Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T17:55:12.389Z Has data issue: false hasContentIssue false

Influence of Late-Season Herbicide Applications on Control, Fecundity, and Progeny Fitness of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) Biotypes from Arkansas

Published online by Cambridge University Press:  20 January 2017

Prashant Jha*
Affiliation:
Southern Agricultural Research Center, Montana State University, Huntley, MT 59037
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
*
Corresponding author's E-mail: pjha@montana.edu.

Abstract

Experiments were conducted in 2008 and 2009 in Fayetteville, AR, to determine the influence of late-season herbicide applications on control, seed reduction, seed viability, and seedling fitness of two glyphosate-resistant (GR) Palmer amaranth biotypes, one from Mississippi County (MC) and the other from Lincoln County (LC) in Arkansas. Glyphosate (870 g ae ha−1), glufosinate (820 g ai ha−1), 2,4-D amine (1,060 g ae ha−1), dicamba (280 g ae ha−1), and pyrithiobac (70 g ai ha−1) were each applied at the first visible sign of inflorescence of GR Palmer amaranth plants. Glufosinate, 2,4-D, and dicamba provided 52 to 74% control of MC GR Palmer amaranth plants 28 d after treatment (DAT). The LC biotype was larger (94 cm tall) than the MC biotype was (64 cm tall) at application and was more difficult to control. Although control of GR Palmer amaranth was inadequate, late-season applications of glufosinate, 2,4-D, and dicamba reduced seed production of the LC biotype by 75 to 87% and production of the MC biotype by 94 to 95% compared with nontreated plants. Irrespective of biotypes, glufosinate, 2,4-D, and glyphosate reduced 100-seed weight by 22% compared with the nontreated control, and viability of seeds produced by treated plants was only 45 to 61% compared with 97% seed viability in nontreated plants. Glyphosate, glufosinate, 2,4-D, or dicamba reduced cumulative seedling emergence by an average of 84% compared with the nontreated check. Seedling biomass was four times greater for the LC than for the MC biotype, suggesting greater vigor and fitness for the LC progeny. This research demonstrates that a single, late-season (early inflorescence stage) application of glufosinate, 2,4-D, or dicamba could potentially reduce seedbank replenishment of GR Palmer amaranth. Additionally, reduction in seed weight, viability, and seedling recruitment would impair the success of GR Palmer amaranth progeny in the following season.

Se realizaron experimentos en 2008 y 2009 en Fayetteville, AR, para determinar la influencia de aplicaciones de herbicidas tarde en la temporada de producción sobre el control, la reducción en la producción de semilla, la viabilidad de la semilla y el desempeño de las plántulas de dos biotipos de Amaranthus palmeri resistentes a glyphosate (GR), uno del condado de Mississippi (MC) y el otro del condado Lincoln (LC) en Arkansas. Glyphosate (870 g ae ha−1), glufosinate (820 g ai ha−1), 2,4-D amine (1,060 g ae ha−1), dicamba (280 g ae ha−1) y pyrithiobac (70 g ai ha−1), fueron aplicados al primer signo visible de las inflorescencias de las plantas de A. palmeri GR. Glufosinate, 2,4-D y dicamba brindaron un control de 52 a 74% de las plantas MC de A. palmeri GR 28 días después del tratamiento (DAT). El biotipo LC fue más grande (94 cm de altura) que el biotipo MC (64 cm de altura) al momento de la aplicación y fue más difícil de controlar. Aunque el control de A. palmeri GR fue inadecuado, las aplicaciones tardías en la temporada con glufosinate, 2,4-D y dicamba redujeron la producción de semillas del biotipo LC de 75 a 87% y 94 a 95% del biotipo MC en comparación con las plantas no-tratadas. Independientemente del biotipo, glufosinate, 2,4-D y glyphosate redujeron el peso 100-semillas en 22% comparados con el testigo no-tratado, y la viabilidad de las semillas producidas por las plantas tratadas fue solamente 45 al 61% comparadas con 97% de viabilidad de las plantas no-tratadas. Glyphosate, glufosinate, 2,4-D o dicamba redujeron la emergencia acumulada de plántulas en un promedio de 84% comparadas con el testigo no-tratado. La biomasa de las plántulas fue cuatro veces mayor para el biotipo LC que para el MC, sugiriendo un mayor vigor y aptitud en la progenie de LC. Esta investigación demuestra que una sola aplicación, tarde en la temporada (inicio de floración de la maleza), de glufosinate, 2,4-D o dicamba puede potencialmente reducir la renovación del banco de semillas de A. palmeri GR. Adicionalmente, la reducción en el peso de la semilla, viabilidad y la emergencia de plántulas podría afectar negativamente el éxito de la progenie de A. palmeri GR en la siguiente temporada de producción.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bennett, A. C. and Shaw, D. R. 2000. Effect of preharvest desiccants on weed seed production and viability. Weed Technol. 14 :530538.CrossRefGoogle Scholar
Biniak, B. M. and Aldrich, R. J. 1986. Reducing velvetleaf (Abutilon theophrasti) and giant foxtail (Setaria faberi) seed production with stimulated-roller herbicide applications. Weed Sci. 34 :256259.CrossRefGoogle Scholar
Brewer, C. E. and Oliver, L. R. 2007. Reducing weed seed rain with late-season glyphosate applications. Weed Technol. 21 :753758.CrossRefGoogle Scholar
Clay, P. A. and Griffin, J. L. 2000. Weed seed production and seedling emergence responses to late-season glyphosate applications. Weed Sci. 48 :481486.CrossRefGoogle Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54 :620626.CrossRefGoogle Scholar
Davis, V. M., Kruger, G. R., Stachler, J. M., Loux, M. M., and Johnson, W. G. 2009. Growth and seed production of horseweed (Conyza canadensis) populations resistant to glyphosate, ALS-inhibiting, and multiple (glyphosate + ALS-inhibiting) herbicides. Weed Sci. 57 :494504.CrossRefGoogle Scholar
Fawcett, R. S. and Slife, F. W. 1978. Effects of 2,4-D and dalapon on weed seed production and dormancy. Weed Sci. 26 :543547.CrossRefGoogle Scholar
Gaines, T. A., Shaner, D. L., Ward, S. M., Leach, J. E., Preston, C., and Westra, P. 2011. Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri). J. Agric. Food Chem. 59 :58865889.CrossRefGoogle ScholarPubMed
Gauvrit, C. and Chauvel, B. 2010. Sensitivity of Ambrosia artemisiifolia to glufosinate and glyphosate at various developmental stages. Weed Res. 50 :503510.CrossRefGoogle Scholar
Heap, I. 2012. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: January 8, 2012.Google Scholar
Isaacs, M. A., Murdock, E. C., Toler, J. E., and Wallace, S. U. 1989. Effects of late-season herbicide applications on sicklepod (Cassia obtusifolia) seed production and viability. Weed Sci. 37 :761765.CrossRefGoogle Scholar
Jha, P. and Norsworthy, J. K. 2009. Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci. 57 :644651.CrossRefGoogle Scholar
Jha, P., Norsworthy, J. K., Bridges, W. Jr., and Riley, M. B. 2008a. Influence of glyphosate timing and row width on Palmer Amaranth (Amaranthus palmeri) and pusley (Richardia spp.) demographics in glyphosate-resistant soybean. Weed Sci. 58 :408415.CrossRefGoogle Scholar
Jha, P., Norsworthy, J. K., Riley, M. B., and Bridges, W. Jr. 2008b. Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci. 56 :729734.CrossRefGoogle Scholar
Jha, P., Norsworthy, J. K., Riley, M. B., and Bridges, W. Jr. 2010. Annual changes in temperature and light requirements for germination of Palmer amaranth (Amaranthus palmeri) seeds retrieved from soil. Weed Sci. 58 :426432.CrossRefGoogle Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35 :199204.CrossRefGoogle Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 42 :523527.CrossRefGoogle Scholar
Nichols, R. L., Bond, J., Culpepper, A. S., Dodds, D., Nandula, V., Main, C. L., Marshall, M. W., Mueller, T. C., Norsworthy, J. K., Price, A., Patterson, M., Scott, R. C., Smith, K. L., Steckel, L. E., Stephenson, D., Wright, D., and York, A. C. 2009. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) spreads in the southern United States. Resist. Pest Manag. Newsl. 18 :810.Google Scholar
Norsworthy, J. K. 2003. Use of soybean production surveys to determine weed management needs of South Carolina farmers. Weed Technol. 17 :195201.CrossRefGoogle Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth in Arkansas. Weed Technol. 22 :108113.CrossRefGoogle Scholar
Price, A. J., Balkcom, K. B., Culpepper, A. S., Kelton, J. A., Nichols, R. L., and Schomberg, H. H. 2011. Glyphosate-resistant Palmer amaranth: A threat to conservation tillage. J. Soil Water Conserv. 66 :265275.CrossRefGoogle Scholar
Sawma, J. T. and Mohler, C. L. 2002. Evaluating seed viability by an unimbibed seed crush test in comparison with the tetrazolium test. Weed Technol. 16 :781786.CrossRefGoogle Scholar
Scott, B. and Smith, K. 2010. Prevention and control of glyphosate-resistant pigweed in soybean and cotton. Little Rock, AR : University of Arkansas Cooperative Extension Service. FSA2152.Google Scholar
Sosnoskie, L. M., Kichler, J. M., Wallace, R. D., and Culpepper, A. S. 2011. Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Sci. 59 :321325.CrossRefGoogle Scholar
Steadman, K. J., Eaton, D. M., Plummer, J. A., Ferris, D. G., and Powles, S. B. 2006. Late-season non-selective herbicide applications reduce Lolium rigidum seed numbers, seed viability, and seedling fitness. Aust. J. Agric. Res. 57 :133141.CrossRefGoogle Scholar
Steckel, L. E., Sprague, C. L., Stoller, E. W., and Wax, L. M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Sci. 52 :217221.CrossRefGoogle Scholar
Taylor, S. E. and Oliver, L. R. 1997. Sicklepod (Senna obtusifolia) seed production and viability as influenced by late-season postemergence herbicide applications. Weed Sci. 45 :497501.CrossRefGoogle Scholar
Thomas, W. E., Pline-Srnic, W. P., Viator, R. A., and Wilcut, J. W. 2005. Effects of glyphosate application timing and rate on sicklepod (Senna obtusifolia) fecundity. Weed Technol. 19 :5561.CrossRefGoogle Scholar
Walker, E. R. and Oliver, L. R. 2008. Weed seed production as influenced by glyphosate applications at flowering across a weed complex. Weed Technol. 22 :318325.CrossRefGoogle Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol. 15 :771790.CrossRefGoogle Scholar