Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-12T12:36:12.467Z Has data issue: false hasContentIssue false

Herbicide and Mulch Interactions: A Review of the Literature and Implications for the Landscape Maintenance Industry

Published online by Cambridge University Press:  20 January 2017

S. Christopher Marble*
Affiliation:
Department of Environmental Horticulture, CLCE, IFAS, University of Florida, Mid-Florida Research and Education Center, Apopka, FL 32703
*
Corresponding author's E-mail: marblesc@ufl.edu.

Abstract

Use of organic mulch is one of the most common methods of weed control in landscape planting beds and provides other benefits, including improved soil characteristics, increased growth of ornamental plants, and enhanced property aesthetics. In the landscape maintenance industry, it is common to apply mulch and herbicides concurrently to landscape beds to provide long-term, broad-spectrum weed control. It is known that herbicides behave differently when applied to different soil types and organic materials; however, research is lacking concerning which herbicides are most effective with different mulch materials in the landscape. Determining the most effective herbicide–mulch combinations could potentially improve weed control, reduce labor costs from hand weeding, and mitigate negative environmental impacts resulting from off-site herbicide movement. The objective of this paper is to review the research that has been conducted pertaining to various mulch–herbicide combinations in the landscape and in other areas of agricultural production while also identifying key knowledge gaps that should be addressed in future research. Review of the literature suggests satisfactory weed control can be achieved with high mulch depths (≥ 7 cm) regardless of herbicide use, and herbicide–mulch interactions become more pronounced as mulch depth decreases. Additionally, future research is needed to determine which herbicides are best suited for different mulch types to improve weed control and potentially reduce environmental impacts, including herbicide leaching and runoff into urban and suburban waterbodies.

