Skip to main content Accessibility help

In-row Vegetation-free Strip Width Effect on Established ‘Navaho’ Blackberry

  • Nicholas T. Basinger (a1), Katherine M. Jennings (a2), David W. Monks (a3), Wayne E. Mitchem (a4), Penelope M. Perkins-Veazie (a5) and Sushila Chaudhari (a6)...


A field study was conducted in 2014 and 2015 in an established 5-yr old commercial blackberry planting to determine the effect of vegetation-free strip width (VFSW) on ‘Navaho’ blackberry vegetative growth, yield and fruit quality parameters, identify the optimum VFSW for blackberry plantings in the southeastern USA, and provide practical groundcover management recommendations that can increase the productivity of blackberry plantings. In Fall 2013, tall fescue was seeded in-row and allowed to establish. In Spring 2014, VFSW treatments (0, 0.6, 0.9, 1.2, and 1.8 m) were established in a randomized complete block statistical design with four replications. Blackberry growth measurements included primocane and floricane number, cane diam, individual fruit weight and yield. Fruit quality measurements included, soluble solids concentration (SSC), titratable acidity (TA) and pH. Primocane number increased with increasing VFSW in both years. Floricane number increased with increasing VFSW in 2014. Primocane diam decreased with increasing VFSW in 2014 but had a quadratic response in 2015. Berry weight and cumulative yield increased with increasing VFSW in both years. The only berry quality component affected by VFSW was pH, which decreased as VFSW increased. Results indicate that widening the VFSW in blackberry from the current recommendation of 1.2 m to 1.8 m could provide growers a means to increase plant growth, berry weight, and cumulative yield blackberry of a planting.


Corresponding author

Author for correspondence: Nicholas T. Basinger, Department of Horticultural Science, North Carolina State University, Room 227 Kilgore Hall, Box 7609, 2721 Founders Drive, Raleigh, NC 27695. (E-mail:


Hide All
Basile, B, Caccavello, G, Giaccone, M Forlani, M (2015) Effects of early shading and defoliation on bunch compactness, yield components, and berry composition of Aglianico grapevines under warm climate conditions. Am J Enol Vitic 66:234243
Basinger, NT (2015) Effect of Herbicide Strip-width and Late Season Weed Competition on Vitis vinifera L. cv. Cabernet Franc Growth, Yield and Berry Composition. MS thesis. Raleigh, NC: North Carolina State University. 53 p
Bowen, P Freyman, S (1995) Ground covers affect raspberry yield, photosynthesis, and nitrogen nutrition of primocanes. HortScience 30:238241
Caravia, L, Collins, C, Petrie, PR Tyerman, SD (2016) Application of shade treatments during Shiraz berry ripening to reduce the impact of high temperature. Aust J Grape Wine Res 22:422437
Cortell, JM Strik, BC (1997) Effect of floricane number in ‘Marion’ trailing blackberry. II. Yield components and dry mass partitioning. J Amer Soc Hort Sci 122:611615
Dixon, EK Strik, BC (2016) Weed control increases growth, cumulative yield, and economic returns of machine-harvested organic trailing blackberry. Acta Hortic 1133:323328
Dixon, EK, Strik, BC, Valenzuela-Estrada, LR Bryla, DR (2015) Weed management, training, and irrigation practices for organic production of trailing blackberry: I. Mature plant growth and fruit production. HortScience 50:11651177
Fernandez, GE, Garcia, E Lockwood, D (2016) Southeast Regional Caneberry Production Guide. Raleigh, NC: North Carolina Cooperative Extension Service AG-697. 40 p
Finn, CE Clark, JR (2012) Blackberry. Pages 151--190 in Badens ML, Byrne DH, eds. Fruit Breeding. New York: Springer.
Fisk, CL, Parker, ML Mitchem, WE (2015) Vegetation-free width and irrigation impact peach tree growth, fruit yield, fruit size, and incidence of hemipteran insect damage. HortScience 50:699704
Gundersheim, NA Pritts, MP (1991) Pruning practices affect yield, yield components and their distribution in purple raspberry. J Amer Soc Hort Sci 116:390395
Harkins, RH Strik, BC (2014) Weed management practices for organic production of trailing blackberry: II. Accumulation and loss of biomass and nutrients. HortScience 49:3543
Hatch, TA, Hickey, CC Wolf, TK (2011) Cover crop, rootstock, and root restriction regulate vegetative growth of cabernet sauvignon in a humid environment. Am J Enol Vitic 62:298311
Heiberg, N (2002) Effect of vegetation control and nitrogen fertilization in red raspberry. Acta Hortic 585:579583
Jordan, LM, Bjorkman, T Vanden Heuvel, JE (2016) Annual under-vine cover crops did not impact vine growth or fruit composition of mature cool-climate ‘Riesling’ grapevines. HortTechnology 26:3645
Link, H (2000) Significance of flower and fruit thinning on fruit quality. Plant Growth Regul 31:1726
Meyers, SL, Jennings, KM, Monks, DW Mitchem, WE (2014) Effect of weed-free strip width on newly established ‘Navaho’ blackberry growth, yield, and fruit quality. Weed Technol 28:426431
Oliveira, PB, Oliveira, CM Monteiro, AA (2004) Pruning date and cane density affect primocane development and yield of ‘Autumn Bliss’ red raspberry. HortScience 39:520524
Perkins-Veazie, P, Clark, JR, Huber, DJ Baldwin, EA (2000) Ripening physiology in ‘Navaho’ thornless blackberries: color, respiration, ethylene production, softening, and compositional changes. J Am Soc Hortic Sci 125:357363
Perkins-Veazie, P, Collins, JK Clark, JR (1996) Cultivar and maturity affect postharvest quality of fruit from erect blackberries. HortScience 31:258261
Safley, CD, Baros, JR, Fernandez, GE Ihnen, D (2011) Cost of producing, harvesting and marketing blackberries in the southeastern United States: estimated costs for a ten acre commercial operation. Raleigh, NC:. North Carolina Agriculture Extension Service
Strik, BC, Clark, JR, Finn, CE Buller, G (2012) Management of primocane-fruiting blackberry: impacts on yield, fruiting season, and cane architecture. HortScience 47:593598
Tan, S Crabtree, GD (1990) Competition between perennial ryegrass sod and “Chardonnay” wine grapes for mineral nutrients. HortScience 5:533535
[USDA-NASS] U.S. Department of Agriculture (2014) Noncitrus Fruits and Nuts, Final Estimates 2007-2012. Washington, DC: U.S. Department of Agriculture: National Agriculture Statistics Service. P 134



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed