Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T14:42:35.770Z Has data issue: false hasContentIssue false

Influence of Clethodim Application Timing on Control of Volunteer Corn in Soybean

Published online by Cambridge University Press:  20 January 2017

Paul T. Marquardt
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
William G. Johnson*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: wgj@purdue.edu

Abstract

Herbicide options for management of volunteer corn in soybean include a variety of acetyl CoA carboxylase-inhibiting herbicides, yet often, applications of acetyl CoA carboxylase herbicides are delayed until the weed is visible above the soybean canopy. Volunteer corn growing above the soybean canopy is a highly competitive weed, and herbicides applied at this point can kill the weed, yet soybean yield loss is still a concern. Our objective was to compare the effect of controlling various densities of volunteer corn growing in soybean EARLY (≤ 30 cm) versus LATE (≈ 90 cm) on percent control and soybean yield. Seven volunteer corn densities (0, 0.5, 2, 4, 8, 12, and 16 plants m−2) were hand planted into 19-cm row soybean. Clethodim 79 g ai ha−1 was tank-mixed with glyphosate at 840 g ae ha−1 and applied to the volunteer corn EARLY and LATE. The EARLY application provided higher and less variable control of volunteer corn 14 d after treatment (DAT) compared to LATE applications at all volunteer corn densities. There was no difference in control at 28 DAT for both the EARLY and LATE applications. Soybean yield was not affected by either application timing. Although no yield reduction was seen with the LATE treatments, later-season applications of clethodim to control volunteer corn may offer more variable control and could allow for additional Bt selection pressure on targeted insect pests.

Las opciones de herbicidas para el manejo de maíz voluntario en soya incluyen una variedad de herbicidas inhibidores de acetyl CoA carboxilase, aunque a menudo, las aplicaciones de este tipo de herbicidas es retrasada hasta que las malezas son visibles por encima del dosel de la soya. El maíz voluntario que llega a crecer por encima del dosel de la soya es una maleza altamente competitiva, y los herbicidas que se aplican en este punto pueden matar a la maleza, pero las pérdidas de rendimiento de la soya continúan siendo una preocupación. Nuestro objetivo fue comparar el efecto de controlar varias densidades de maíz voluntario creciendo dentro de la soya, temprano (≤30 cm) versus tarde (≈90 cm), sobre el porcentaje de control y el rendimiento de la soya. Siete densidades de maíz voluntario (0, 0.5, 2, 4, 8, 12, y 19 plantas m−2) fueron plantadas en soya sembrada en hileras espaciadas a 19 cm. Se aplicó una mezcla en tanque de clethodim a 79 g ai ha−1 con glyphosate a 840 g ae ha−1 a maíz voluntario temprano y tardío. La aplicación temprana brindó mayor control y control menos variable del maíz voluntario 14 d después del tratamiento (DAT) al compararse con las aplicaciones tardías en todas las densidades de maíz voluntario. No hubo diferencias en control a 28 DAT en ninguna de las aplicaciones temprana y tardía. El rendimiento de la soya no fue afectado por ninguno de los momentos de aplicación. Aunque no se observaron reducciones en el rendimiento de la soya producto de las aplicaciones tardías, aplicaciones tardías con clethodim al maíz voluntario durante la temporada de crecimiento podrían favorecer un control más variable y podrían permitir mayor presión de selección de resistencia a Bt en insectos plaga.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andersen, R. N. 1976. Control of volunteer corn and giant foxtail in soybeans. Weed Sci. 24:253256.Google Scholar
Andersen, R. N., Ford, J. H., and Lueschen, W. E. 1982. Controlling volunteer corn (Zea mays) in soybeans (Glycine max) with diclofop and glyphosate. Weed Sci. 30:132136.CrossRefGoogle Scholar
Andersen, R. N. and Geadelmann, J. L. 1982. The effect of parentage on the control of volunteer corn (Zea mays) in soybean (Glycine max). Weed Sci. 30:127131.CrossRefGoogle Scholar
Beckett, T. H. and Stoller, E. W. 1988. Volunteer corn (Zea mays) interference in soybeans (Glycine max). Weed Sci. 36:159166.CrossRefGoogle Scholar
Beckett, T. H., Stoller, E. W., and Wax, L. M. 1988. Interference of 4 annual weeds in corn (Zea mays). Weed Sci. 36:764769.Google Scholar
Camberato, J., Nielson, R. L., Miller, E., and Joern, B. 2011. Nitrogen management guidelines for Indiana. Purdue University Extension Service. http://www.agry.purdue.edu/Ext/corn/news/timeless/nitrogenmgmt.pdf. Accessed December 16, 2011.Google Scholar
Dale, J. E. 1981. Control of johnsongrass (Sorghum halepense) and volunteer corn (Zea mays) in soybean (Glycine max). Weed Sci. 29:708711.Google Scholar
Davis, V. M., Marquardt, P. T., and Johnson, W. J. 2008. Volunteer corn in northern Indiana soybean correlates to glyphosate-resistant corn adoption. Crop Management. DOI: .Google Scholar
Johnson, W. G., Davis, V. M., Kruger, G. R., and Weller, S. C. 2009. Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur. J. Agron. 31:162172.Google Scholar
Krupke, C., Marquardt, P., Johnson, W., Weller, S., and Conley, S. P. 2009. Volunteer corn presents new challenges for insect resistance management. Agron. J. 101:797799.Google Scholar
Marquardt, P. M., Krupke, C. H., and Johnson, W. G. 2012a. Competition of transgenic volunteer corn with soybean and the effect on western corn rootworm emergence. Weed Sci. 60:193198.CrossRefGoogle Scholar
Marquardt, P. M., Terry, R. M., Krupke, C. H., and Johnson, W. G. 2012b. Competitive effects of volunteer corn on hybrid corn growth and yield. Weed Sci. 60:537541.Google Scholar
Newcomer, J. L. 1971. Volunteer corn. Crops and Soils Magazine. 24:1011.Google Scholar
Soltani, N., Shropshire, C., and Sikkema, P. H. 2006. Control of volunteer glyphosate-tolerant maize (Zea mays) in glyphosate-tolerant soybean (Glycine max). Crop Prot. 25:178181.CrossRefGoogle Scholar
[USDA-NASS] U.S. Department of Agriculture. 2011. Acreage, ed. Washington, DC USDA-NASS. Pp. 139.Google Scholar
[USDA-NASS] U.S. Department of Agriculture. 2012. Adoption of genetically engineered crops in the U.S. Washington, DC USDA-NASS.Google Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.Google Scholar
Young, B. G. and Hart, S. E. 1997. Control of volunteer sethoxydim-resistant corn (Zea mays) in soybean (Glycine max). Weed Technol. 11:649655.CrossRefGoogle Scholar