El uso de coberturas orgánicas es uno de los métodos más comunes para el control de malezas en camas de siembra en paisajismo y brinda otros beneficios incluyendo el mejoramiento de las características del suelo, el aumento del crecimiento de plantas ornamentales, y mejores propiedades estéticas. En la industria de mantenimiento de paisajes, es común aplicar coberturas y herbicidas concurrentemente a camas de siembra para brindar un control de malezas más duradero y de amplio espectro. Es sabido que los herbicidas se comportan de forma diferente cuando se aplican a diferentes tipos de suelos y materiales orgánicos. Sin embargo, hay un faltante de información acerca de cuáles herbicidas son más efectivos dependiendo de los materiales para cobertura para paisajes. El determinar la combinación herbicida-cobertura más efectiva podría potencialmente mejorar el control de malezas, reducir los costos de deshierba manual, y mitigar los impactos negativos en el ambiente producto del movimiento no deseado de herbicidas. El objetivo de este artículo es revisar la investigación que se ha realizado relacionada a varias combinaciones cobertura-herbicida en paisajes y en otras áreas de producción agrícola, y a la vez identificar faltantes clave en información que podrían ser el tema de investigaciones futuras. La revisión de literatura sugiere que el control satisfactorio de malezas puede ser alcanzado con coberturas profundas (≥ 7 cm) sin importar el uso de herbicidas, y que las interacciones herbicida-cobertura se vuelven más pronunciadas a medida que la profundidad de la cobertura disminuye. Adicionalmente, se necesitan investigaciones para determinar cuáles herbicidas son los más adecuados para diferentes tipos de coberturas, para así mejorar el control de malezas y potencialmente reducir impactos ambientales, los cuales incluyen lixiviación y escorrentía de herbicidas a cuerpos de agua en zonas urbanas y suburbanas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abu-Qare, AW, Duncan, HJ (2002) Photodegradation of the herbicide EPTC and the safener dichlormid, alone and in combination. Chemosphere 46:11831189 Google Scholar
Altland, JE, Gilliam, CH, Wehtje, GW (2003) Weed control in field nurseries. Hortic Technol 13:914 Google Scholar
Appleton, BL, Derr, JF (1989) Combining mulch with geotextiles for landscape weed control. Proc South Nur Assoc Res Conf 34:262265 Google Scholar
Appleton, BL, Kauffman, K (2009) Selection and use of mulches and landscape fabrics. Blacksburg, VA: Virginia Cooperative Extension Publ. 430-019. 3 pGoogle Scholar
Baker, JM, Koskinen, WC, Dowdy, RH (1996) Volatilization of EPTC: simulation and measurement. J Environ Qual 25:169177 Google Scholar
Banks, PA, Robinson, EL (1984) The fate of oryzalin applied to straw-mulched and nonmulched soils. Weed Sci 32:269272 Google Scholar
Banks, PA, Robinson, EL (1986) Soil reception and activity of acetachlor, alachlor, and metolachlor as affected by wheat (Triticum aestivum) straw and irrigation. Weed Sci 34:607611 Google Scholar
Barnes, JP, Putnam, AR (1983) Rye residues contribute weed suppression in no-tillage cropping systems. J Chem Ecol 9:10451057 Google Scholar
Billeaud, LA, Zajicek, JM (1989) Influence of mulches on weed control, soil pH, soil nitrogen content, and growth of Ligustrum japonicum . J Environ Hortic 7:155157 CrossRefGoogle Scholar
Blumhorst, MR, Weber, JB, Swain, LR (1990) Efficacy of selected herbicides as influenced by soil properties. Weed Technol 4:279283 Google Scholar
Buhler, DD (1992) Population dynamics and control of annual weeds in corn (Zea mays) as influenced by tillage systems Weed Sci 40:241248 Google Scholar
Cahill, A, Chalker-Scott, L, Ewing, K (2005) Wood-chip mulch improves plant survival and establishment at no-maintenance restoration site (Washington). Ecol Restor 23:212213 Google Scholar
Carter, AD (2000) Herbicide movement in soils: principles, pathways and processes. Weed Res 40:113122 Google Scholar
Case, LT, Mathers, HM (2006) Field evaluation of herbicide treated mulches. Proc South Nur Assoc Res Conf 51:402 Google Scholar
Case, LT, Mathers, HM, and Senesac, AF (2005) A Review of Weed Control Practices in Container Nurseries. Hortic Technol 15:535545.Google Scholar
Chalker-Scott, L (2007) Impact of mulches on landscape plants and the environment—a review. J Environ Hortic 25:239249 Google Scholar
Chauhan, BS, Abugho, SB (2012) Interaction of rice residue and PRE herbicides on emergence and biomass of four weed species. Weed Technol 26:627632 Google Scholar
Chen, Y, Strahan, RE, Bracy, RP (2013) Effects of mulching and preemergence herbicide placement on yellow nutsedge control and ornamental plant quality in landscape beds. Hortic Technol 23:651658.Google Scholar
Crutchfield, DA, Wicks, GA, Burnside, OC (1986) Effect of winter wheat (Titicum aestivum) straw mulch level on weed control. Weed Sci 34:110114 Google Scholar
Derr, JF (1994) Innovative herbicide application methods and their potential for use in the nursery and landscape industries. Hortic Technol 4:345350 Google Scholar
Duryea, ML, English, RJ, Hermansen, LA (1999) A comparison of landscape mulches: chemical, allelopathic, and decomposition properties. J Arboric 25:8896 Google Scholar
Einhellig, FA, Leather, GR (1988) Potentials for exploiting allelopathy to enhance crop production. J Chem Ecol 14:18291844 Google Scholar
Facelli, JM, Pickett, STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:132 Google Scholar
Fawcett, RS, Christensen, BR, Tierney, DP (1994) The impact of conservation tillage on pesticide runoff into surface water: a review and analysis. J Soil Water Conserv 49:126135 Google Scholar
Fennimore, SA, Doohan, DJ (2008) The challenges of specialty crop weed control, future directions. Weed Technol 22:364372.Google Scholar
Fishel, FM (2008) EPA approval of pesticide labeling. Gainesville, FL: University of Florida, Institute of Food and Agricultural Sciences EDIS Pub. PI167, 3 pGoogle Scholar
Fitter, AH, Hay, RKM (1987) Environmental physiology of plants. 2nd edn. London: Academic Press. Pp 3342 Google Scholar
Froment, MA, Britt, CP, Dooney, J (2000) Farm woodland weed control: mulches as an alternative to herbicides around newly planted oak Quercus robur transplants. Asp Appl Biol 20:8186 Google Scholar
Hart, S (2001) Weed management in ornamental plantings. New Brunswick, NJ: Rutgers Cooperative Extension Bull. e272. 8 pGoogle Scholar
Hodges, AW, Hall, CR, Palma, MA (2011) Economic Contributions of the Green Industry in the United States, 2007. Southern Cooperative Series Bull. 413. http://www.fred.ifas.ufl.edu/economic-impact-analysis/pdf/us-green-industry-in-2007.pdf. Accessed December 26, 2014Google Scholar
Kanematsu, M, Hayashi, A, Denison, MS, Young, TM (2009) Characterization and potential environmental risks of leachate from shredded rubber mulches. Chemosphere 76:952958 Google Scholar
Knight, PR, Gilliam, CH, File, SL, Reynolds, D (2001) Mulches reduce herbicide loss in the landscape. Proc South Nurs Assoc Res Conf 46:461463 Google Scholar
Lanphear, FO (1968) Incorporation of dichlobenil in mulches. Weeds 16:230231 Google Scholar
Locke, MA, Bryson, CT (1997) Herbicide–soil interactions in reduce tillage and plant residue management systems. Weed Sci 45:307320 Google Scholar
Mallory-Smith, CA, Retzinger, EJ (2003) Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol 17:605619 Google Scholar
Martin, C, Ponder, H, Gilliam, C (1987) Ability of polypropylene fabrics to inhibit the growth of six weed species. Ala Agric Exp Stn Auburn Univ Leaf 5:2526 Google Scholar
Martin, P, Calvin, L (2010) Immigration reform: what does it mean for agriculture and rural America? Appl Econ Perspect Policy 32:232253 Google Scholar
Mary, B, Recous, S, Darwis, D, Robin, D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181:7182 Google Scholar
Mathers, HM (2003) Novel methods of weed control of containers. Hortic Technol 13:2834 Google Scholar
Mathers, HM, Case, LT (2006) Field evaluation of various herbicide and mulch combinations for ornamental weed control. Hortscience 40:977978 Google Scholar
Pons, TL (1991) Induction of dark dormancy in seeds: its importance for the seed bank in the soil. Funct Ecol 5:669675 Google Scholar
Popay, AI, Roberts, EH (1970) Ecology of Capsella bursa-pastoris (L.) Medik and Senecio vulgaris L. J Ecol 58:123139 Google Scholar
Rathinasabapathis, B, Ferguson, J, Gal, M (2005) Evaluation of allelopathic potential of wood chips for weed suppression in horticultural production systems. Hortscience 40:711713 Google Scholar
Richardson, B, Gilliam, CH, Fain, GB, Wehtje, GR (2008) Container nursery weed control with pinebark mini-nuggets. J Environ Hortic 26:144148 Google Scholar
Samtani, JB, Case, L, Mathers, HM, Kling, GJ (2007) Rice hulls, leaf-waste pellets, and pine bark as herbicide carriers for container-grown woody ornamentals. Hortic Technol 17:289295 Google Scholar
Sanchez-Martin, MJ, Crisanto, T, Lorenzo, LF, Arienzo, M, Sanchez-Camazano, M (1995) Influence of leaching rates on 14C metolachlor mobility. Bull Environ Contam Toxicol 54:562569 Google Scholar
Schumann, AW, Little, KM, Eccles, NS (1995) Suppression of seed germination and early seedling growth by plantation harvest residues. S Afr J Plant Soil Sci 12:170172 Google Scholar
Senseman, SA, ed (2007) Herbicide Handbook. 9th edn. Lawrence, KS: Weed Science Society of America. 458 pGoogle Scholar
Sibley, JL, Cole, DM, Lu, W (2004) Waste is a terrible thing to mind. Proc Int Plant Propagators Soc 54:596603 Google Scholar
Skroch, WA, Powell, MA, Bilderback, TE, Henry, PH (1992) Mulches: durability, aesthetic value, weed control, and temperature. J Environ Hortic 10:4345 Google Scholar
Smolders, E, Degryse, F (2002) Fate and effect of zinc from tire debris in soil. Environ Sci Technol 36:37063710 Google Scholar
Somireddy, U (2012) Effect of Herbicide–Organic Mulch Combinations on Weed Control and Herbicide Persistence. Ph.D Dissertation. Columbus, OH: Ohio State University. https://etd.ohiolink.edu/. Accessed December 24, 2014Google Scholar
Steward, LG, Sydnor, TD, Bishop, C (2003) The ease of ignition of 13 landscape mulches. J Arboric 29:317321 Google Scholar
Teasdale, JR, Mohler, CL (2000) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385392 Google Scholar
Wauchope, RD (1987) Tilted-bed simulation of erosion and chemical runoff from agricultural fields: 11. Effects of formulation on atrazine runoff. J Environ Qual 16:212216 Google Scholar
Weber, JB (1990) Behavior of dinitroaniline herbicides in soils. Weed Technol 4:394406 Google Scholar
Wells, DW, Constantin, RJ, Brown, WL. 1987. Weed control innovations for large, container grown ornamentals. Proc South Weed Sci Soc 40:137 Google Scholar
Wesson, G, Wareing, PF (1967) Light requirements of buried seed. Nature (London) 21:600601 Google Scholar
Weston, LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agron J 88:860866 Google Scholar
Wilen, CA, Elmore, CL (2007) Weed Management in Landscapes. Davis, CA: University of California Pest Notes No. 7441. 7 pGoogle Scholar
Wilson, PC, Riley, MB, Whitwell, T (1995) Effects of ground cover and formulation on herbicides in runoff water from miniature nursery sites. Weed Sci 43:671677 Google Scholar
Yang, Q, Gilliam, CH, Wehtje, GR, McElroy, JS, Sibley, JL, Chamberlin, J (2013) Effect of pre and post moisture level on preemergence control of hairy bittercress (Cardamine hirsuta L.) with flumioxazin. J Environ Hortic 31:4953 Google Scholar