment indicate that soybean is equally sensitive to DGA and BAPMA dicamba. In 2015, a rain event occurring 6 to 8 h after application of the large drift trial probably limited off-target movement by incorporating some of the herbicide into the soil. As a result, secondary drift was less in 2015 than in 2016. However, minimal secondary injury (<5%) occurred 12 m farther into DGA dicamba plots in 2015. In 2016, secondary movement was decreased by 72 m when BAPMA dicamba was used compared to DGA dicamba. Appreciable secondary movement of both DGA and BAPMA dicamba is possible following in-crop applications of either formulated product to soybean in early to mid-summer. Additionally, the risk for secondary movement of BAPMA dicamba is slightly less than for DGA dicamba.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Off-target Movement of DGA and BAPMA Dicamba to Sensitive Soybean
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Off-target Movement of DGA and BAPMA Dicamba to Sensitive Soybean
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Off-target Movement of DGA and BAPMA Dicamba to Sensitive Soybean
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Gordon T. Jones, 1366 West Altheimer Drive, Fayetteville, AR 72704. (Email: gtj001@uark.edu)

Footnotes

Hide All

Cite this article: Jones GT, Norsworthy JK, Barber T, Gbur E, Kruger GR (2019) Off-target movement of DGA and BAPMA dicamba to sensitive soybean. Weed Technol 33:51–65. doi: 10.1017/wet.2018.121

Footnotes

References

Hide All
Alves, GS, Kruger, GR, da Cunha, JPAR, de Santana, DG, LAT, Pinto, Guimaraes, F, Zaric, M (2017a) Dicamba spray drift as influenced by wind speed and nozzle type. Weed Technol 31:724731
Alves, GS, Kruger, GR, da Cunha, JPAR, Vieira, BC, Henry, RS, Obradovic, A, Grujic, M (2017b) Spray drift from dicamba and glyphosate applications in a wind tunnel. Weed Technol 31:387395
Andersen, SM, Clay, SA, Wrage, LJ, Matthees, D (2004) Soybean foliage residues of dicamba and 2,4-D and correlation to application rates and yield. Agron J 96:750760
Anonymous (2016a) XTendimax supplemental herbicide label. Monsanto Co. http://www.cdms.net/ldat/ldDF9006.pdf. Accessed: June 11, 2017
Anonymous (2016b) Engenia supplemental herbicide label. BASF Corp. http://www.cdms.net/ldat/ldDG8028.pdf. Accessed: June 11, 2017
Anonymous (2017) Monsanto petition to Arkansas State Plant Board regarding dicamba. Exhibits 26 and 27. Monsanto Co. St. Louis, MO 63167. https://monsanto.com/products/product-stewardship/articles/monsanto-petition-regarding-dicamba/. Accessed: November 4, 2017
Bauerle, MJ, Griffin, JL, Alford, JL, Curry, AB III, Kenty, MM (2015) Field evaluation of auxin herbicide volatility using cotton and tomato as bioassay crops. Weed Technol 29:185197
Behrens, R, Lueschen, WE (1979) Dicamba volatility. Weed Sci 27:486493
Cranston, HJ, Kern, AJ, Hackett, JL, Miller, EK, Maxwell, BD, Dyer, WE (2001) Dicamba resistance in kochia. Weed Sci 49:164170
Egan, JF, Mortensen, DA (2012) Quantifying vapor drift of dicamba herbicides applied to soybean. Environ Toxicol Chem 31:10231031
Grover, R (1975) A method for determining the volatility of herbicides. Weed Sci 23:529532
Kelley, KB, Wax, LM, Hager, AG, Riechers, DE (2005) Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci 53:101112
Kruger, GR, Davis, VM, Weller, SC, Johnson, WG (2010) Control of horseweed (Conyza canadensis) with growth regulator herbicides. Weed Technol 24:425429
Lym, RG, Deibert, KJ (2005) Diflufenzopyr influences leafy spurge (Euphorbia esula) and Canada thistle (Cirsium arvense) control by herbicides. Weed Technol 19:329341
MacInnes, A (2017) VaporGrip technology; how it works and its benefits. Abstract #174. Page 240 in Proceedings of the Southern Weed Science Society 70th Annual Meeting, Birmingham, AL, January 23–26, 2017. Westminster, CO: Southern Weed Science Society
Maybank, J, Yoshida, K, Grover, R (1978) Spray drift from agricultural pesticide applications. J Air Pollut Control Assoc 28:10091014
Meyer, CJ, Norsworthy, JK, Druger, GR, Barber, T (2015) Influence of droplet size on efficacy of the formulated products Engenia, Roundup PowerMax, and Liberty. Weed Technol 29:641652
Mithila, J, Hall, JC, Johnson, WG, Kelley, KB, Riechers, DE (2011) Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci 59:445457
Mueller, TC, Wright, DR, Remund, KM (2013) Effect of formulation and application time of day on detecting dicamba in the air under field conditions. Weed Sci 61:586593
Petersen, PJ, Haerlie, LC, Hoefer, RH, McCallister, RS (1985) Dicamba absorption and translocation as influenced by formulation and surfactant. Weed Sci 33:717720
Salyani, M, Cromwell, RP (1992) Spray drift from ground and aerial applications. Trans ASAE 35:11131120
Sciumbato, AS, Chandler, JM, Senseman, SA, Bovey, RW, Smith, K (2004) Determining exposure to auxin-like herbicides. II. Practical application to quantify volatility. Weed Technol 18:11351142
Strachan, SD, Ferry, NM, Cooper, TL (2013) Vapor movement of aminocyclopyrachlor, aminopyralid, and dicamba in the field. Weed Technol 27:143155
[USDA-NASS] United States Department of Agriculture, National Agricultural Statistics Service (2010) Field Crops: Usual Planting and Harvesting Dates. http://usda.mannlib.cornell.edu/usda/current/planting/planting-10-29-2010.pdf. Accessed: August 11, 2017
Vink, JP, Soltani, N, Robinson, DE, Tardif, FJ, Lawton, MB, Sikkema, PH (2012) Glyphosate-resistant giant ragweed (Ambrosia trifida) control in dicamba-tolerant soybean. Weed Technol 26:422428
Westberg, DE, Adams, A (2017) Application stewardship of Engenia herbicide in dicamba tolerant crops. Abstract #187. Page 155 in Proceedings of the Southern Weed Science Society 70th Annual Meeting, Birmingham, AL, January 23–26, 2017. Westminster, CO: Southern Weed Science Society
Wu, T, Liu, G, Zhao, J (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in Aqueous TiO2 dispersions. J Phys Chem B 102:58455851
Yates, WE, Akesson, NB, Bayer, DE (1978) Drift of glyphosate sprays applied with aerial and ground equipment. Weed Sci 26:597604

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed